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1. The action of ¢ weak layer as vibration damper to seismic waves.

A few years back we showed a model demonstrating a dynamic

damper to the scismic vibration of a structure”. After publishing the
report of that investigation, our attention was called to the possibility
of occan water of relatively small depth serving as a damper in the same
way. Since, as is well known, the viscosity of water is not great, the
action of water in the direction mentioned would scem to be very feeble.
On the other hand, soil layers on the earth’s crust, notwithstanding
their small clasticitics, have relatively large viscositics, owing to which
condition it is likely that they could act as vibration dampers to scismic
Waves. .
Although bodily waves that are reflected several times on the sur-
face layers can be damped by the viscous action of the surface soil,
since the treatment of such a case involves mathematically ambiguitics,
we shall at present refrain from discussing it. In the case of boundary
waves transmitted along the surface, however, notwithstanding certain
mathematical complexities involved in its treatment, since the problem
is theorctically determinate, the present investigation will be restricted
to that case. Although the damping of waves {ransmitted along the
occan bottom is obviously small, yct for the sake of confirmation, this
special casc is also treated here.

For the case of the soil layers, the transxmcsxon of Love-type waves
and that of Rayleigh-type waves are studied, whereas for the case of the
ocean bottom, from the nature of things, it is sufficient to consider Ray-
leigh-lype waves.

.As to the nature of the surface soil, the layer is replaced by an
oscillating layer of certain mass and elasticities, with come viscous
damping. The lower layer, on the other hand, is assumed to be a
perfectly elastic medium, but without viscosity. Although the lower

1) K. Sezawa and K. Kaxai, Bull. Farthq. Ree. Inst., 15 {1937), 23-82, 598-613.
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layer may also be viscous, since, in such condition, the damping quality
of the visco-elastic surface layer is indiscernible, we shall speually use
the condition that the lower layer is non-viscid. :
2. The action of soil ZaJe7 as o dynamic dampeo to Love- type boun-.
dary wavres. :

In a previous paper we considered the transmission,of‘ Love-type
waves on the surface on which masses arc distributed. It.was assumed,
for convenicnce, that the elastic force between
the masses and the lower medium is infinitely = Moo g
great. In the present case, since the masscs
should act as a dynamic damper, the clastic
force under consideration may be finite.

Let M be the mass per unit arca on the
upper surface and ¢, 7 the moduli of the ‘clastic and dampmcr forces
that are resisting the horizontal movement of the mass M relative to
the lower medium. Let also p,px be the density and rigidity of the
lower medium. If U,w be the horizontal displacements of the mass
M and the lower medium, respectively, at right angles to the dlrectlon
of transmission of the waves, then the equations of the v1brat01y mo-
tions of mass M and the lower medlum become
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The solution of (2) and the form of U are
U:Aet;t—i_fx’ ,IL=Betat~ifx—sz’ (4)
where
S=f—F, F=pcdlp. (5)
Using relations (1), (8), we have
{usc— Mo(us +¢)} +ior(us — Me?) =0. 6)

It should be borne in mind that, as already said, the lower medium is
non-viscid. ~ When ¢=00, (6) becomes ps=Me’, that is, yI—k%/f*—
- E°M[fp=0, which is virtually the same as (14) of the previous paper.?’

" To get the velocity of transmission and the attenuation coefficient
of the waves, we put '

2) K. Sezawa and K. Kaxal, Bull. L'arthq Res. Inst., 18 (1940), 1-10. .
8) loc. cit. 2), 8
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S=h—1f; M
- when 27/f is the wave length and f. the attenuation cocfficient for the
epicentral distance. For solvinz the problem, we shall assume that the
attenuation coefficient is not very great, from which it is possible to
neglect any value of f/fi that is higher than its second order quantity.
Putting (7) in (6), we get then
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The first cquation gives the velocity of transmission e/f; and the sccond
the damping factor ¢™ of the waves with eplcentra] distance. - The
results of calculation are shown in Figs. 2-7.

Fig. 2 represents the quantity fie (reciprocal of the velocity) with
abscissa Mo[c for the given values of Me/yup, namely, Melyup=0-1,
0-3, and Fig. 8 the same quantity with the same abscissa for the given
values of c/oyup, namely, c/oyup=01,1,10. There is no valuc of fi/e
for Mc?/c>1. Although, from the form of (8), it is likely that fi/c. can
exist beyond Me?le=1, since (Mo/c)(c/uk)[(L—DMe[c) in (8) is virtually
the same as s, it follows that if Me?/c>1, then s becomes negative, in
which case the amplitude of the waves tends to infinity with increasing
depth in the lower medium, the reason that there is no wave existent
for Me’/c>1 becoming thrs obvious.

4 02
Fig. 2. Reciprocal of velocity of Fig. 3 Reciprocal of veloclty of
Love-type waves. Love-type waves.

The curves corresponding to the reciprocals of those in Figs. 2,3 -
are plotted in Figs. 4,5, The reason for there being no wave for

felc>1 is the same as that just mentioned. From the nature of the
problem, Fig. 4 represents the variation in velocity with ¢ for a ‘TlV(’ll M
and Fig. & that with M for a given e.
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It will be secn from these figures that with increase in Mc?fe, the
velocity of transmission, generally, diminishes, tending to zero at
Mc?le=1. If we consider the effect of M and that of ¢ on the velocity
of transmission, scparately, the nature of the problem becomes clearer.
It M be given, the velocity increases with increase in ¢, whereas if ¢
be given, the velocity diminishes with inerease in M.
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Fig. 4. Velocity of Love-type waves.
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Fig. 6. The attenuation coefficient Fig. 7. The attenuation coefficient

of Love-type waves. of Love-type waves.

We shall next consider the variation in the attenuation cocfficients,
as shown in Tigs. 6,7. Tig. 6 represents the attenuation coefficient
varying with ¢ for a given M and Fig. 7 that varying with M for a
given c.

It will be scen from these figures that with increase in Mo/e, the
coefficient generally increases, tending to infinity at Me'Jc=1. If the
effects of M and of ¢ were considered separately, it would be found
that if I is given, the cocfficient diminishes with increase in ¢, whereas
if ¢ is given, the cocfficient increases with inercase in M.

I'rom the above results, it holds that, in accord with the increase
or decrease in the velocity of transmission due to change in either M
or ¢, the attenuation coefficient invariably decreases or increases.

Since, furthermore, the ordinate in any one of Figs. 6, 7 is fucyu/p/e’r,

~ the attenuation coefficient is always proportional to the coefficient of
viscosity T and the squarc of vibrational frequency e, whence it fol-
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lows that the boundary waves of Love-type ean be well damped provided
the density and the viscosity of the surface soil layer (and also the
frequency of the waves) are as great as possible and the elasticity of
that layer is, on the other hand, as small as possible.

8. The action of a soil layer as a dynamic damper to Rayleigh-type
boundary wares.

In the previous paper” we considered also the transmission of Ray-
leigh-type waves along the surface on which masses are distributed.
The restriction in the previous paper that the clastic force between the
masses and the lower medium shall be infinitely great, will now be
removed.

The meanings of the constants arc almost similar to those in the
preceding section. In the present case, M, M, c c',r,v represent the
effoctive masses on the suiface for horizontal and vertical motions, and
moduli of clastic and damping resistances to horizontal and vertical
movements of such masses relative to the lower medium for Rayleigh-
type motion. Let p, A, # be the elastic constants of the lower medium.
If U, V,u, v are horizontal and vertical displacements of the masses
M, M’ and the lower medium, respeetively ; then the equations of the
vibratory motions of the M, M’ and the lower medium are expressed
by

2
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The solutions of (12), (18) and the forms of U,V are
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4) loc. cit. 2).
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U: Oeiat-ifm’ V: Dctut—z’fx’ (18)
where =11+ us, v=v+1 and
2 2
7.‘3:;‘2_7&?, '5.22 Z_kz’ Iﬁ: pOC B kzzﬁ, (19)
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Substituting (17), (18) in relations (10), (11), (14), (15), we finally get
mm’'R—m(14ie') fm'n'rk + R} —m' (14 ie){mnsk®+ R}
+ (1 +de)(L+ e )[mn B fmn(rs —f°) + vk} + masl* +R1=0, . (20)
where
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It should be remembered that the lower medium is non-viceid.
To simplify the problem, we assume that

M=M', c¢=c, +=+, ,
that is, m=m', n=n', e=¢ (KI1). (22)

In order to get the velocity of trangmission and the attenuation coeffi-
cient of the waves, we write

S=fi—ifs, (23)
27/fy and f; being the wave length and the attenuation cocfficient for
the epicentral distance, respectively. Then, assuming that Flfi1, we

get
(=2 -1 )/ (- ()
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Equation (24) gives wave length 2w/fi, corresponding to frequency o,
and that in (25) the attenuation cocfficient f; of the waves for epicent-
ral distance.

‘When ¢=2o0, (24) reduces to

(4rs < §* )2 Mo 1P < r 8 Mo \* 1 s
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. Ifl fi } ©" f% fHo A H /ff Ji
By writing o’/u=%*|p, i=f, ......, the above equation becomes
2 >4< Fa/s >< 7's> (k)“f]l[ <r s\, (drs &\ .
DE) (=)= () G+ -1 ) f=0 @D
<f P SNl NS {f * I f;
which is the same as that in (7) of the previous paper.
Tig. 8 represents the quantity fi/e: (reciprocal of the velocity) with
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Fig. 8. Reciprocal of velocity of Fig. 9. Reciprocal of velocity of
Rayleigh-type waves. Rayleigh-type waves.
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abscissa Mo[c for given values of Mo|ypp, namely, Me/Yup=01,0-3, and
Fig. 9 the same quantity with the same abscissa for given values of
¢[oypp, namely, ¢/eryup=0-1,1,10. In the present case, too, there is no
value of fifee for Me[c>1, for reason similar to that in the case of
Love-type waves. '

Fig. 11. .Velocity of Rayleigh-type waves.
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Fig. 12. The attenuation coefficient Fig. 18. The attenuation coefficient
of Rayleigh-lype waves. of Rayleigh-type waves.

The curves corresponding to the reciprocals of those in Figs. 8,9
are plotted in Figs. 10,11. The reason that no wave exists for Mel/e>1,
is obvious from the fact that the condition is like that in the case of
Love-type waves. Tig. 10 represents the variation in the velocity with
¢ for a given M and Fig. 11 that with 3 for a given c.

- It will be seen from these figures that, as in the case of Love-type
waves, the velocity of transmission diminishes with Me?/c and also with
M alone, but increases with increase in ¢ alone.

The variations in the attenuation coefficients are shown in Figs. 12,
13. Fig. 12 represents the attenuation coefficient varying with ¢ for a
given M and Fig. 13 that varying with M for a given c.

It will be seen from these figures that with increase in Mc?e, the
coefficient gencrally increases, tending to infinity at Meoije=1. Fur-
thermore, when M is given, the coefficient diminishes with increase in
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¢ and, when ¢ is given, the same cocfficient increases with increase in
.

From these conditions, it appears that in agreement with incrcase
or decrease in the velocity of transmission (due to change in either one
of I or ¢), the attenuation cocfficient invariably decreases or increases.
Figs. 12,13 also show that the attenuation cocfficient is always pro-
portional to the cocfficient of viscosity and the square of the vibrational
frequency of the waves. It holds thal the boundary waves of Rayleigh-
type can also be damped well provided the density and the viscosity
of the surface soil layer (and also the frequency of the waves) are as
large as possible and the clasticity of that layer is as small as possible.

Comparing Figs. 12,13 with Figs. 6,7, it is possible to eay that
the attenuation co.fficient for Love-type waves does not differ much,
at any rate in its order, from that for Rayleigh-type waves.

4, Damping effect of ocean water on the trans-
mission of Rayleigh-type wawves.

Let the depth and viscosity of the water
of the ocean be H and 7, and the pressure at 2 p 0! s
be p, with density p. The horizontal and vertical ’ 4

displacements of water, u,», must satisfy the z
equations ‘ Fig. 14
o p 0 ( o |, O ?
=L 4T -+
P T e at\aw® | o7 >

(28)

o’ op .2 < VA ) I
=L 47— + s
Po o= 0 T T\ o T o) T

the static and dynamic parts in p and those in p being separated as below

P=pPot+ P, P=pot+ps. (29)
The equation of continuity is
Dp i <8u ov |
L 4+ po—( —+—)=0.
Dt o ot \ ox + 8z> (80)
The relation between pressure and density is
Dp|Dt=c¢*Dp|Dt, (31)
where ¢*=x/py=(dp|dp)p-p From (29), (30), (31), we get
op 2 0 (81& 81)) v
Py 2 (20 VN 50 20 g, 32
ot TP\ T ) T (82)
in which such approximation as
Dp_op _op 2etv)_op op 50 (83)

Dt "ot T azrv) o ot 9z ot
is used. Eliminating pi, p, between (28), (30), (82), we obtain



Part 2] The Action of Soil Layers and of the Ocean. 159
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By introducing the potential ¢, satisfying
ou _ __ai, o _ -_ﬁk’ (35)
ot v at 0%
the equations in (84) are equivalent to
2
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For solving (36), we put ¢p=coe™ ", when the equation then reduces
to

(CZ_I_ 7@7)_@?—*_9’%_“4)0 {a2_1‘2<02+ ’LOCT>}=O, (37)
po /] oz oz Po /
the solution of (87) therefore being
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where
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r= g_ , &= Po - Po 77 (39)
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Po Po

We shall next consider the movement of the ground. TLet o', A, p
be the density and the clastic constants of the ground. From the elastic
relations

1A FA | PFA kol Fo | o'
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A=Cc-r/z+iat-ifz’ 26=D6-s’z+iat—lf:ﬂ
szzfz—lbz, SP=f1, I’ :p'uzi(h +2u), F=p'cp,

we get the oxpressions for the displacement of the ground as follows:

7:f —rz+lat-11% 7’ —17z dat-iSx
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%
(41)

U .
—8 - - ? —sz -
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the horizontal and vertical displacements of the ground being wi+us,
v+ v, respectively. :
Now, the boundary conditions are
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p=0 (42)
at 2= —H, and
V=04, (43)
(i), d(vit)) __ ou . v )
+ ] 44
’L% oz ox J < + ox (44)
mwpa_(wﬁ:_,,<a¢ +gq,) (45)
0z ol

at z=0.
~ Substituting (35), (88), (41) in theso conditions, we get

k‘q-'Po sth(g"o"‘ _ gzsz + ng‘-z,r + 01.4)} .
o
+ {2457 —4fr's'} {(gr® — gs° + o*r)shs H 4 o' schs H }
+2 %fz{ 20's" — (245} {(97° — 95" + o’r)shs H + o*schs H } =O0.

\ (46)
Now, we shall write

f=h—ifs, (47)

and assume that the attenuation coefficient f; is not very large, when
(46) then reduces to

2m¢ Vl_ E ¢> {0 (2a°+b)— az}bh< 21 Q>

2¢
+b{(2—¢z)v_4‘/ (-t fo(abg—2)en(HL Q)
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+4bQ{2V(1_H“2 #)(1—4)~ (2~} lof2— 3b¢2)sh(’“§f Q)
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+2m<1—- L ¢2)kHch(-’“2’% )}
+2am¢4<1_ K ¢2)V1 ¢Qh< )
+2¢bQ{4 B¢

(2¢> 3)
~2(2_(;r>2)l/ 1— —”—&)(l—sb"’)} «a(3b¢2—2)6h<kf Q)
+bpQe h(”{ +bl/ Lo E g8 29

o )19

.{2a¢Qsh(l”§ >+a(2_°b¢2)LIIch(’°f )

— DL HQs h<l”—g Q> 2%be h(];f; )}] (50)

symbols @, b, m, .. .. in (48),(49), (50) indicating that

g pP P BT
ck P’ [ K K
. S (51)
$= = @=Y4+¢"(a"—40).
1

Equation (48) gives the velocity of transmission eoff: and (49) the at-
tenuation coefficient fe.
As a working hypothesis, let
P’ lpo=2'6, Yulp=4km/sce, A=p, T=0018 C.G.S,
p=410"C.G. S, p=1, ¢=1480m/scec.
Substituting these numerical values in the equations just given, we
obtained the results shown in Figs. 15,16, 17. The cases shown in these
figures are T(=2m[a)insec = 0'1,1,1000, respectively. Although the
cage in Fig. 17 is a rather hypothetical one, it is added for confirmation.
It will be seen that the velocity of transmission gencrally decreases
with increase in sea depth. TFor a certain depth, the distribution of the
wave amplitude in water changes from hyperbolic to sinusoidal, the
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velocity of the waves in such
condition being shown with
a broken straight line. This
velocity is nearly the same
as that of compressional
waves in water, namely, ¢=
1430 m/sec. The velocity for
H=0 is naturally that for
Rayleigh-waves  transmitted
through a semi-infinite body.

Curves f: in Figs. 15,16,
17 represent the attenuation
The chain line
in cach casc gives the ordi-
nate under such a condition
that the waves change from
hyperbolic to sinusoidal. Tt
will be scen that the incre-
ment of the cocfficient be-
comes considerable at such
an abscissa that the slope of
the dispersion curve becomes
steepest.

The question whether
the attenuation coefficient of
the waves is large or not, is
of some interest. The re-
sults in these figures show
that f. is as small as 107"
(km™) in the cases of T=
0'1scc and T'=1 sec, and as
small as 107(km™) even in
the case of T'=1sec, from
which it holds that the waves
of period 0-1scc and of per-
iod lscc damp with an at-
tenuation factor of the order
exp. (—107"2), x being in km.
It is now obvious that sca
water does mnot contribute
to any damping of scismic
waves.

cocfficients.
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Fig. 15. Velocity and attenuation coefficient
of waves in the ocean bottom ; 7'=01sec.
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Fig. 16. Velocity and attenuation coefficient
of waves in the occan bottom ; 7'=1sec.
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Fig. 17. Velocity and attenuation coefficient
of waves in the ocean bottom ; 7'=1,000 sec.
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5. Comparison of the effect of a soil layer,serving as a dynamic damper to
the bounddry wavesawith the condition of surface waves with self-damping.

With a view to ascertaining the quantitative magnitude of the damp-
ing action of a soil layer, let the thickness of that layer be H=100m.
As a working hypothesis, let the density, clasticitics, and the viscosities
of that layer be

p=2, A=p, N=p', Yu/p=500m/sec, p'=310'C.G.S.

Further, let the density and clasticities of the lower layer be

p=25 A=p, N=p'=0, Vu/p=4km/scc, v
the period of the waves being always 1-133 sce (e=5855sec™’). On the
other hand, it is possible to write

M=pH, c=np/dl, =p'#[AH (52)

for Love-type waves and for the horizontal motion of Rayleigh-type
waves and

M=pH, c=7="(\+2p)4H, =\ +2u")7"[4AH (53)
for the vertical motion of Rayleigh-type waves. By assuming, for sim-

plicity, that the relations in (52) apply even to the vertical motion of
Rayleigh-type waves, we get, in the case of Love-type waves, '

T2
0=123.10°C.G. 8, r=74.10'C.G. 8, %L —05, |
C

(54)
filk=1-0245, f,=2-22.10"(cm™")=2-22. 107*(km™) ; }
and in the case of Rayleigh-type waves,
 0=193.10°C.G.8, 7=74.10C.G.8, L% _0s5,
¢ (55)

f2=1:08.10"(cm™") =1-08. 107*(km™"),
the results in (54), (55) being obtained by means of (9) and (25), re-
spectively.

When the viscosities of a semi-infinite body without surface layer
arc the same as those in the soil layer in the present problem, the at-
tenuation coefficient of Rayleigh-waves transmitted along that semi-in-
finite body (in which A=pg, A =n’), is expressed by”

fo=fi (56)
2 p
from which if p=2'5, Ypjp=4km/sec, a=>555sec™, as in the preceding
cases, we obtain
fom %12 105,107 (km™). (57)
0-9192Yp/p p
Comparing the results for the three cases above given, namely,

5) K. Sezawa and K. Kaxar, Bull. Earthq. Res. Inst., 17 (1939), 12, equation (13').
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f:=222.10"*(km™) for Love-type waves in this paper,
S2=1-08.107*(km™") for Rayleigh-type waves in this paper,
f2=1-05.10"(km™) for Rayleigh-waves in a semi-infinite body,

the attcnuatlon coefficient in the cases of the coil layer serving as a
dynamic damper is considerably larger than the coefficient in the case
of surfacc waves transmitted through a visco-elastic body in the usual
sense. In the present case we assumed that- H=1001in and Yp/p =500
m/sce. for the soil layer. If a greater value of H and a smaller value
of Yu/p were used, the attenuation cocfficient in the case of the soil
layer, acting as a dynamic damper, would become much greater than
the coefficient of the usual surface waves.

6. General summary and concluding remarks.

By mathematical investigation it was ascertained that a surface soil
layer serves as a dynamic damper to seismic surface waves provided
that the layer is of fairly large thickness and of small elasticities, with
certain viscosities. The attenuation cocflicient of the boundary waves
in the =oil layer with a given viscosity that rests on a scmi-infinite
subjacent elastic: medium without viscosity, is much greater than the
coefficient of Rayleigh-waves transmitted through a semi-infinite body
with the same clasticities as those of the subjacent medium and with
the same viscosities as those of the soil layer. Although tho coefficient
of the waves in the case of the surface layer and the subjacent medium,
. both being viscous, is naturally greater than that of the case of the
surface layer alone being viscous, the increment of the coefficient in
question would not be very marked.

Let M be the mass of the layer per unit surface arca, ¢ the modulus
of clasticity of the layer, and o the frequency of the waves. When the
surface layer acts as a dynamic damper, the attenuation coefficient
generally increases with increase in Mo’le, tending to infinity at Mo’/c
=1. Turther, when 7 is given, the coefficient diminishes with increasc
in ¢ and, when ¢ is given, the same cocfficient increases with increase
in M. On thé other hand, the velocity of transmission diminishes with
Mcle and also with M alone, but increases with ¢ alone. It holds then
that in accord with increase or decrease in the velocity of transmission
due to change in cither A or ¢, the attenuation coefficient invariably
diminishes or increases. In any ecase, the attenuation coefficient is
always proportional to the coefficient of viscosity and the square of the
vibrational frequency of the waves.

As to the effect of the water of the sea on the seismic boundary
waves, it is possible to.say that it can scarcely contribute to the damp-
ing of the waves, which is also obvious from the condition that the
viscosity of the water is very small compared with that of solid malter.
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~ In the present paper, we assumed, for convenience, the existence
of vibrators of relatively simple type instead of considering the actual
medium in the soil layer. The treatment of that case in which the
goil layer is really visco-elastic and is a continuous medium, being
hopeful, a discussion of it will be attempted in the near future.
In conclusion, we wish to express our thanks to Messrs. Watanabe
and Kodaira who assisted us greatly in the mathematical calculations.
We also wish to express our warmest thanks to the Officials of
the Division of Scientific Research in the Department of Education for
financial aid (Funds for Scientific Rescarch) granted for a series of our
investigations, of which this study is a part.

Noies added to the paper—“Damping of Periodic Visco-elastic Waves
with Increase in Ifocal Distance, I,II,” by K. Sgzawa and K. Kanar
in Bull. Earthq. Res. Inst., 16 (1938), 491-503; 17 (1939), 9-26.

Although in the second of these papers, we concluded that the at-
tenuation cocfficient of Rayleigh-waves as referred to increase in focal
distance is always intermediate between those of the two bodily waves,
and also that the damping coefficient of Rayleigh-waves as referred to
time increasc is always intermediate between those of the two bodily
waves, further investigation has shown that the condition, particularly
for the attenuation coefficient, is not exact. Since the attenuation coef-
ficient for Rayleigh-waves is

N+ QM'hzl/ Y 2( 1-nhi 2
{ : + 2k .~2+h»
A+2u 1Nt 1—%
fo= ph

T 9 o /1 =T 1—hi
= hi L=k K ‘/ ) k"’)
| {LL 1o ’( e ot ‘f

where pfi=p*/Vz for a given p, and the coefficients for longitudinal and
transverse waves are

b

ph N +2u , pfl ®

2 AN+2p 2 u’
respectively, where pfi=p*/Vy, pf'=p*[Vs, our previous conclusion is not
correct unless Vp=V1,=15 Since, however, it is plausible that the
difference between (A +4-2u/)/(A+21) and 4/[p would generally be greater
than that between Vg, Vi, Vs, the conclusion is practically correct. As
to the damping coefficient of Raylcigh-waves, we obtained the rclation
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where pi=(fT%)* for a given f, and the cocfficients for longitudinal and
transverse waves are '
PN +2u) 200+ 2p), pip’[2p,

respectively, and where pi=(f1.)°,pi=(fV)* co that the previous conclusion
is fairly approximate, though not exact. Thus, it is likely that our
result shown in the first of our previous papers gives rather the real
condition. Since Rayleigh-waves are in the condition of dilatational
waves coupled with distortional waves, we trust we are justified in
feeling that ihe object of our paper was fulfilled, at any rate, in the
numerical calculations.

Notes added to other papers—“ A kind of waves transmitted over a
Semi-infin'te Solid Body of Varying Elasticity,” by K. Sezawa in Bull.
Earthq. Res. Inst., 9 (1931) 310; and “ On Shallow Water Waves. . ..,
with Special Reference to Love-waves in Heterogencous Media,” by K.
Sezawa and K. Kaxar in Bull. Earthq. Res. Inst., 17 (1939), 685 694.

The first and sccond papers here given will be called Paper I and
Paper II, respectively. Although, as far back as 1931, onc of us pu-
blished Paper I, our principal aim was merely to show the possible
solution of that casc in using hypergeometric series, the treatment
being therefore fairly approximate as will be scen from the expression
(85) in that paper. Since, furthermore, even if the type of the rolu-
tion indicated that the amplitude of the waves at great depth tends to
be infinitesimal, it was uncertain whether or not the total energy
integrated through the whole depth is finite. TFor this reason, we gave
the solution for the waves transmitted through stratified heterogene-
ous layers, the total energy of which waves can be finite (Bull. Earthq.
Res. Inst., 17 (1939), 12-25). As the solutions of that case were rather
abstract, we furthermore solved the same case using confluent hyper-
geometric functions, the results of which were published in Paper IL
As stated in Paper II, although the title of the paper concerned shal-
low water waves, the problem gave risc to the solution of Love-type
waves by merely replacing paramecters for shallow water waves by those
for eclastic waves. This condition, as well as the inexactness of Paper
I were pointed out in our lecture in July, last year, and also in Paper
II.  Since, however, it is likely that our recently improved results in
Paper IT are not yet well understood, we shall now show the important
parts concerning Love-waves that were contained in Paper II, using
parameters corresponding to Love-waves in heterogeneous media, which
may serve as a reply to the questions raised by some of our readers.
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Let I be thickness of the surface layer and p’,p, ¢/, o the densities
and the rigidities of the surface layer and the subjacent medium, res-
pectively. Tt is assumed that, besides p’=p, the upper layer is uniform
and the rigidity of the lower layer varics as p=p3?/l>. From the equa-
tions of motion for both media, namely,

i zg’(azt’ at) 7L _p It 9 <u a§>
at*  p\ax®  oyr) o pax oy\p dy
¢’, ¢ being horizontal displacements, and the boundary conditions

ot ’ , 0t o¢
:0 N =q, —_— —
ay ; &'=¢, p ay /"‘ay

at y=0 and y=I, we finally obtain the relations

)=/ -4
_ (14 k—p1/2) Wion(p1) + Wi, m(m)
W, n(P1)

where v=pm/p’, k=0, py=4=l/L, from
which the velocity pL/27 of the waves
can be determined. The results of Viip
calculations for three casecs, w/p'=1,
5,30, are shown in Fig. 18, L, being
the wave length and the thickness of
the layer, respectively. 2
It will be seen that the dispersion
is quite normal and also that the velo-  #
city generally increases with increase

35—

Hypr=30

&3

in the ratio of rigidity of the lower ' M=y
layer to that of the upper layer.
[
Although we assumed that, for —

simplicity, the rigidity of the lower . T S R R
layer varies as p=my’/l’, the nature
of the problem would not change much
even should a different law in regard
to variation in rigidity be assumed.
When there is a surface layer, a possible existence of Love-type waves
is certain, but if there is no surface layer, the possible condition for
Love-waves being existent, particularly with the conception of finite
energy of the waves, differs with difference in the rigidity distribution
or density distribution in the medium.

Fig. 18. Dispersion curves for Love-
waves in the case of the lower layer
being of varying rigidities.



168 " K. Sezawa and K. Kanar. . [(Vol. XVIIT,

9. MFed B RIEASH M I iz T - B R
BiHsR, —=onisihoHil

L o o o
o R BF 52 B Vd oo Mt
4> It i
ORI L Y, oA TEIREFIE, . TolER TE 20 /03 (, Flitcaz
AT E TR, TR R HBHHEREEE LTl datbpoiz, Fitho o wAPERE S
EHiteop 2 ELFRD 3 L &, Zicd 2 HRETWROMERIL, AL PRz
R sih R FICHIE T 2 Mk 2o o BETR O REME X Y S A E TN b 5. 2t
V) ~HlodkiconTITI A 2MRAHTD 325, 7 7HFCOWTH AL D 5. 07
W B2 e PR S B 2 223, NBWHREE L LCofFRIE—F L k5. ]
FPEDRB AR IR RS E LTEAT 228502 LENTHR2 L, bW 3acky
HB M oI b 2. ZId7kOFES Y i 2 TIRET BRI TE AL ETH S,




