19. Dynamz"éal Absorption of the Energy of Rayleigh-
waves and Love-waves by Weak Surface Layers.

By Katsutada SEzawA and Kiyoshi KANATI

Earthquake Rescarch Institute.

(Read April 17, 1940.—Received June 20, 1940.)

1. A short veview of the. last inwvestigation on the vibration damping
of seismic waves by a weak layer.

In our last investigation,” by assuming the existence of v1brators :
of relatively simple type resting on a semi-infinite elastic body, it was
shown that a surface soil layer could serve as a dynamic damper to
seismic surface waves, provided that the layer is of fairly large thick-

ness and of small elasticities, with certain viscositics. The attenuamon
" coefficient of the boundary waves in the soil layer of given viscosity
that rests on a semi-infinite subjacent elastic medium without viscosity,
is much greater than the coefficient of - Rayleigh-waves transmitted
through a semi-infinite body having the same elasticities as those of the
subjacent medium and having the rame viscosities as those of the soil
layer.

Let M be the mass of the layer per unit surface area, ¢ the modu-
lus of elasticity of the layer, and p the frequency of the waves. When
the surface layer acts as.a dynamic damper, the attenuation coefficient
usually increases with increase in Mp?je, tending to infinity at Mp®le
=1, while the velocity of transmission diminishes with increase in
Mp¥le. In any case, the attenuation cocfficient is always proportional
to the coefficient of viscosity and the square of the vibrational frequercy
of the waves. There is no wave for Mp?/e>1, the reason for which is
that, if Mpz/c>1 the amplitude of the possible waves tends to infinity
with increasing depth in the lower medium, the total ener. oy of the
waves integrated through depth being then infinite. c g

As a matter of fact, the assumption of the existence of simple
vibrators resting on a semi-infinite body is merely to serve as a work-
ing hypothesis. The condition that no wave exists for Mp?c>1, results
from the same assumption. We are now in a position to discuss the

1) K. Sezawa and K. Kawa1, “The Action of Soil inyers and of the Ocean as
Dynamie Dampers to Seismic Surface Waves, with Notes on a few Previous Papers,”
Bull. Earthg. Res. Inst., 18 (1940), 150-168.
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case in which the soil layer is a continuous visco-elastic medium, which
is likely to fit in with the real conditions.

The cases discussed in the present paper arc the transmission of
Love-waves and that of Rayleigh-waves in a stratified body. As last
mentioned, the surface layer in the present condition is a continuous
and visco-elastic medium. The lower layer is also assumed to be a
continuous and visco-elastic medium, but for ascertaining the damping
quality of the visco-elastic surface layer, we shall specially assume, in
our numerical calculations, that either the upper or lower layer is
non-viscid.

2. Eaxpression for the attenuation coefficient of \z
Rayleigh-waves transmitted through a stratified T 7T
~wisco-elastic body. /@,)‘,,/1,,?\,,/1, 7
Let the densities, elastic constants, and \ b4
. : NN :
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media. Substituting the solutions thus obtained in the boundary con-
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For obtaining the dispersion equation and the expression for the attenu-
ation coefficient, we write

J=h—1f (6)
27/ fi and f, being the wave length and the attenuation coefficient for

the epicentral distance, respectively. For solving the problem, we shall
assume that

piakp, praken,  fill fis
PO+ 2m) KM+ 21), P+ 2) K (he+ 2412),
which condition would exist almost in any practical case, when it is

possible to neglect any value of fo/fi that is higher than its second
order quantity. Putting (6) in (4), we get then
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Equation (8) gives the velocity of transmission p/fi (=Y pdi/pr="Vprps[p2)
and equation (9) the attenuation factor ¢™*°. Although equation (8) can
be solved by the trial and error method, since the equation is virtually
the same as that we had used for getting the velocity of dispersive
Rayleigh-waves®, no further calculation is now required, not at any rate
for the condition of stratification discussed previously. The determina-
tion of f(=98f1/2) from (9) can, however,
be attained by merely substituting the | 7 .
results of .(8) in (9). filfe e
8. dbsorption of the energy of Rayleigh- ’
waves by o weak surface layer. '
We shall take, for example, such a
condition of stratification that p,=p.(=p),
M= fhy, A= fo, oty =20. Then, from the
results of the previous paper last given, -

. ' I M NP
0 5 10 5 20

the dispersion curves are of the type TFig. 2. Dispersion curves for
shown in Fig. 2. The orbital motion of Rayleigh-waves.  p,=p.,
the waves indicated by the broken line Ar=phs Av=pia, pralpn=20.
in the figure is invariably the same as that

of gravitational waves, that of the waves o-FHIPR

indicated by the full line being reversed. L 1
We shall next consider the attenua-
tion coefficients of the waves for the con-

dition that corresponds to Fig. 2, the re- |

lations between the coefficients of viscos- (D pth=0, a4 %0

. . ’ ’ ’ ’ . . r —_—

ity belng A =g, A;=un;.  For ascertaining l. ‘ o
the nature of wave absorption by the ¢ g g 5

surface layer, we have calculated two con- Fig. 8. Variation of attenuation co-
efficient f. with L for a given

ditions Wi'th reépect'to the viscosities; H. pr=pa=p, =i Aa = Ay’ =
the first in which (i) p:=0, pi(=p')==0 f's Ao =g’ profpe,=20. Ordinates
and the second (ii) wi=0, piy(=wu")==0. of the extended parts of the cur-
The resulls of calculation using (9), are ves are shown in Table I, II.
shown in Figs. 3, 4 and in Tables I, II. Fig. 8 and the tables represent
the variation in the attenuation coefficient f. with wave length L for

2) K. Sezawa and K. Kaxar, Bull. Earthq. Res. Inst., 13 (1935), 237-244.
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a given layer thickness [ and Fig. so_ ,2 /s
4 that with layer thickness H for a f;L‘ /lz/y w

given wave length L ; the full lines

and broken lines in these figures o (i3 puy=0, pri(=f0)%0
correspond to the dispersion curves [ RN
shown by full line and broken %I !
line, respectively, in Tig. 2. i ,I A N
It will be seen.from Figs. 3, 2 AN

4 that, for any case of dispersion |
curve, the attenuation coefficient mol- [1 (Dpj=0,p5=pt)%0

of waves in media with condition L/ l '_”H/L
(i) p;=0, p1==0, greatly exceeds that AL N

0 o 02 03 04 05

of waves In media with condition
(ii) m1=0, w;=0, for a wide range Fig 4 Variation of attenuation cocficient

of L or of H, indicating that the Tz Wit'thoragiven, L. 'Ol:prp’,)F”“
. . 7\z=[la, Hz//‘x":?o, A =/11'! Ao =Ha
damping of the waves is pronoun- '

ced if the weak surface layer is viscous.

Table 1. Ordinates for full lines in Fig. 3.

LJH ‘ 0" 417 514 117 16:0 992
pa' =0, pry! £0 00 174 107 147 0.592 0.032
=0, ' 0 0 0072 | 0076 0075 0.064 0.051

Table II. Ordinates for broken lines in Fig. 8.

LJH 2.65 472 ’ 800 123 167
e =0, ' %0 241 154 5.14 211 0
' =0, ' £0 0033 — — 0-106 0-071

Furthermore, since the attenuation factor is that of the exponential
function of the. attenuation cocfficient, the damping of the waves of
case (i) #;=0, p;==0, far excceds that of the waves of case (ii) pi=0, )
=+0.

It is particularly intcresting that the broken line of case (i) in
Tigs. 3 and 4 ends with zero ordinate at the abscissa, and that the second
dispersion curve vanishes. Since, at this abscissa, Rayleigh-waves (of
M. kind) change in type from surface to non-surface, the damping of
the waves then depends mainly on the property of the medium in the
subjacent layer (without viscosity), the reason for the attenuation coef-
ficient tending to zero being now obvious.

We shall next consider the variation in the attenuation coeflicient
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with changes in wave length alone or in layer thickness alone. In the
first place, Fig. 8 indicates that for L/H — 0, although in case (i) p.=
0, #1==0, the attenuation cocfficinet tends to infinity; in case (ii) m=0,
w;==0, the same coefficient vanishes. The reason for this is that in case
(i) the whole disturbance of zero wave length in the viscous medium,
viscous resistance is infinitely great, whereas in case (ii), the same dis-
turbance being in non-viscous medium, damping resistance vanishes.

Figs. 3, 4 also show that whercas the attenuation coefficient in case
(i) #3=0, pi==0, is maximum for an intermediate valde of H for a given
wave length, in case (ii) p1=0, =0, the coefficient is maximum for
an intermediate value of L. This is a very important feature of the
problem, its explanation being as follows.

A few years back®®, we ascertained that the amplitude of dispersive
Rayleigh-waves or Love-waves in non-viscous media assumes a maximum
value for a certain thickness of the layer—a feature resembling the reson-
ance condition of the standing vibration of that layer. In view of the

generail na.tm.'e (.)f standing TeSONance 4y ' ik
vibration, it is likely that the damping y g 130
of Rayleigh-waves or Love-waves trans- — w 1
mitted in viscous media would be maxi- 2

mum for such thickness of the layer as .l
corresponds to the condition resembling el lin k)
resonance, the occurrence of maxima of

‘the attenuation coefficients in Figs. 8,4

P L I R 0
0 05 I rs 20

Fig. 5. The attecnuation coefficient f,

being thus quite probable. Although (in km-1) and focal distance z in
g ossible for the curves of con- km at whic.h wave amplitude be-
1t, ],6 als,o P 5 .o comes 1/10 its original value. H=
dition (i) in Fig. 3 or for the curves of 100m, py' =10° OGS, ' =0, pr=ps
condition (ii) in Tig. 4 to have their =2:5, Ypolpa=4 km/sec., pofp=20

maxima, owing to the gencral steepness of the curves, therc is no real
maximum in these curves.

Finally, for ascertaining the numcrical value of the attenuation
coefficient, we shall assume, for example, H/=100m, =0, pi(=p)=
10° C.G. 8., pi=p:=2-5, Yp/p,=4 km/scc, o/ =20; and calculate the
attenuation coefficient f; in km™ for various lengths, as well as the
focal distance in km at which the amplitude of the waves diminishes
specially to one-tenth of that at the origin (waves being transmitted in
one direction), the results of which are shown in Fig. 5

This figure shows that even if the cocfficient of viscosity B were

3} K. Sezawa and K. Kaxay, “Relation between the Thickness of a Surface Layer
and the Amplitudes of Love-waves”, Bull. Earthq. Res. Inst., 15 (1937), 579-581.

4) Ditto, “ Relation between the Thickness of a Surface Layer and the Amplitudes
of Dispersive Rayleigh-waves”, Bull. Farthq. Res. Inst., 15 {1937), 845-859.
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as small as 10° C. G. S,, the amplitude of the Rayleigh-waves transmitted
through the layer under consideration would be one-tenth its original
value for such focal distance as a certain multiple of the wave Ielwth
4., The expression for the attenuation coefficient FZ
of Love-waves transmitted through o stratified 7
visco-elastic body. 2% sy ’I/
Let the densities, elastic constants, and the N N
viscous constants in the upper and lower layers N2 /A/AQ NN
be pi, fu, f1; pe,’ pe, p2, respectively. The dis- . Tig. 6.
placements in these two layers are then respectively

'UIZAIGZ(””'”“”)—{— Blei(z/t—fx—sm’}

V= Agc“‘ l—fp)—l-s;»z,

%

—X

(11)

where

2 3 B
g=—LL __ g g=pr PP (12)
Pat ap i 2t ipps
Using the boundary conditions at z=0 and z=1II, where I is the

thickness of the layer, we get

tans, I[—(’U“Zﬂ)ﬁﬁi . » (13)
(m+ipp)s: .
Writing

f=h—ifs, (14)
and putting '
' pii &y, pi e, fo S : (15)

(13) can be decomposed iﬁto
tan(fi Vg —1)— L1/1=b: —¢, " (16)

ot $1—1 :

T1 { (2 _(l)l)(l — (}bz) + /‘01’1((151 - 1)V1 —¢>2flffsec2(f11f1/¢)[—- ] )}
+'T2(4>1 "1)(2_‘752)
—28{ (1 — Pp2) + po(p: — 1)V1 — o il sec*(fL H Vb — 1) } =0, (17)

where

1 l"f ! ]
ot

fl 122
Equation (16) gives the velocity of transmission p/fi(=Vimupi/p1="Vw:p:/p.)
and equation (17) the attenuation factor e™°. Since equation (16) is
virtually the same as the dispersion equation of Love-waves transmitted

¢__P17) ¢~_P2P lep—ﬂéy ngﬁlé’ 1

(18)
l"o’—‘fﬁ-
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through non-viscous media, its solution can be obtained in the usual

way. Substituting the value of fi
possible to determine the value of

thus obtained in equation (17), it is

S

5. Absorption of the energy of Love-waves by a wealk surface layer.

With a view to getting the
numerical values of the attenuation
coefficient of Love-waves transmitted
along a weak surface layer, we
shall take three conditions of rigi-
dity ratio, namely, m/p.=2, 5, 20,
the ratio of densitics being unity,
namely p;=py(=p). The dispersion
curves are shown in Fig. 7.

The attenuation coefficients for
the cases now under consideration
can be obtained with the aid of
the formulae in the preceding
section. The calculations for

the wvariation in attenuation ﬁHW/ﬂ'\ \

coefficient fo with change in
wave length L for a layer of
given thickness I{ arc shown
in Figs. 8,9, 10, and in Table 4
I1I, IV, V. For ascertaining
the nature of wave absorption
by the surface layer, two con-
ditions with respect to the vis-
cosities, bpamely, (i) =0,
m(=p)=0, [i) m=0, m(=#) ,
=0, have been studied. As in
the case of Rayleigh-waves,
the attenuation coefficient of
Love-waves in media with con-
dition (i) p:=0, pi(=p")==0, is
very much greater than that
of the same waves in media

5

N

~

4'5—_p -p— .
sl i H

!

X5
30

25

T R BT
o 5 [ 5 /H
Fig. 7. Dispersion curves for Love-waves.
P1=pay flafp =2, 5, 20. '
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é%ﬁﬁ u
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Fig. 8. Variation of attenuation coefficient f.

with I for a given H. p,=p.=p. Broken
lines represent condition (1) p.'=0, p,'(=p')
#0 and full lines condition (i) p,'=0,
po'(=p")£0. Ordinates of extended parts
of broken lines and ordinates of full lines
in magnified scale are shown in Figs. 9,
10, respectively, and in Table III, IV, V.

with condition (i) p;=0, px(=p')%+0 for a wide range of L, showing

that if the weak surface layer is
marked. As in Rayleigh-waves,

viscous, damping of the waves is
although in ease (i) w:=0, pi(=p’)

=0, the attenuation coefficient tends to infinity for L/H—0, in case
(ii) p1=0, pi(=p')==0, the same coefficient vanishes for L/H—0, the
reason for which is also the same as that in the case of Rayleigh-
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waves”. Tigs. 8, 10 show too that in condition (ii) w=0, p(=p')=0,
the attenuation coefficient becomes maximum for an intermediate value
of wave length. As shown in Section 3, this arises from the fact that
the nature of the waves is in resonance-like condition for such wave
length. The reason for there being no maximum of ordinates for con-
dition (1) =0, m(=p")=0, is that the inclination of the curves in
this condition is very steep.

FHIEER

FHIE
al! oak
20 02
10+ 07
- 1t =29
L i EE ! /l ’ s L/}_{
0 3 7 15 0 5 B A

Fig. 9. Curves showing extended
parts of broken lines in Fig. 8.

Fig. 10. Curves showing full lines
in Fig. 8, on magnified scale.

Table III. Ordinates in Figs. 12, 13. w/u,=2.

LJH 131 2:30 370 593 836 ; 175
[12' =0, g,/ 40 17-6 5-87 2:05 0-53 0-132 0-0084
' =0, FQ':FO 0:270 0419 0-419 0-331 0-219 0-061

Table IV. Ordinates in Figs. 12, 18. mfpu,=5.

LIH 1.32 2:39 425 6-94 881 10-6 128
,12'=0, fh':i:O 289 107 4.27 161 073 034 0-14
' =0, ,tg':f:() 0-055 0-097 0-178 0-215 0:181 0.149 0-112

Table V. Ordinates in Figs. 12, 13. p./p=20.

i20zs 182 | 200 | 413 } 742 | 920 ‘ s | 181 | 270
,12' =0, I.L,'#O 58-6 30-2 136 9-55 7-89 523 0-978- 0-059
=0, m'#0 | 0006|0010 | 0025| 0055| 0068 | 0076| 0060 | 0028

5) loc. cit. 3), 4).
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The variation of attenuation coefficient f; with change in layer
thickness H for a given wave length L is shown in Figs. 11, 12, 13.

FLIER
200~ '

150~

I
I
1
!
| ~ o
1001~} . / ————————
1
I
!

/-, :
£f~-=_
50— /I/t(‘/r=5 ———————————
L__ ;

7 _ -~ - - - = =~ = = > H/L
X Fo=2 I : L L
[/ 02 04 06 08 0

Fig. 11. Variation of attenuation coefficient f; with H for a given I.. p,=p,=p. Broken
lines represent condition (i) p.'=0, p'(=p)#0 and full lines condition (ii) =0, p,’
(=p")#0. Ordinates of extended parts of broken lines and ordinates of full lines in
magnified scale arc shown in Figs. 12, 13, respectively.

20

o AL "
Q- 2
400~ 8
20 4

Gt T 7T
0 e o wi 0
Fig. 12. Curves showing extended parts Fig. 13. Curves showing full lines in

of broken lines in Fig. 11. Fig. 11, on magnified scale.

The conditions with respect to the viscosities in the media are also (i)
#2=0, pi(=p')=+0 and (i) p=0, u(=p')==0. In this case, as in Ray-
leigh-waves, the attenuation coefficient f» for condition (i) is maximum
for an intermediate value of layer thickness [, for the same reasons
as that last given.

6. Absorption of the energy of Love-waves by a densc layer.

The possibility of Love-waves being transmitted along a densc layer
instead of a weak layer is well known, the dispersion and the attenua-
tion equation for which are the same as those in (168), (17). We shall
now compare the damping quality of Love-waves arising from a weak
layer and that arising from a dense layer. '
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The cases considered are such that (I) pufp;=1/2, us/it=1, and (II)
po/p1=1, ps/p,.=2; the dispersion curves for these two cases are shown
in Fig. 14. The calculation for PP .
the variation in attenuation coef- M M @12l —
ficient f. with change in wave T
length L for a given layer thlcl.i- oL a Pop= 16,15 =1
ness 1, and that with change in
layer thickness J for a given . #f Ly
wave length I, are shown in A0y —21; 7,
Figs. 15, 16, respectively. . Fig. 14. Dispersion curves for Love-waves |
‘ In. bot,h these, ﬁgu’res condi- in two case: (1) py=py, palpn=2, (1)
tion (i) pe=0, w(=p')=0, and palp=1 palp=1/2.
condition (ii) pi=0, pi(=w")==0 arc indicated{by broken lines and full

lines, respectively. B AL
2 R e
fHERE 25t /
/
4 —
1 AR J OAp=obofu =1

:/ 2, =
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Fig. 15. Variation of attenuation coefficient TFig. 16. Variation of attenuation coeffici-
f: with I, for a given I in two cases, (I) ent f, with H for a given I in two cases

pelp=1 padp=12, (II) po=p; palp=2. (O po/pn=1 polpy=1/2, (I1) pr=p;, prolp,

Broken lines represent condit'on (i) p,'= =2. Broken lines represent condition (i)
0, p.'(=p")¥0, and {ull lines condition (i) p;’:(), ,.;,’(=,u’):i:0 and full lines condi-
=0, p'(=p")F0. tions (ii) ,u;,’=0, 2 (=p")F0.

It will be seen from these figures that every nature of the attenu-
ation coeflicient in the case of Love-waves transmitted along a dense
layer is, qualitatively, quite similar to that in the casec of Love-waves
transmitted along a weak layer. Thus, the attenuation coefficient of
Love-waves in condition (ii) p;=0, ps(=p')==0, is maximum for an inter-
mediate value of wave length, while the same coefficient in condition
(if) ps=0, p(=p')=0, is maximum for an intermediate value of layer
thickness, which condition holds whether the surface layer is of the
nature of low elasticity or that of high density.

7. Summary and concluding remarks.

It was ascertained mathematically that a weak or demse surface
layer serves as a dynamic damper to Rayleigh-waves or Love-waves
transmitted along that layer. The attenuation coefficient of any surface
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waves, in the case of the surface layer being viscous, is much greater
than that in the case of the subjacent layer being viscous.

If the surface layet~is viscous and the subjacent layer is non-viscid,
the attenuation coefficient is maximum for an intermediate thickness. of
layer, but if the surface layer is non-viscid and the subjacent layer is
viscous, the same coefficient is maximum for an intermediate. wave
length. This arises from the condition of our previous result that there
exists a resonance-like feature in the wave transmission for an inter-
mediate wave length or for an intermediate layer thickness. - - )

In the case of Rayleigh-waves, particularly, the attenuation coeflici-
ent of those waves of the second kind vanishes at such wave length
as that in which the waves change from surface type to non-surface type.

The present investigation shows that, with increasc in epicentral
distance, seismic surface waves transmitted through a region covered
with fairly thick loam would be damped to a certain extent, whereas
the same waves transmitted through a rocky surface would scarcely be
damped even should the amplitudes of the waves on such surface be
originally rather small.

Another problem of practical importance is how to avoid the seismic
disturbances due to a machinary working and surface traffic. Since, as
shown by many authors, these disturbances are almost surface waves,
the best way to avoid them would be to cover the ground to a certain
area surrounding their source with a weak soil layer of certain thickness.

In conclusion, we wish to express our thanks to Messrs. Watanabe
and Kodaira, who assisted us greatly in our calculations. We are also
‘indebted to the Officials for Scientific Research in the Ministry of
Education for financial aid (Funds for Scientific Research) granted for
a series of investigation, of which this study is a part.
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