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Abstract

A large fraction of mitochondrial proteins are cleaved upon entry into the mitochondria, but pre-

diction of this cleavage is still challenging. In chapter 1, I summarize necessary background to this

important problem. In chapter 2, I demonstrate that my system, Mitochondrial matrix targeting

Signal Predictor, MoiraiSP, which is based on data from recent proteomic studies can correctly

identified the cleavage site of MPP more than 75% accuracy in both plant and yeast dataset. In

chapter 3, I introduce sequence divergence, LD(i), as a novel feature for sorting signal prediction,

and show that prediction can be improved by LD(i) than random, especially with other famous

features such as physico-chemical propensities. In chapter 4, I present that MoiraiSP can treat a

related problem, predicting mitochondrial matrix targeting signal by using only N-terminal sequence

information such as net-charge or LD(i). MoiraiSP discriminates between cleaved and non-cleaved

mitochondrial proteins with a success rate of 97% (plant) or 91% (yeast) by cross validation. Finally,

in chapter 5, I discuss some novel candidates of protease substrates, which came up during my work.
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Chapter 1

Introduction

1.1 Background

Nuclear-encoded mitochondrial precursor proteins are generally recognized by receptors embedded

in the mitochondrial membranes. At present, these proteins can be divided into two main groups in

terms of their targeting signals: the amino-terminal signal (presequence) and non-cleavable internal

targeting signals. Therefore, in the current mitochondrial research it is important to reveal those

N-terminal and internal signals.

Matrix targeting signals (MTS), an amino-terminal presequence targeting proteins to the mito-

chondria, are usually eliminated in the mitochondrial matrix by Mitochondrial Processing Peptidase,

a metallo-protease in the matrix, and other intermediate peptidases such as Oct1, which function

after MPP in some cases [1]. Mitochondrial presequences are harmful for the function of mitochon-

drial membranes due to their amphiphilical property, as a result they dissipate membrane potential

and uncouple respiration [2, 3]. To avoid such severe disturbances, MPP cleaves presequences and it

13



CHAPTER 1. INTRODUCTION 14

is reported that other metallo-protease degrades them after cleavage in Arabidopsis thaliana [4]. Al-

though cleavage site prediction of signal peptides, a similar biological phenomenon to mitochondrial

cleavage, has been successful, the sequence determinants of mitochondrial cleavage are still unclear

and the prediction is challenging for bioinformatics.

Until recently, it has been said that MPP cleavage site contains at least four classes in terms

of arginine position; namely, arginine at -10 position (R-10), at -3 position (R-3 motif), at -2

position (R-2 motif), and no arginine (R-none class) [1, 5]. R-10 motif implies two cleavages in the

mitochondria: MPP and Oct1 [5, 6]. A similar specificity of MPP was also observed in plants as

well, however, the R-10 motif has not been found [7]. In addition, a mitochondrion contains other

proteases such as Pcp1, m-AAA, and IMP in its inter-membrane [8]. Compared to proteases in

the matrix, their specificities are still obscure. For the above reasons, cleavage site prediction of

mitochondrial proteins is still a hard problem even for MPP cleavage sites.

A recent proteomic study showed a novel intermediate protease named Icp55 can remove one

amino acid from the N-terminal, and the relationship between this phenomena and the half-life of

a protein determined by its N-terminal residue [9]. Almost all R-3 sites turn into R-2 sites due

cleavage by Icp55. This discovery of Icp55 partly explains the complexity of mitochondrial cleavage.

Schneider et al. reported that the amino acid frequency at the -1 position of the R-3 motif is

dominated by tyrosine, and this amino acid (which has a destabilizing role) is cleaved by Icp55

[5, 9]. Taking Icp55 and Oct1 into account, mitochondrial cleavage can be explained MPP cleavage

and intermediate cleavage after MPP (Figure 1.1).

The location of each proteases and relation among them are summarized in Figure 1.2.
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Figure 1.1: Description for mitochondrial cleavage.

1.2 Motivation and related work

In recent years, it has been revealed that cleavage in mitochondria is related not only to removal of

signal sequence but also to quality control of mitochondria themselves. Since mitochondria is the

power plant of a cell, it is said that dysfunction of mitochondria can lead to severe human diseases

such as Parkinson’s disease [10]. In fact, numerous neuronal diseases are related to the mitochodrial

proteases [11]. Additionally, it has been revealed that a presequence cleaved by m-AAA supports

the folding of MrpL32, a subunit of mitochondrial ribosomal complex, in the matrix [12]. Therefore,

the importance to know cleavage site and its relevant proteases in mitochondria increases in the

field of both medical and biological science. At present, there are two well known predictors for

mitochondrial cleavage: TargetP [13] and MitoProtII [14]. These two systems depend on only the

classical presequence signals and motifs, due to the shortage of available experimental data when

they were developed. To accelerate research in this field, the need for improvement of prediction

accuracy and integrating new insights such as existence of Icp55 or non-cleaved proteins have been

discussed [7, 9]. At the very least, mitochondrial cleavage site predictors should treat plant and

non-plant separately because the plant cleavage site motif does not show the typical Oct1 motif

at present and the length of their presequences has a different distribution than those of yeast [7].
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Figure 1.2: Proteases in a yeast mitochondrion.

Although a large portion of MTS’s are cleavable N-terminal extended polypeptides, not all MTS’s

are necessarily eliminated by MPP in the matrix [15]. However, existing software does not consider

this possibility. Because the MTS is recognized by TOM40 complex in the mitochondrial outer

membrane [16], recognition of the R-2(3) motif by MPP seems to be independent from the MTS

signal.

Here I present a novel cleavage site predictor based on recent proteomic experiments and a

combination of simple profile Hidden Markov Model and Support Vector Machine. Our aim is

accurate prediction of the cleavage site of mitochondrial proteins, especially related to MPP and

related proteases, by incorporating recent finding in mitochondrial experimental research. This novel

predictor consists of two layers predictor and predicts a cleavage site from only a query sequence,

Figure 1.3.
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Figure 1.3: Flowchart of the prediction in case of the yeast.



Chapter 2

Prediction of MTS cleavage site

2.1 Results

2.1.1 Basis of dataset

All of the sequences were extracted from the proteomic analysis experiments for Saccharomyces

cerevisiae (hereafter “S.cere.”), Arabidopsis thaliana andOryza satia [7, 9], which we further curated.

Following the annotation in the papers, I split up the data sets into the two categories: cleaved

mitochondrial proteins and non-cleaved mitochondrial proteins.

To avoid incorrect motif finding and reduce noise, inappropriate sequences such as overlapping

sequences in both the above two categories were excluded from the datasets. Also, sequences which

have already been determined to localize outside the mitochondria are excluded. In particular,

the original yeast dataset includes multiple cleavage sites for one protein in some cases, therefore,

we selected the cleavage site identified most frequently as the representative site. After the above

filtering, redundant sequences were removed.

As a result, the yeast data set has 245 sequences as cleaved proteins and 110 as non-cleaved

18



CHAPTER 2. PREDICTION OF MTS CLEAVAGE SITE 19

proteins. Arabidopsis and rice data set has 112 cleaved proteins and 37 non-cleaved proteins. Ad-

ditionally, our literature search revealed numerous proteases explaining some of the cleaved sites in

the yeast dataset such as i-AAA, m-AAA and IMP[17, 18], which do not contain arginine at the -2

position; therefore, at least the yeast dataset seem to contain diverse kinds of processed sites and

the plant dataset might as well.

Figure 2.1: Entropy of yeast and plant.

2.1.2 R-2 and R-3 motif are main motifs around cleavage sites

To help understand our complex datasets, I calculated the entropy of each positions using 14 residues

around the cleavage sites in the yeast data set.(Figure 2.1)

H(i) = −
∑
j∈A

F (i, j) lgF (i, j). (2.1)

where i indicates position of a column and j stands for a kind of amino acid.

To make the plot more distinct, the entropy at each positions was subtracted from the maximum
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Figure 2.2: Sequence logo generated from the yeast data.

Figure 2.3: Sequence logo generated from the plant data.

value. -2 position of the yeast and -3 position of plant are most conserved, and conserved arginine

at -2 positions is related to MPP cleavage as previously reported [1]. In fact, almost all substrates

of both Icp55 and Oct1, 34 out of 37 for Icp55 and 12 out of 13 for Oct1, contain arginine at -2

position in their cleavage sites [9]. Additionally, the R-2 motif was recognized in the plant data set

[7]. Figure 2.2, 2.3 which are generated from all of the sequences show conservation near cleavage

site. In addition to this R-2 motif group, sequences which contain arginine not at -2 but at -3 or -10

positions are also detected in the yeast data set [9]. I confirmed that one of the R-10 motif sequences

is recognized through its R-2 motif, yeast malate dehydrogenase [19]; however, MPP cleavage site of

malate dehydrogenase was not detected by Vögtle et al [9]. Thus, these two groups might include

more latent R-2 motif sequences. Also, MPP can recognize these un-canonical motifs other than

R-2 [20]. This arginine enrichment near cleavage site was confirmed by chi square analysis as well;

thus, arginine at -3, -2 and -1 positions were significantly overrepresented (P � 0.05) in the yeast.
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However, +7 position also contains significantly numerous arginine (P=0.00001528), and reason

for this is unknown. In the plant, a similar tendency regarding arginine enrichment was observed.

At position -4, -3 and -2 arginine frequencies were significantly enriched, and position -6 as well

(P � 0.05).

The number of sequences which do not contain R-2 motifs is not few, especially in the yeast data

set, and I named this group “Others” (Figure 2.4). Since the research to clarify the specificity of

cleavage by inner membrane proteases such as m-AAA or Pcp1 has recently started, mechanisms

related to their cleavage site recognition are ambiguous at present [21]. All of proteins which were

confirmed to be cleaved by m-AAA, i-AAA and IMP belong to the Others group; this diversity of

proteases may explain why no pattern is evident in this group (Figure 2.5). Another possibility

is that yeast dataset includes experimental errors. As an example, ATP6 is annotated as MTS

containing protein; however, ATP6 is coded in mitochondrial genome. Thus, ATP6 dose not have

to include MTS for transition. Although ATP6 is cleaved at position 10 as Vögtle et al. reported,

this sequence is not MTS but so-called ’propeptide’, another kind of cleavage before maturation. At

present, it is obvious that annotations for unknown cleavage sites are in need for improvement. In

this study, I did not use the Others group when training the HMM because it seems unlikely that

they represent MPP cleavage sites. I removed four Icp55 and one Oct1 processed proteins because

of their lacking arginine at -2 position. Although those five proteins have been experimentally

confirmed their cleavage sites and related proteases, the number of those is too small to train profile

HMM.

2.1.3 Architecture of profile Hidden Markov Model

Predicting cleavage site in the matrix uses a profile HMM as implemented by the HMMER 2 pack-

age (http://hmmer.janelia.org/). The three profiles were trained to discriminate MPP only,
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MPP+Icp55, and MPP+Oct1 sites using ten residues, two residues, and four residues around the

yeast cleavage site respectively and are visualized by HMMEditor in Figure 2.6 [22]. Window size

for MPP profile was determined by cross validation (2.1).

Table 2.1: Window size and accuracies for cleavage site prediction with the size. Negative values
indicate left border of the window and positive values for the right border in center of cleavage site.

Yeast +1 +2 +3 +4 +5 +6 +7
-2 0.433 0.683 0.731 0.740 0.692 0.692 0.702
-3 0.587 0.740 0.779 0.760 0.779 0.760 0.740
-4 0.596 0.740 0.779 0.769 0.788 0.798 0.760
-5 0.587 0.769 0.779 0.769 0.760 0.769 0.769
-6 0.567 0.740 0.760 0.740 0.779 0.750 0.750
-7 0.567 0.712 0.721 0.712 0.712 0.731 0.740

Plant +1 +2 +3 +4 +5 +6 +7
-3 0.333 0.457 0.580 0.741 0.765 0.728 0.765
-4 0.395 0.519 0.679 0.679 0.753 0.778 0.741
-5 0.432 0.494 0.704 0.691 0.741 0.741 0.728
-6 0.432 0.593 0.667 0.667 0.704 0.741 0.679
-7 0.420 0.469 0.593 0.630 0.679 0.753 0.741
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Figure 2.4: The diversity of yeast cleavage site.

Figure 2.5: Sequence logos generated from the yeast data.
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Figure 2.7: Alignment of R-2 and R-3.

These profiles were used to predict true cleavage site of the yeast and related proteases as our flow

chart shows (Figure 1.3). Although the plant data set does not have annotation for intermediate

proteases, two profiles similar to MPP only and MPP+Icp55 profiles for the yeast were trained

to discriminate R-2 and R-3 using a multiple alignment (Figure 2.7) between these two motifs by

MAFFT [23, 24]. Residues at the +1 position of the R-2 motif and -1 position of the R-3 motif
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Table 2.2: Parameters of presequence length.

mean length min. max.
Yeast 27.51± 15.68 7 86
Plant 43.51± 26.71 18 117

tend to be large and hydrophobic residues such as phenylalanine, leucine or isoleucine. We trained

a profile HMM for MPP on the multiple alignment and one for a hypothesized counterpart of Icp55

in plants, on the R-3 group alone.

2.1.4 Hypothesized homologs of Icp55

In the plant dataset, a large fraction of the mature N-terminal sequences start three residues down-

stream of an arginine (the R-3 case), moreover in these sequences the residue immediately preceding

the start of the mature N-terminal is non-random, thus it is natural to hypothesis that they may

be the product of an additional cleavage of one residue by an Icp55 homolog after an initial MPP

cleavage two residues downstream from the arginine. Conserved large and hydrophobic residues at

position -1 of the R-3 motif proteins are argued as prokaryotic destabilizing residues by Vögtle et

al. (Figure 2.8). Although conserved methionine at -1 position was not referred as a destabilizing

residue [9], methionine was recently added to secondary destabilizing category as a novel N-degron

[25]. Methionine does not function as a destabilizing amino acid in the eukaryotic N-end rule; there-

fore, the prokaryotic N-end rule seems to hold in plant mitochondria. Thus, hypothesized Icp55

homolog seems to cleave one destabilizing residue from N-terminal after MPP cleavage to make

proteins stable. Blast search results in two homologs of Icp55 in Arabidopsis thaliana: At1g09300

and At4g29490. At1g09300 is annotated as a mitochondria localized protein and At4g29490 as a

chloroplast protein. Interestingly, N-end rule-like degradation system in chloroplast was recently re-

ported [26]. On the other hand, no homolog of Oct1 in Arabidopsis is annotated as a mitochondrial

protein, and this is supported by absence of R-10 motif in plant, which is a typical motif for Oct1
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Figure 2.8: Sequence logo generated from plant proteins whose cleavage site contain R-3 motif.

Table 2.3: Frequencies of amino acid combination nearby cleavage site in the plant dataset. D stands
for destabilizing amino acid and S stands for stabilizing amino acid.

Type D-D D-S S-D S-S
R-3 0 49 0 2
R-2 1 6 0 23

in the yeast and mammals.

2.1.5 Analysis and distribution approximation for presequence length

The length of mitochondrial presequence was analyzed and summarized in Table 2.2. As Figure 2.9

shows, presequence length is not a uniform distribution in either the yeast nor the plant data set.

Since distribution of presequence length can be a good feature, we validated two theoretical distribu-

tions, Gaussian distribution and Gamma mixture distribution, with their estimated parameters by

goodness of fit test (Kolmogorov-Smirnov test). A 1-component Gamma distribution fits the yeast

data the best, and a 3-component Gamma distribution fits the plant data set (Table 2.4). Although

the 2-component Gamma distribution looks to fit the yeast histogram as well, the right-side com-

ponent of bimodal distribution contains only four proteins. In this study, the unimodal distribution

was applied as a theoretical distribution against presequence length of the yeast because of P-value

and the small number of proteins in the right component. Applying the 3-component distribution

of the plant presequence length to cleavage prediction is still in progress.
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Table 2.4: Goodness of fit test.
Distribution P-value

Yeast Gaussian 0.23
Gamma 1-component 0.88
Gamma 2-component 0.85
Gamma 3-component 0.78

Plant Gaussian 0.0
Gamma 1-component 0.02
Gamma 2-component 0.84
Gamma 3-component 0.98

2.1.6 MTS cleavage site prediction

The prediction flow was precisely explained in the method section. Table 2.5, 2.6 show comparisons

of cleavage site prediction of MoiraiSP and TargetP. Because MPP cleavage prediction of the yeast

is new to this field, there is no comparisons about accuracy of MPP site prediction. The accuracy

is relatively reliable comparing to that of final cleavage site prediction.

For reference, MCC of MPP prediction and that of cleavage site prediction by TargetP were

plotted (Figure 2.10). Leaps of MCC as regards TargetP appeared at [0,1] and [7,8] in the yeast and

[0,1] and [6,7] in the plant.

Discrimination between cleaved and non-cleaved proteins was measured by AUC of ROC curve:

Yeast ROC AUC is 0.89 and plant AUC is 0.95. TargetP and MitoProt II predict all of proteins

which are predicted to localize in mitochondria as cleavable, therefore, this aspect of MoiraiSP is

also a novel.

At last, MoiraiSP also showed better performance in predicting final cleavage site including Oct1

site and Icp55 site against TargetP (Table 2.5, 2.6).
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2.2 Dataset and Methods

2.2.1 Matthews correlation coefficient

The Matthews correlation coefficient, MCC [27], is a measure of performance for binary classification

defined as follows:

TP × TN − FP × FN√
(TP + FN)(TP + FP )(TN + FP )(TN + FN)

(2.2)

where ’T’ and ’F’ stand for “true” and “false”, while “N” and “P” stand for “negative” and

“positive”. Equivalently MCC can be defined as the Pearson’s correlation coefficient of the binary

vector of class labels compared to the binary vector of predicted class labels. MCC ranges from 1.0

for perfect prediction to -1.0 for perfect inverse prediction. Note that the MCC for the majority

class classifier is identically zero, as is the expected value of MCC for random prediction.

2.2.2 Yeast data set construction

All data were extracted from the proteomic analysis experiments for S.cere.[9]. Vögtle et al. con-

firmed cleavage sites of Icp55 and Oct1 by knocking out of their genes and detecting the differences of

protein cleavage between wild type and the mutants, and annotated them [9]. By their experiments,

the authors discovered Icp55 cleaves one amino acid from the N-terminus when N-terminal residue

is a destabilizing residue (leucine, lysine, tyrosine, phenylalanine, arginine and tryptophan) by the

prokaryotic N-end rule. Without Icp55, substrates of Icp55 were degraded more rapidly. As a result

of Icp55 cleavage, R-2 motif becomes R-3.

Vögtle et al. provides a list of mitochondrial proteins with their cleavage positions as supple-

mental data. From the data, we prepared two data sets; namely, cleaved and non-cleaved data sets.

Because the data does not contain the full length of each protein, we extracted the sequence data
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from SWISS-PROT release 57.9 using the ORF names in the paper. To reduce redundancy in the

dataset, blastclust (unpublished, http://www.ncbi.nlm.nih.gov/BLAST/docs/blastclust.html)

in BLAST 2.2.24 package was used. After removal of redundant sequences, suspicious entries were

excluded from the data sets, namely, overlapping sequences between cleaved and non-cleaved data set

or annotated signal sequences in the SWISS-PROT database. Although the original proteomic data

shows multiple cleavage sites against a protein in many cases, only one cleavage site from a protein

was extracted by its observed frequency to reduce experimental errors unless its multiple sites are

annotated such as Icp55 cleavage. To avoid errors as much as possible when training HMM, we did

not include proteins whose first cleavage site does not contain arginine at -2 position. As a result, the

yeast data set contains 59 as annotated MPP only, 33 as MPP+Icp55, 12 as MPP+Oct1, and 110

as non-cleaved proteins. The point should be addressed here is that MPP+Icp55 and MPP+Oct1

are part of the groups which used to be called R-3 or R-10. Although almost R-3 and R-10 were

proved to be cleaved twice (once by MPP and once by Icp55 or Oct1) by Vögtle et al., there are

still R-3 and R-10 motif proteins which have not been proven to be double digestion proteins.

2.2.3 Plant data set construction

Similarly to the yeast data set, all data were extracted from the proteomic analysis experiments for

Arabidopsis thaliana and Oryza satia [7]. This proteomic data set includes full length sequences

and Ordered Locus Names of each sequences. To gain general information about the sequences, I

extracted annotations from SWISS-PROT 57.9 as OLNs are queries. At this step, OLNs of Oryza

sativa were converted from MSU’s locus ID to locus ID used in SWISS-PROT. Conversion was

conducted on the table of RAP-DB(http://rapdb.dna.affrc.go.jp/) to make them match with

IDs in SWISS-PROT. Some of sequences in the data set did not perfectly match with those of

SWISS-PROT, and sequences in the data set were used for this research in these cases. Redundant
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and suspicious entries were removed by the same flow for the yeast data set. Because Huang et al

reported unique cleavage sites for each proteins, the unique sites were applied to train a predictor.

While the data set contains several kinds of pattern around cleavage sites, we did not include

proteins whose cleavage site does not contain arginine at -2 position or at -3 position to reduce

errors in finding cleavage site motif. At last, the plant data set includes 81 MPP processing and 37

non-cleaved proteins.

2.2.4 Training and test set

Although the proteomic experiments identified many mitochondrial proteins, the number of the pro-

teins is not high enough to separate the data set into independent test and training sets. Therefore,

all results reported are based on ten-fold cross-validation. For the yeast prediction, the training

and test data were separately partitioned in MPP only, MPP+Icp55, MPP+Oct1, and non-cleaved

proteins based on the experimental results of Vögtle et al. and then randomly assigned folds for

cross-validation. Since the plant data set does not have multiple cleavage site annotation, the train-

ing and test data were simply randomly divided into ten folds.

2.2.5 Profile HMM training

To train a profile HMM of MPP cleavage site with the HMMER implementation, residues within

[-5,5] in center of cleavage site were used for MPP model training. As Figure 1.2 shows, MPP

processing is followed by Oct1 or Icp55 processing when it is necessary. Due to this, training of MPP

cleavage was conducted by cleavage sites of only MPP processing proteins and first cleavage sites of

MPP+Icp55 and MPP+Oct1 annotated proteins. The other profiles for Icp55 or Oct1 cleavage site

were trained on each training set. Icp55 training used residues within [+1,+2], and Oct1 used residues

in [+1,+4]. We chose these intervals based on the results of previous work [9, 28, 1]. The HMMER2

package assigns similarity scores using logarithmic odds which is the log ratio of the probability
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given by trained model to probability given by background model. To obtain better scores against

query sequences, amino acid composition of mature mitochondrial protein and extension probability

10/11 was used as background model. Although by default HMMER2 uses 9-component Dirichlet

mixture distribution for the prior distribution of amino acid composition at each columns, I use a 20-

component mixture instead (http://compbio.soe.ucsc.edu/dirichlets/). Effective number of

sequences is calculated to train model from multiple alignment by HMMER, however I turned off this

option for training the Icp55 sub-filter. The purpose for calculation of effective number is to avoid

overestimation of amino acid frequency at each position, which are used to compute mean posterior

estimates. Because length of training data for Icp55 is only two residue long, almost sequences have

close similarities to each other; as a result, HMMER determines too low effective sequence number.

This results in too low frequency of appeared amino acids; thus, leading to abbreviated estimations

for amino acid composition for Icp55. Effective sequence number option was applied to train MPP

and Oct1 profiles.

2.2.6 Distribution parameters estimation

Gaussian distribution and Gamma distribution were applied to fit the histogram of presequence

length in both yeast and plant data set. Bins of the histogram was determined by following formula:

Max−Min

10
(2.3)

Parameters of gaussian distribution were determined by simply calculating mean and standard

deviation from the data. The shape and scale of Gamma distribution were estimated by using

EM algorithm implemented in a package of the R [29, 30]. With these estimated parameters,

discrepancies between the data and theoretical distribution was measured by Kolmogorov-Smirnov

test as P-values. The best fit theoretical distribution was used as an attribute in the cleavage site
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prediction.

2.2.7 Cleavage site prediction and its validation

Figure 1.3 is a flow chart of our prediction. Yeast and plant cleavage site predictions extract different

length of N-terminal residues from queries, and the former uses 100 and the latter 130 at maximum

due to each longest presequences. As the figure shows, MoiraiSP predicts MPP cleavage site first.

The prediction uses a sliding window of 10 residues. The logarithmic probability of density function

of Gamma distribution is added to the log odds score, using hmmpfam in the HMMER2 package,

based on the window position. Since probability of density function equals to zero for a specific

point, probability of density function for bin of position (Ref. 2.3) was calculated. This computation

assumes the length of the presenquence is independent of the local context of cleavage sites.

The weighted scores are stored in an array and sites whose score is highest is predicted as MPP

cleavage site. If the score of MPP site is higher than a threshold determined by comparison between

cleaved and non-cleaved data set, it is predicted to be cleaved by MPP. In that case, the next step is

to predict whether or not it is cleaved by intermediate peptidases. Otherwise, the site is predicted

as a non-cleavable site. The intermediate peptidase cleavage prediction has two filters, Oct1 and

Icp55. The Icp55 motif [YFL][STA] partially overlaps with the Oct1 motif [FLI]xx[ST], so the order

of tests in our decision tree-like flowchart (Figure 1.3) can affect the results. We found that testing

for Oct1 first works better. I trained the Oct1 and Icp55 profile-HMM’s and used a one-versus-rest

procedure to determine appropriate log odds score thresholds for each test. Plant has similar flow

to yeast system; however the second step only includes a hypothesized analog to Icp55 (i.e. R-3)

with no analog for Oct1.

Validation was conducted by comparison with TargetP. MoiraiSP does not predict whether or

not a query localize in mitochondria as TargetP or MitoProt II. Therefore, result of the cleavage
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prediction was compared only if TargetP predicted queries localize in the mitochondria. Also, MCC

at residue level was used to compare the MPP prediction comparison with the result of TargetP.

2.3 Discussion

2.3.1 Limitation behind cleavage site prediction

As shown in Figure 2.10, leaps are observed in the prediction error (distance from true final cleavage

site) of TargetP, which was trained on both yeast and plant proteins, thus leading to diverse but

non-specific cleavage site prediction. The leap between 0 and 1 in both the yeast and plant data

set should be based on mis prediction between R-2 and R-3 motif in the TargetP model, and leap

occurred in [7,8] of the yeast or [6,7] of the plant seem to be affected by incorrect prediction between

R-2 and R-10 or R-3 and R-10 motifs. The number of R-3 motif proteins in the plant data set is

more numerous than that of R-2 ; this explains why the leap occurs between 6 and 7 rather than 7

and 8. My model can avoid this kind of error by combining three classes into one R-2 class at first,

and this seems the reason of high MPP prediction result. In fact, R-2 motif proteins were sometimes

mis predicted as R-3 in the plant data set as well. To avoid this bias in the plant data, alignment

and combining of R-2 and R-3 motifs was conducted in the plant dataset. As a result, the accuracy

of MPP prediction ranges from 75% of the plant to 78% of the yeast, and these scores are relatively

reliable. However, plant system is still in progress; thus, improvement for the plant MPP prediction

is likely to be obtained in the future.

2.3.2 Limitation for plant evaluation

Also, I have training data for the intermediate proteases Icp55 and Oct1 for the yeast data, but no

training data for the hypothesized analog of Icp55 in the plant data. As a result, for the yeast data

I can score the performance on MPP alone, but the plant performance measures correct prediction
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of the R-2 and R-3 class combined. Even though existence of this limitation, plant cleavage site

prediction also results in relatively reliable performance.

2.3.3 Icp55 homolog in plant

Interestingly, plant cleavage site which has arginine only at -2 position favors stabilizing residue such

as isoleucine, glutamate or threonine. On the other hand, cleavage site contains arginine only at

-3 position is likely to be cleaved between destabilizing and stabilizing residues as Icp55 does. The

observation supports the hypothesis that plants possess an Icp55 analog. Indeed, Arabidopsis has

At1G09300, a homolog of Icp55, and the protein shows the same domain structure as Icp55. Since

neither of two homologs have not been confirmed their existence at protein level, I need to wait

result of research in the future for further discussion.

Nevertheless, N-end rule like degradation system in chloroplast was recently reported [26], and

the second most similar protein in Arabidopsis, At4g29490, is annotated as chloroplast protein.

Setting true function of At1g09300 aside, N-end rule like degradation system is likely to exist in

mitochondria as well.
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Figure 2.9: Distributions of the yeast and the plant. Up: Yeast, Down: Plant. Yellow line shows
Gaussian distribution, green is Gamma unimodal, red is Gamma bimodal and blue is Gamma
trimodal.
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Table 2.5: Comparison of final cleavage site prediction with TargetP in the yeast dataset. Denomi-
nators show predicted numbers by TargetP if proteins contain MTS or not, and numerators indicate
predicted number of cleavable proteins by TargetP in TargetP column or by MoiraiSP in MoiraiSP
column.

Predicted MTS-containing cleavable by TargetP Predicted Non-MTS (non-cleavable) by TargetP

TargetP MoiraiSP TargetP MoiraiSP
Noncleaved(110) 33/33 6/33 0/77 4/77

Correct Incorrect Correct Incorrect Predicted
location location location location non-cleavable

Cleaved(104) 49/91 42/91 61/91 27/91 3/91 0/13 7/13

Table 2.6: Comparison of final cleavage site prediction with TargetP in the plant data set. Denom-
inators and numerators mean the same as Table 2.5

Predicted MTS-containing cleavable by TargetP Predicted Non-MTS (non-cleavable) by TargetP

TargetP MoiraiSP TargetP MoiraiSP
Noncleaved(37) 13/13 2/13 0/24 0/24

Correct Incorrect Correct Incorrect Predicted
location location location location non-cleavable

Cleaved(81) 32/69 37/69 48/69 18/69 3/69 0/12 11/12
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Figure 2.10: MPP prediction compared with TargetP. Up: Yeast MCC of MPP prediction, Down:
Plant.



Chapter 3

Divergence as a novel feature

In this section I describe work to be presented at ISB 2011.

3.1 Sequence divergence in presequence

As table 2.2 shows, presequences length of mitochondrial proteins are highly divergent. In fact, there

is not even consensus pattern in this region. Although some consensus motif has been reported for

mitochondrial targeting signals [31, 32], it is information poor and produces too many false positives

to be used for reliable prediction. Figure 3.1 is a typical example of the mitochondrial presequence.

Clearly, presequence region has numerous gaps and infers higher mutation rate. To confirm whether

or not this divergence can be a novel feature to predict subcellular localization of proteins, a simple

experiment was conducted. This chapter describes the experiment and discusses its effect for the

prediction.

39
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3.2 Dataset

3.2.1 Proteins and their localization classes

This study focuses on the prediction of N-terminal sorting signals in the budding yeast S.cere.–

the eukaryotic organism with the most complete annotation available regarding protein sub-cellular

localization. It was focused on that the two most common N-terminal sorting signals, the “signal

peptide” (which we abbreviate as “SP”), targeting proteins to the endoplasmic reticulum and the

“MTS” (Matrix Targeting Signal) which targets proteins to the matrix (inner compartment) of the

mitochondria. Although both of these signals reside near the N-terminus, they are though to be

mutually exclusive, with different properties that are effectively discriminated by the cell. Although

other types of N-terminal sorting signals exist, for example the PTS2 signal targeting the proteins

to the peroxisome [33], the number of proteins using such signals is much smaller than those using

the SP or MTS signals.

In this study we choose to leave these less common signals to future work and instead concentrate

on three broad localization classes for proteins in S.cere.: 1) with SP’s, 2) with MTS’s, and 3) N-

signal-less; of which we gathered 54, 182, and 462 examples respectively. We used UniprotKB/Swiss-

Prot [34] to assign localization class labels, augmented by MTS containing proteins determined in

the proteomics experiment of Vöglte et al. [9]. Because only a small number of SP’s have been

directly confirmed experimentally, we also included SP proteins whose label is “by similarity“ or

“potential“ by curators of UniprotKB/Swiss-Prot. To reduce false positives, suspicious proteins

were filtered out by prediction by SignalP [35] (see Discussion for a justification of using prediction

results in our dataset). For N-signal-less proteins we used proteins which localize to the cytosol or

nucleus (according to UniprotKB/Swiss-Prot annotation).

To avoid a bias in training and accuracy estimation, we used Blastclust 2.2.22 (http://www.

ncbinlmnih.gov/BLAST/) to removed redundant sequences with a setting of 20% identity.
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3.2.2 Orthologs and multiple alignment

We extracted orthologs from the Yeast Genome Order Browser [36]. YGOB includes curated ortholog

sets from 11 fungi genomes (S.cere., S. castellii, S. kluyveri, K. waltii, A. gossypii, C.glabrata, K.

lactis, Z. rouxii, K. thermotolerans, S. bayanus and K. polysporus) by synteny of their genomes. For

each S.cere. protein in our dataset, we obtained its ortholog multiple sequence alignment (orthoMSA)

by aligning it to its orthologs with the MAFFT program [23]. We ran MAFFT using “LINSI”, its

most accurate mode.

3.3 Features for classification

3.3.1 Sequence evolutionary divergence score

Our study required assigning a divergence score to each position of each S.cere. protein, based on

its orthoMSA.

Column entropy score

Several measures have been suggested for scoring evolutionary sequence conservation (or conversely

divergence) [37, 38]. Here we adopt a simple Shannon entropy based score:

H(i) = −
∑
j∈A

F (i, j) lgF (i, j). (3.1)

where i indicates position of a column and j stands for a kind of amino acid.

When multiple gaps are present in a column, we consider each to be a unique character instead

of using gap penalty. For example, the entropy of an orthoMSA column ’{L, L, I, -, -}’ is computed

as one character (the ’L’) with frequency 0.4 and three characters with frequency 0.2. We adopted

this treatment of gap symbols so that the divergence of orthoMSA columns with many gaps would
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Table 3.1: Smoothed entropy derived features are listed. Quantities shaded in grey were not used
directly as features.

Feature name Quantity

LD(i) H̄i−10,i+10

Nraw20 H̄1,20

Nraw40 H̄1,40

Nraw80-99 H̄80,99

µw Average of H̄window for all length w windows

σw Standard deviation of H̄window for all length w windows

NCdiff Nraw20−Nraw80-99

N20 (Nraw20−µ20)
σ20

(z-score normalized)

N40 (Nraw40−µ40)
σ40

(z-score normalized)

N80-99 (Nraw80-99−µ20)
σ20

(z-score normalized)

be considered high. Since we use 11 species, the range of our column divergence score runs from 0

(perfect conservation) to 3.46 bits (maximally diverged).

Smoothed entropy score

For many orthoMSA’s, the entropy often varies widely from column to column, therefore as a measure

of divergence, we adopted a smoothed entropy score, H̄i,j , defined as the average entropy score for

columns in the interval [i, j].

Divergence based features

We employed several smoothed entropy score based features summarized in table 3.1.

3.3.2 Physico-chemical propensities

To explore the possibility of combining sequence divergence with standard features used in protein

localization prediction, we defined three features computed from the first 30 N-terminal residues of

each S.cere. protein: 1) the number of positively charged residues (#pos), 2) the number of negatively
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charged residues (#neg), and 3) the average hydrophobicity as measured by the Kyte-Doolittle [39]

index (Hphob).

3.4 Classifiers

3.4.1 Majority Class Classifier

The majority class classifier unconditionally predicts all examples to belong to the most common

class. Its accuracy is equal to the fraction of examples belonging to the most common class.

3.4.2 J48

J48 is a version of the C4.5 decision tree induction algorithm of Quinlan [40], implemented in the

Weka software package [41]. We used the default value of 0.25 for the confidence factor, which

controls the complexity of the induced tree.

3.4.3 Support Vector Machine

The SVM [42] is perhaps the most popular classifier in current bioinformatics work. In its basic

form it is a linear, binary classifier, but it has been extended to non-linear, multiclass classification.

In this project, we used the LIBSVM implementation [43]. We used the Gaussian radial basis kernel

function with default γ value (1.0 / # number of features). We also used the default value (1.0)

for the SVM cost parameter C. In our study we conducted binary and 3-class classification. For

multiclass discrimination LIBSVM adopts the ”one-versus-one” method, in which a separate SVM

is learned for each pair of classes, and majority voting amongst those SVM’s is used when classifying

examples.
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3.4.4 Quantifying feature importance

We used the so called “F-score” to quantify the importance of each features. The F-score [44] is

a simple measure of the predictive power of a feature in isolation (i.e. without consideration of its

relationship to other features), defined as:

(x̄(+) − x̄)2 + (x̄(−) − x̄)2

1
n+−1

∑n+

k=1(x
(+)
k − x̄(+))2 + 1

n−−1

∑n−
k=1(x

(−)
k − x̄(−))2

(3.2)

where x̄(+), x̄(−), and x̄ are the mean values of the feature for the positive, negative and combined

examples respectively; while x
(+)
k and x

(−)
k denote the value of the kth positive and negative examples

respectively. A larger F-score indicates greater predictive power.

3.4.5 Classification performance evaluation

Accuracy is not always an effective measure of performance for skewed datasets (i.e. datasets with

a very uneven number of examples from different classes) [45]. Therefore we use MCC (Ref. 2.2) as

a measure to quantify the performance in addition to ROC AUC.

3.5 Results

3.5.1 Feature Analysis

N-terminal sorting signals are evolutionary divergent

It is well known that sorting signals, especially signal peptides, have very low sequence conservation

[46]. As shown in Figure 3.1, this phenomenon is particularly clear for the mitochondrial heat shock

protein, SSC1, in which main part of the protein is highly conserved but the N-terminal region is

highly divergent. Figure 3.2 quantifies this trend for the proteins in our dataset.
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Figure 3.1: A multiple sequence alignment of the protein SSC1 (S.cere.Uniprot accession P12398)
from five species of fungi. The red line shows the MPP cleavage site located at the end of the MTS.
The conserved region is colored by Jalview.

Figure 3.2: Divergence scores (entropy) are shown for the 100 residue N-terminal region for MTS
containing (red), SP containing (blue), and N-signal-less (black) proteins. The error bars denote the
standard error. For clarity, error bars are only shown for every fifth position.

Estimate of importance of each feature

As a rough estimate of feature importance, we computed the F-score for each feature (Figure 3.3).

The two highest scoring features are the physico-chemical features #neg and Hphob, but the LD

features near the N-terminus also show F-scores significantly greater than zero.

Sequence divergence is not redundant to physico-chemical trends

To be promising as a feature for prediction, it is desirable that evolutionary sequence diversity

not be perfectly correlated with other useful features. To investigate this we plotted LD(13), the
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Figure 3.3: Importance of each attribute as estimated by F-score is shown. At left, the LD value
for each position is shown by solid and heat colored lines. Gray dash lines denote N20, N40, N80-
99 and NCdiff. Colored and dotted lines denote the N-terminal physico-chemical properties #pos,
#neg and Hphob, respectively.

divergence feature with the highest F-score, against the two highest scoring physico-chemical features

(Figure 3.4). Although it is difficult to discern the exact relationship, one can see that the feature

pairs do not appear highly correlated.

3.5.2 Divergence predicts presence of N-terminal signal

We tested whether sequence divergence can be used to distinguish between proteins with an N-

terminal localization signal (MTS or SP) and those with none. As shown in Table 3.2, for this binary

classification task, sequence divergence alone allows for significantly higher prediction accuracy than

randomized control experiments or the majority class fraction (66.2%).
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Figure 3.4: The scatter plot of LD(13) on the vertical axis vs. #neg (top) and Hphob (bottom) on
the horizontal axis is shown. MTS, SP, and N-signal-less proteins are represented by red, blue and
black dots, respectively.

3.5.3 Divergence distinguishes signal SP vs. MTS vs. N-signal-less

Although the sequence divergence profile of SP’s and MTS’s appear similar when averaged over

proteins containing each signal (Figure 3.2), we found that sequence divergence is still somewhat

effective for the three-way classification of SP vs. MTS vs. N-signal-free. As shown in Table 3.3 the
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Table 3.2: Three classification performance measures are shown for the discrimination of N-signal
containing and N-signal-less proteins. AUC denotes the area under the ROC curves. (randomized)
indicates the values obtained with the localization class labels randomly shuffled 100 times. For each
measure the average and standard deviation is shown over the 5 folds of the cross-validation, or 500
(5 × 100 trials) folds in the case of the randomized data.

mean accuracy mean AUC mean MCC
J48 72.49± 3.30 0.68± 0.09 0.40± 0.09
- (randomized) 65.85± 0.66 0.50± 0.01 0.00± 0.03
SVM 74.64± 2.38 0.68± 0.03 0.40± 0.06
- (randomized) 66.19± 0.09 0.50± 0.00 0.00± 0.01

Table 3.3: The 5-fold cross-validation performance of an SVM classifier using: divergence features
only, physico-chemical features only, and the two combined; is shown for three-way classification on
our entire dataset.

Divergence Physico-chemical features Combination
AUC MCC AUC MCC AUC MCC

MTS 0.65± 0.01 0.34± 0.03 0.81± 0.05 0.67± 0.09 0.82± 0.04 0.68± 0.08
SP 0.50± 0.00 0.00± 0.00 0.72± 0.05 0.57± 0.07 0.86± 0.06 0.72± 0.08
N-signal-free 0.64± 0.02 0.34± 0.06 0.79± 0.05 0.63± 0.10 0.85± 0.04 0.73± 0.08
% accuracy 71.06± 1.57 83.11± 3.44 86.25± 3.56

performance with divergence features is slightly better than the majority class fraction (66.2%) and

also slightly improves the performance when added to the physico-chemical features.

The ratio of examples in our dataset is 8.56:3.37:1, for N-signal-less, MTS and SP containing

proteins respectively. Skewed datasets are known to complicate both learning and performance

evaluation [45]. Therefore we also measured performance on a dataset with uniform class occupancy,

created by randomly discarding all but 54 proteins from each class. As shown in Table 3.4, in this

experiment, classification based on the divergence features only, performance is much higher than the

majority class fraction (0.33%); moreover the divergence features also contribute to the performance

when combined with the physico-chemical features.

3.6 Discussion

First, this work must be considered as a proof of concept only with many limitations.
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Table 3.4: The 5-fold cross-validation performance of an SVM classifier using: divergence features
only, physico-chemical features only, and the two combined; is shown for three-way classification on
a balanced dataset (54 proteins in each class).

Profile Physical features Combination
AUC MCC AUC MCC AUC MCC

MTS 0.65± 0.10 0.30± 0.19 0.85± 0.05 0.74± 0.09 0.81± 0.07 0.62± 0.12
SP 0.69± 0.05 0.40± 0.13 0.78± 0.09 0.59± 0.13 0.90± 0.04 0.82± 0.07
N-signal-less 0.73± 0.05 0.47± 0.11 0.77± 0.05 0.53± 0.10 0.87± 0.05 0.74± 0.11
% accuracy 58.56± 8.40 73.48± 4.41 81.37± 5.95

3.6.1 Measurement for evolutional divergence

Many sophisticated measures have been proposed to quantify the degree of sequence conservation

[38]. Here we only present results using a simple entropy based measure which ignores the phyloge-

netic relationship of the species involved. For non-divergence features we used only three, reasonable

but simple, physico-chemical based features. Since popular features such as amino acid composition

were not tested, combination with other features should be conducted in the future.

3.6.2 Organisms and location defined for the prediction

We only evaluated our predictions on the well-studied fungi S.cere.. Although the mechanisms

of sub-cellular localization are similar in principle in animals and plants (chloroplasts also import

proteins via N-terminal signals), the details can be different [5, 47].

Although many predictors discriminate between 10 or more localization sites (e.g. WoLF PSORT

[48]), we focused on only the two most common sorting signals.

3.6.3 Appropriateness of dataset

One weakness in this task, is that many of our SP proteins are not experimentally validated, but

based only on prediction by sequence similarity and SignalP. This unfortunate circularity (predicting

predictions) is unavoidable because: 1) only a handful of SP’s have been experimentally verified,
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and 2) the presence of SP’s cannot be reliably inferred exclusively from localization site for most

S.cere. proteins. It may be reasonable to assume that secreted proteins all have SP’s, but S.cere.

secretes very few proteins (the SWISS-PROT derived WoLF PSORT [48] dataset lists only six).

Other SP containing proteins generally localize to the E.R. or Golgi body – but proteins annotated

to localize to the E.R. or Golgi include non-SP containing proteins such as peripheral membrane

proteins which localize to the outside of these organelles. In fact, proteins annotated as localizing to

the E.R. or Goligi, but not SP containing did not contain hydrophobic region in their N-terminal;

thus, they are unlikely to be SP containing proteins.

However, the risk of incorrect conclusion resulted from employing non-verified SP data is small.

First, this problem only applies to the SP class, as recent proteomics data has provided direct

measurement of many MTS’s [9]. Second, given the intense study of S.cere. and the continued

scrutiny of UniprotKB/Swiss-Prot by the research community, we find it unlikely that a large fraction

of the SP proteins in our dataset are incorrectly labeled.



Chapter 4

Discrimination between MTS and

non-MTS containing proteins

4.1 Factors related to import to the matrix

4.1.1 Positive charge is important for both matrix and MPP import

One of the main functions in mitochondria is oxidative phosphorylation; thus, leading to high density

of proton outside the inner membrane and low density of proton in the matrix. To gain driving force

from this membrane potential, N-terminal of mitochondrial proteins includes numerous positively

charged residues. Additionally, a model was proposed that MPP also uses positive charge in N-

terminal to import of their substrates into the cavity [49, 50]. Non-cleaved mitochondrial proteins

such as outer membrane proteins do not need to contain positively charged N-terminal, because

they do not penetrate inner membrane by electrically membrane potential. Therefore, charge in

N-terminal can be a good feature to classify mitochondrial proteins into cleaved or non-cleaved

51
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proteins.

4.1.2 Negatively charged residue in MTS region

It is known that amino acid composition of MTS region is different from mature region. For instance,

MitoProtII defines that MTS region is upstream of continuous negatively charged residues [14]. In

other words, at least two continuous negatively charged residues such as DD is regarded as an end of

MTS in MitoProtII system. Because of low number of negatively charged and numerous positively

charged residues, it is said that MTS can be enough positively charged to pass the inner membrane.

In fact, negatively charged residue rarely appear in MTS regions; thus, even moderate number of

negatively charged residue decreases a possibility of MTS.

4.1.3 Evolutional information

As I stated above, there is no consensus motif in the primary structure of MTS, which differs

considerably even among orthologs [16]. In general, non-cleaved mitochondrial proteins includes

not N-terminal but internal signal, which is poorly characterized at present [16]. Divergence in

N-terminal signal can be a novel feature to classify proteins to N-terminal signal or N-signal-less

proteins. Therefore, divergent scores in N-terminal, which is described in chapter 3, were also applied

to this classification problem.

4.2 Features for classification

4.2.1 Log odds ratio of profile HMM

Profile HMM was trained on only ten residues around the cleavage sites; thus, the rest of the

presequence sequence was not used. As I discuss in chapter 2, log odds ratio calculated by the
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profile HMM alone can discriminates cleaved proteins and non-cleaved proteins. Therefore, HMM

scores is given to the classifiers as an attribute.

As Probability for given length of presequence can be calculated by Gamma mixture with es-

timated parameters, calculated logarithmic probability for each length was added to the HMM

score. Weighted HMM scores by Gamma mixture and non-weighted raw HMM scores are tested as

independent models to each other.

4.2.2 Physico-chemical features

Since MTS region is positively charged, physico-chemical features (hereafter “FPhy” ) are used to

classify proteins into two categories. These features are defined by predicted cleavage site; namely,

sequence from N-terminal to predicted cleavage position is used for this purpose. For example, the

number of asparate from N-terminal to predicted cleavage position is given to a classifier. If the

number of asparate is high, it is unlikely to be MTS, cleaved mitochondrial peptides.

4.2.3 Evolutional information

Basic idea is the same as LD(i) in chapter 3, namely, smoothed H(i).

H(i) = −
∑
j∈A

F (i, j) lgF (i, j). (4.1)

where i indicates position of a column and j stands for a kind of amino acid.

The only difference is that LD(i) for this classification problem is normalized as a z-score. The

number of orthologs varies from proteins to proteins; thus, score range must be normalized to be

compared in this case.
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Table 4.1: Features for the classification are listed. k is a index for (predicted) cleave position; thus,
this equals to length of presequence. Quantities shaded in gray were not used directly as features.
α is shape and β is scale parameters for gamma distribution. l is a bin to which position i belongs.

Feature name Quantity

#D The number of D from N-terminal to kth position

#E The number of E from N-terminal to kth position

#H The number of H from N-terminal to kth position

#K The number of K from N-terminal to kth position

#R The number of R from N-terminal to kth position

#− #D +#E

#+ #R +#H +#K

Chgnet
#+−#−

k

Schmm log P (x|model)
P (x|null)

Schmm(distance) log P (x|model)
P (x|null) + log{F (l;α, 1

β )− F (l − 1;α, 1
β )}

LD(i) H̄i−10,i+10

µ Average of LD(i) (1 ≤ i ≤ 80)

σ Standard deviation of LD(i) (1 ≤ i ≤ 80)

LDz(i)
LD(i)−µ

σ (z-score normalized)
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4.3 Classifiers

4.3.1 Support Vector Machine

For classification of mitochondrial proteins, LIBSVM implementation was used [43]. I used the RBF

kernel function with searched parameters γ value and the SVM cost parameter C. Grid search on

the training data was conducted to determine γ and C values. To draw ROC (Receiver Operating

Characteristic), probability was estimated by LIBSVM for each proteins [51].

4.3.2 Estimation for feature importance

F-score (Ref. 3.2) was used as a simple measurement of discriminative power.

4.3.3 Classification performance evaluation

MCC (Ref. 2.2) was used as a measure to quantify the performance in addition to AUC. Balanced

accuracy (BAC) was also measured, because both classes have equal importance.

BAC =
Sensitivity + Specificity

2
(4.2)

4.4 Dataset

The dataset was the same as the one which was described in the chapter 2. Divergent score in

N-terminal was applied for only yeast dataset due to the limitation of the database.

4.4.1 Features for positive data

Since positive data set has cleavage positions for each proteins, Fphy were directly calculated from

the cleavage position. Schmm for SVM were calculated by leave-one-out ( “loo” ) training. Because
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HMM score can be too high when training includes exact same sequence to test sequence, this score

might disturb Schmm distribution in SVM; therefore, loo training was conducted in the training

dataset for Schmm. For example, if kth-fold training data contains j sequences, j profile HMM

models are built to calculate log odds scores for each j sequences.

4.4.2 Features for negative data

Non-cleaved data set lacks cleavage position, and at least one position should be defined to calculate

Fphy. One approach to obtain Fphy is to define fixed length such as N-terminal 30 residues used in

chapter 3. I used the non-cleaved proteins (extracted from papers of proteomic experiments [9, 7])

as negative data. More precisely, for each non-cleaved sequences, I computed the maximum HMM

score in the 100 N-terminal residues in the yeast data and 120 residues in the plant as negative

examples of cleavage sites.

4.5 Results

4.5.1 Non-cleaved proteins has relatively conserved N-region

As described in chapter 3, N-signal-less proteins such as cytosolic or nuclear proteins contain rela-

tively conserved N-terminal (Figure 3.2). Similarly, non-cleaved mitochondrial proteins show similar

tendency in very end of N-terminal (Figure 4.1).

4.5.2 Auxiliary attributes are better than pHMM score

In chapter 2, pHMM score and weighted score by Gamma mixture are described to classify mito-

chondrial proteins into two groups: cleaved and non-cleaved proteins. I tested if auxiliary features

improves the result. Importance of each feature are were estimated by F-score (Figure 4.2). As
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second highest dashed line is F-score of Schmm, there are more important features such as highest

dashed line, F-score of Chgnet or LDz(i).

4.5.3 Performance comparisons with preceding systems

As characters of internal signal within non-cleaved proteins are poorly understood at present, needs

for classification of non-cleaved proteins and cleaved proteins have been independently discussed

[7, 9]. Preceding systems, TargetP and Mitoplot II, are referred as standard prediction systems;

therefore, MoiraiSP was compared with the two systems. There are two kinds of profile HMM

models; thus, raw HMM score (Table 4.2, 4.4) and weighted HMM score (Table 4.3, 4.5). In

addition, evolutional divergence score was also used in the yeast data set (Table 4.2, 4.3).

As a result, combination of physico-chemical features, raw HMM score and evolutional divergent

score was best amongst yeast prediction models (Table 4.2), and HMM scores weighted by Gamma

mixture showed highest evaluation values in the plant data set (Table 4.5).

Table 4.2: Performances of yeast SVM models.
MCC AUC BAC Accuracy for cleavage

∗HMM –base line 0.634± 0.149 0.855± 0.072 0.814± 0.070 54.8% (57/104)
HMM + Fphy 0.819± 0.121 0.945± 0.059 0.906± 0.060 64.4% (67/104)

HMM + Fphy+ LDz(i) 0.828± 0.125 0.957± 0.048 0.913± 0.063 65.4% (68/104)
LDz(i) only 0.595± 0.176 0.886± 0.066 0.794± 0.088 63.5% (66/104)
TargetP 0.582 - 0.788 47.1% (49/104)

MitoProtII 0.552 - 0.770 32.7% (34/104)

*: non SVM

Table 4.3: Performances of yeast SVM models when using Gamma mixture.
MCC AUC BAC Accuracy for cleavage

∗HMM –baseline 0.739± 0.170 0.897± 0.075 0.865± 0.085 58.7% (61/104)
HMM + Fphy 0.780± 0.099 0.943± 0.050 0.887± 0.050 62.5% (65/104)

HMM + Fphy+ LDz(i) 0.792± 0.154 0.945± 0.055 0.893± 0.076 63.5% (66/104)

*: non SVM
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Table 4.4: Performances of plant SVM models.
MCC AUC BAC Accuracy for cleavage

∗HMM –base line 0.840± 0.130 0.957± 0.057 0.928± 0.066 72.8% (59/81)
HMM + Fphy 0.807± 0.182 0.954± 0.066 0.892± 0.100 76.5% (62/81)

TargetP 0.504 - 0.751 39.5% (32/81)
MitoProtII 0.676 - 0.806 16.0% (13/81)

*: non SVM

Table 4.5: Performances of plant SVM models when using Gamma mixture.
MCC AUC BAC Accuracy for cleavage

∗HMM –base line 0.933± 0.116 0.979± 0.041 0.969± 0.053 75.3% (61/81)
HMM + Fphy 0.827± 0.175 0.932± 0.098 0.905± 0.107 75.3% (61/81)

*: non SVM

4.5.4 Cleavage prediction under the best model

Since the yeast dataset includes not only R-2 motif proteins but also 18 and 21 proteins with R-3

and R-10 motif, respectively. In addition, Icp55 and Oct1 processed proteins contain a few R-none

class proteins, which does not contain arginine at typical position -2, -3 or -10. In particular, R-3

and R-10 proteins might be candidate of Icp55 or Oct1 substrates; therefore, they were predicted by

the most accurate model shown in Table 4.2, which uses HMM score, Fphy and normalized divergent

scores (Table 4.6). MoiraiSP results in better performance overall; however, some categories showed

worse results than the other two systems.

Table 4.6: Detailed cleavage prediction performances among systems. Denominators show number
of predicted proteins as cleavable in each categories, and numerators indicate the number of correctly
predicted proteins.

Total MPP only (R-2) Icp55 (R-2) Oct1(R-2) R-3 R-10 R-none
MoiraiSP 63.9∗% (83/130) 63.5∗% (33/52) 87.9∗% (29/33) 50.0∗% (6/12) 50.0% (6/12) 47.4% (9/19) 0% (0/2)
TargetP 52.9% (65/123) 34.7% (17/49) 80.0% (24/30) 66.7% (8/12) 66.7% (8/12) 44.4% (8/18) 0% (0/2)

MitoProtII 39.3% (48/122) 16.0% (8/50) 58.1% (18/31) 72.7% (8/11) 38.5% (5/13) 52.9% (9/17) 0% (0/1)

*: Validated by 10-fold cross-validation
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4.6 Discussion

4.6.1 Limitation for the application of presequence length distribution

In chapter 2, weighting by estimated Gamma mixture for presequence length showed better perfor-

mance than classification by raw HMM score. However, weighting changed the result for the worse

in yeast SVM (Table 4.2,4.3). As I stated in the dataset section, Gamma mixture affects not only

HMM score but also other physico-chemical features. Although F-score of Schmm was improved by

Gamma mixture, F-score of Chgnet, which is estimated to be most important feature, decreased

(Figure 4.3). At present, information about presequence length was used as Gamma mixture distri-

bution and applied for weighting of HMM score. As a result, position of window whose HMM score

was highest shifted to another point; thus leading to worse F-score of some important features and

the result. To avoid changes by Gamma mixture, predicted position (or presequence length) was

tested as a feature of SVM. However, result was not improved. In fact, F-score of position is 0.08

and indicates weak discriminative power. In the plant data set, however, weighting by Gamma mix-

ture showed better performance. Since presequence distribution seems to be an important feature,

different way of application might improve result for yeast as well.

4.6.2 Computation of divergent scores

Although this problem has been already discussed in chapter 3, same problem might lie behind

classification between cleaved and non-cleaved proteins. For example, amino acids which have similar

physical properties such as leucine and isoleucine are treated as distinct characters. However, the

result shows good MCC for even a model using only divergent score; therefore, shannon entropy can

work relatively appropriate measurement in this case.
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4.6.3 Slightly divergent region in non-cleaved proteins

Unexpectedly, distribution of LDz(i) F-scores looks bimodal distribution (Figure 4.2). Figure 3.3

infers that N-terminal residues have discriminative power, but positions after 40 alone seems not

to classify proteins correrctly. In fact, divergence looks mostly the same after 40 among three

classes (Figure 3.2). On the other hand, N-signal-less mitochondrial proteins, non-cleaved proteins,

might include relatively non-conserved region around position 50 to 60 where cleaved mitochondrial

proteins are well conserved (Figure 4.1). Such characteristic two regions seem to lead to relatively

good classification, even though no direct sequence information was used (Table 4.2). This character

was not observed in chapter 3; therefore, non-cleaved proteins, N-signal-less proteins, might contain

informative features.

Non-cleaved mitochondrial proteins posses internal signals for correct localization instead of

cleavable N-terminal signal, and interact with other proteins within mitochondria [8]. Non-cleaved

mitochondrial proteins tend to be membrane proteins; therefore, this region might be transmembrane

domain. However, mean hydrophobicity plot shows low hydrophobicity around position 50 to 60

(Figure 4.4). Internal signal has not been well characterized, and search for them in experimental

biology is in progress. Although the reason for this non-conservation part in the middle of N-terminal

is elusive, this seems to contain some discriminative power.

4.6.4 Limitation about annotations of the dataset

As Table 4.6 shows, MoiraiSP has difficulty about cleavage prediction about R-3 or R-10 motif

proteins. In fact, putative MPP cleavage sites for most of the R-3 or R-10 proteins locate one residue

or eight residue upstream of the actual reported site. In this project, I used only annotated proteins

as Ico55 or Oct1 processed to train sub-filter. However, almost R-3 or R-10 proteins’ cleavage site

look similar to those of Icp55 or Oct1 even though they were not annotated. Interestingly, some R-3
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motif proteins has destabilizing residue such as methionine at position -1 and stabilizing residue at

+1 position, even though these motif cannot match with known Icp55 motif [FLY][STA]. To label

second cleavage peptidases to predicted site, I excluded these proteins. Nevertheless, training by

them should have potential for improvement of the result, though it makes labeling of peptidases

difficult. As a future work, to build two kinds of different models might be a point of compromise:

a model which be less accurate but can show concrete labeling of intermediate proteases and more

accurate model which shows only inferred labels . Here, I show the former model as result of my

Master thesis research.
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Figure 4.1: Normalized local divergence scores are shown for the 100 residue N-terminal region for
cleaved MTS containing (blue) and non-cleaved mitochondrial (red) proteins in the yeast dataset.
The error bars denote the standard error. y-axis shows LDz(i), and x-axis indicates start position
of window.
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Figure 4.2: The estimated feature importance by F-score. Blue dashed lines denote physico-
chemical and HMM score. Red lines show normalized local divergent scores in 100 N-terminal
positions. Black horizontal line indicates F-score of HMM score. Blue dashed lines indicate F-scores
of #D,#E ,#H , Schmm,#R,#K ,#−, Chgnet,#positive from left to right.
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Figure 4.3: The estimated feature importance by F-score in both weighted HMM and raw HMM.
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Figure 4.4: Mean hydrophobicity amongst non-cleaved proteins scaled by Kyte-Doolittle index. A
window size of 9 was used for smoothing.



Chapter 5

Search for novel substrates

5.1 Results and Discussion

5.1.1 R-10 motif proteins are likely to be Oct1 substrates

Since proteomic data set provided by Vögtle et al. include 21 proteins whose cleavage sites look R-

10 motif, which infers double digestion by MPP and Oct1. The problem of these proteins is difference

from known Oct1 motif (Figure 5.1, 2.5). Although known R-10 Oct1 motif is RX|(F/L/I)XX(T/S/G)XXXX| [1,

28], position -8 and -5, position 3 and 6 in Figure 5.1, respectively, contain atypical residues such as

tyrosine and tryptophan at -8 and leucine or aspartic acid at -5. There has not been strong authority

that they are Oct1 substrate, so 21 R-10 motif proteins were separated from the training data.
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Figure 5.1: Sequence logo generated from cleavage site of R-10 motif proteins.
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MoiraiSP results in good performance, especially for prediction of MPP cleavage site and classi-

fication, therefore, 21 proteins were tested for further discussion by the system , SVM model usign

Fphy and LDz(i).

Table 5.1: List of 21 R-10 motif proteins.
OLN Probability Distance from putative MPP site

YBR047W 0.93 8
YDR036C 0.9 8
YDR178W 0.94 16
YDR234W 0.88 8
YER078C 0.9 8
YGL107C 0.62 8
YHR147C 0.63 8
YIL070C 0.97 8
YJR080C 0.75 8
YJR100C 0.84 8
YLR069C 0.94 8
YLR295C 0.61 23
YML042W 0.95 8
YMR189W 0.95 8
YMR232W Predicted non-cleavable -
YNL177C 0.86 8
YNR036C 0.87 8
YOR354C 0.71 8
YPL224C 0.87 8
YPR001W 0.88 8
YPR025C Predicted non-cleavable -

MoiraiSP predicts 8 residue upstream of R-10 motif cleavage sites as putative MPP cleavage

sites for 17 out of 19 predicted cleavable proteins. In other words, distance from 17 predicted MPP

cleavage sites to reported cleavage sites are 8 residues, typical distance for Oct1 as its name indicates.

9 out of the 17 proteins are predicted as Oct1 substrates by MoiraiSP; thus, rest of them are not

predicted as Oct1 substrates due to atypical residues in their sequence at position -8 or -5.

Recently, a novel Oct1 substrate was reported in yeast, and its sequence motif is unusual: position

-10 is not either R or K but cysteine and -5 is leucine [52]. As figure 5.1 indicates, leucine is weakly

conserved at position -5. Taking revised motif into account, Figure 5.1 does not contradict with the
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statement that R-10 motif proteins are also Oct1 substrates.

Additionally, position -8 tends to prokaryotic destabilizing residue except two isoleucine, and po-

sition -7 includes numerous prokaryotic stabilizing residues except lysine. R-10 motif’s destabilising-

stabilising pattern is consistent with that of Icp55 or Oct1.

Finally, the distance of YDR178W from putative MPP site is 16. Because Oct1 function is still

elusive, Oct1 may have the potential for double digestion after first Oct1 cleavage.

In conclusion, Oct1 is also related to mitochondrial protein turn over [52]; therefore, 21 proteins

on this list are likely to be novel Oct1 substrates.

5.1.2 R-3 motif proteins might be potentially double digestioned proteins

As same as R-10 motif proteins, 18 R-3 motif proteins were also checked by MoiraiSP (Table 5.2).

One third of the proteins were predicted as non-cleavable, and results of TargetP or MitiplotII are

similar proportion. Although the reason is unknown, this category might include some experimental

errors. Basic tendency is similar to that of R-10 proteins stated the above, and one interesting

proteins is YBR026C. This contains methionine at -1 position and serine at +1 positon; thus, shows

similar pattern to weakly conserved plant R-3 motif. Even if Icp55 does not cleave this protein,

methionine peptidase may remove methionine after MPP processing in mitochondria. But so far,

there is no report about MPP+methionine peptidase processing; therefore, this is a speculation at

present.

5.1.3 Mcr1p might be not only IMP but also Pcp1 substrate

The yeast data set includes substrates for all of known mitochondrial proteases: MPP, Icp55, Oct1,

m-AAA, i-AAA, IMP and Pcp1. As proteases other than the first three are related to regula-

tion within mitochondria rather than N-terminal signal removal, importance for their substrate
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Table 5.2: List of 18 R-3 motif proteins.
OLN Probability Distance from putative MPP site

YBR026C 0.91 1
YBR037C 0.91 8
YBR251W 0.84 1
YDL044C 0.66 1
YDR070C Predicted non-cleavable -
YDR298C 0.67 8
YDR494W Predicted non-cleavable -
YGL221C Predicted non-cleavable -
YJL180C 0.89 1
YJR003C 0.94 1
YKL134C 0.9 1
YKR063C Predicted non-cleavable -
YMR157C 0.86 0
YNL100W Predicted non-cleavable -

YOR298C-A Predicted non-cleavable -
YOR334W 0.96 1
YOR356W 0.79 1
YPL059W 0.81 18

search increases in recent years, especially in medical field. Amongst them, Pcp1 has been fo-

cused on because this is homolog of PARL, which is a rhomboid proteases of human mitochondria

and related to Parkinson’s disease through cleavage of PINK1 [53]. Rhomboid protease cleaves

substrate within or nearby membrane, and cleavage motif for rhomboid was recently reported:

[^WD][IMYFWLV][^WPD][^WF][AGCS]|[^P][FIMVACLTW] [54]. Since this motif was conserved

from prokaryotes to eukaryotes, there should be possibility that yeast Pcp1 can also recognize the

rhomboid motif. At present, there are two reported substrates for Pcp1, Mgm1 and Ccp1, and they

do not match the motif [21]. In the yeast dataset, however, cleavage site of Mcr1p matches this

motif completely, TVAIA|AA and the site locates within predicted transmembrane domain.

On the other hand, it was reported that Mcr1p is cleaved by IMP at different position [55]. In

the yeast data set, IMP cleavage site was not observed, and only TVAIA|AA was reported.

Interestingly, Mcr1p locates in both outer membrane and inner membrane and accumulates only

in outer membrane in the absence of membrane potential [56]. This reflects location shift of PINK1
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which depends on rhomboid protease [53]. In addition, mutation of Mcr1p, which changed TVAIAAA

to TVAIQQA, generates irregular 30-kDa fragment and localization of Mcr1p was disturbed [56].

Although size of shorter form is 32-kDa, theoretical molecular weight from reported IMP cleavage

site is 29641.74 Da. On the other hand, theoretical size from rhomboid motif matched site is 31729.02

Da; thus, theoretical size also supports cleavage site between position 23 and 24.

As a summation, all known experimental result of Mcr1p is consistent with rhomboid cleavage

for Mcr1p. Since N-terminal of Mcr1p in mature part has not been sequenced since 1994 [55], start

point of Mcr1p seems unclear at present. IMP cleavage site is inconsistent with at least proteomic

data [9]. Although the details are not yet clear, cleavage and regulation of Mcr1p is interesting in

terms of both medical and biological research.

5.2 Methods

5.2.1 Cleavage site prediction

Classification and cleavage site prediction was conducted by MoiraiSP discussed in chapter 2 and

4. Physico-chemical features, HMM score and normalized divergence score were used, but Gamma

mixture was not applied, as it did not seem to increase accuracy in preliminary trial.

5.2.2 Topology prediction

MEMSAT-SVM was used to discriminate membrane proteins from globular proteins and predict

transmembrane domain [57]. Proteins predicted as globular proteins by MEMSAT-SVM were not

further analyzed.
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5.2.3 Molecular weight calculation

Compute pI/Mw (http://web.expasy.org/compute_pi/) was used to calculate molecular weight

of shorter form of Mcr1p.



Chapter 6

Conclusion

An aim of this research is to develop a new predictor for cleavage site prediction of mitochondrial

proteins. In the field of mitochondrial studies, the importance of prediction against various new

kinds of cleavage site has emerged because of the relation between protease location and target

protein function. Unfortunately, even prediction for MPP, the best known mitochondrial proteases,

is not well solved. Moreover several membrane associated mitochondrial proteases exist for which

only a handful of substrates data is available, thus prediction work focused on MPP due to the

enrichment of the data and knowledge. Two software tools, MitoProtII and TargetP, are already

existing to predict matrix targeting signals and can be considered industry standard tools in the

field of mitochondrial research [14, 13], but their accuracies are far from ideal. In this thesis, I show

that my predictor gives a good performance in this task.

In chapter 3, I discuss a novel application of evolutionary information. I defined LD(i), a simple

measure of sequence divergence, and show that it correlates significantly and positively with the N-

terminal sorting signals. Moreover, it can be combined with physico-chemical propensities for further

increase of accuracy. In particular, using this divergence score for binary classification between

72
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cleaved MTS and non-cleaved mitochondrial proteins results in quite good result and indicates

interesting region in non-cleaved proteins, which was mentioned in chapter 4.

Since the yeast dataset does not contain annotation for proteases other than Icp55 and Oct1, I

conducted a literature search. This work revealed numerous proteases related to the cleaved sites

in the yeast dataset such as i-AAA, m-AAA [17, 18], and these sites do not contain arginine at -2

position; therefore, at least the yeast data set is likely to include substrates of diverse proteases

in addition to MPP. Or, there is a possibility that the yeast data sets include experimental errors

about cleavage sites. It is clear that systematic analysis of mitochondrial proteases is necessary to

understand mitochondrial proteome. In this thesis, I believe that this thesis is a first step in that

direction.

In summation, MoiraiSP can work to classify mitochondrial proteins into two groups at protein

level, and predict cleavage position of MPP and intermediate proteases such as Oct1 and Icp55 or

its analog in plant.
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