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1. Introduction. Velocity of a wave packet.

It is well known that the energy of waves is transmitted with a
group velocity that corresponds to the length of those waves. Let [
U be the velocities of transmission of the wave form and the wave
energy respectively, then we have the relation

d

U—d——f(r:f), 1)
where 27/f is the wave length. If we draw a tangent line to a point on
the dispersion curve of the waves whose abscissa and ordinate repre-
sent wave length 2z/f and phase velocity ¢ respectively, then the length
of that part of the y-axis that is below the point of intersection with
the tangent line just given, gives the group velocity of waves of length
corresponding to the point on which the tangent line was drawn.

If the disturbance that is transmitted through a dispersive medium
is of some irregular form that is not of sine form, the deformation of
the waves with time is, usually, not simple, in which case the usual
idea of group velocity is not of much avail.

Although a relatively complex case of dispersive elastic waves has
been shown in a previous paper,” it is impossible for that special case
to be used as representing general dispersive elastic waves. On the.
other hand, Coulomb® gave an example of the behaviour of a packet of
Rayleigh or of Love waves, in which a special centre of the packet of
those waves (that is, a centre of wave assembly) is transmitted with
the group velocity of the longest periodic waves pertaining to the dis-
turbance. From another investigation® of ours, it has been shown that,
in the case of periodic waves, the leading or trailing part of the same
waves is transmitted with group velocity.. We are thus now in a posi-

1) K. SEzawA and G. NISHIMURA, Bull. Earthq. Res. Inst., 8 (1930), 330.
2) M. J. Couroms, Livre jubilaire de M. Marcel Brillouin, 1934.
3) K. SEzawA, Bull. Earthq. Res. Inst., 4 (1928), 107.
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tion to ascertain the nature of the dispersive elastic waves, particular-
ly when the wave form is of irregular type.

We shall first solve various different cases, after which our con-
clusion with respect to the group velocity of the dispersive elastic
waves will be given. Although a special case of periodic waves trans-
mitted through a dispersive medium has already been shown in the pre-
vious paper,” to enable us to compare that case with the case of ir-
regular wave form, we shall also solve the problem of periodic waves
in a medium, the dispersion condition of which differs somewhat from
that already given.

The law of dispersion is generally very complex. In our examples
we assumed such formulae as

(a) c¢=A+B/f (b) c=A+Bf. @), 3)

Although the dispersion formula that fits the case of Rayleigh-waves
or Love-waves is, as we have shown in the previous paper,” of the
following type

(¢) c¢c=A+B/(a*+[%), ‘ 4)
or, at least, of the type

(d) c=A+B/(a+]), ; ()

if f be large compared with a, (d) may be replaced by (a), whereas if
f be small compared with a, (d) is transformed to (b). Since, mathe-
matically, the use of (c) or (d) is extremely complex, formulae (a)
and (b) have been availed of. Coulomb, in treating dispersive Love--
waves and Rayleigh-waves, assumed formulae-

c=A—Bf?, c¢=A—Bf, ‘ (2"

for the respective waves. As a matter of fact, the type of the dis-
persion equation is not the most important part of our problem; our
aim being rather to show the relation between the dispersion equation

and the change in wave form, for which formulae (a), (b) are still
fairly well adapted.

2. Periodic waves of finite extent that obey dispersion formula (b);

Let the initial form of the waves that are transmitted in the posi-
tive sense of « be F(x); then the wave form at =t is expressed by

4) ibid.
5) loc. cit., 1).
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V= él—S . eij’cldfg F(0)e"=q, (6)

—o0 —-00

where ¢ is of type (a) in the present particular case. Since the perio-
dic waves at ¢ = 0 is of finite extent, we put

F (o) = cosia, C[0<a<a] )

=0. [0>a, a<z). | M

It is restricted that a should be finite, otherwise it is impossible to
get the integral. When the dispersion formula (b), that is, c=A + Bf,
is used, (6) then reduces to

. PN 2
,v____iS es_ﬂc,(-:-/,y)_iﬂﬂra_[;:L e ] df

i\ © U2+ " a1
+ %S}wcwo W{_)_I;‘ —)jl:f}df (8)
To evaluate this, we consider the integrals
jeizzcxw:m—mnzft{ )’f;f )e 1’; }dZ 9)
§e<>{) L, (10)

taken round the contour shown in the sketch, the singular points lying
at Z=—4, Z=2A The part v
of the integral that is
taken along the real axis
corresponds to the expres-
sion in (8).

The inclined part in
the contour is so chosen
that the same line, passing
through the saddle point
of the exponent in the in-
tegrand, traverses the line
of steepest descent of the
same exponent. To deter- .
mine the saddle point of (9), for example, we write

Fig. 1.
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$(Z) =1iZ?Bt+iZ (At—2x +a). [Z=X+1Y) (11)
This function is stationary when
$'(Z)=0, (12)

from which we determine the coordinates of the saddle point. In the
present case, we shall specially write
®(Z)=R+1l, . (13)
in which
R=-2BtXY—(At—z+a)Y,

14
I=Bt(X2—Y?) + (At—z+0)X, | ()
and perform the operations
°R oR
Ok _q =0, 1
90X Y (15)
from which we get the coordinates of the saddle point, such that
—(At—z+a)
x= —@Ai—xt+a)  y_g 16
, 2Bt , (15
The value of R at this saddle point is
R=0. 17)

If we seek the locus of pointé at which the value of R is the same as
that at the saddle point, we find a pair of straight lines, defined by

(At—2x+a)
2Bt

The valleys are thus nearly in the first and third quadrants and the
* hills nearly in the second and fourth quadrants. The line of steepest
- descent is that which bisects the angle between the two lines shown
in (18). Since the important part of the integration along such a line is
only that from the part near the saddle point, we shall expand (Z)
in the form

X=o . Y=0. (18)

Z) =B(Zy) + (B—Z)F"(Zo) + -+, (19)

remembering that ¢’'(Z,)=0, taking the expanded terms to only the
second order. If, for simplicity, we write

Z—Zo=qe®, (20
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since ®”(Z,) =2iBt, we get

Sw - 'L'(Alf-z-l-u)2 = ” ) T
2\ e*PdZ=2¢ W‘S etrrdge™ (a:-—)
0 0 ) 4
V.G A0 ,
__ay T VT
) B 30 (21)
In the same way, it is possible to get the integration of a similar
kind for the case that corresponds to (10).
_ The contribution from the above integration to expression (8) is
now written

1 _ At—z+m)? —gitr P
Vi=5——= 4Rt )
'=4,/7Bt° , _At— x+a+2+At z+a

2Bt ‘2Bt
1 e 1
Ry {A_At_-x“MAt—x:' @2
2Bt 2Bt

There is no contribution from parts of circles of infinite radius.
Since the parts of these circles range from 0° to 45° and also from
© 180° to 225°, the factor of the type ¢*?* of each integrand in (9), (10)
tends to zero of the order of e~*#". Although the factor of the type
e*” in the same integrand diverges to infinity of the order e**, the re-
sultant of both factors causes the integrand to vanish.

Although the nature of the singular points Z=—2, 1is very sim-
ple, owing to the position of that part of the contour that corresponds
to the line of steepest descent, the contribution from such pomts to the
integral is somewhat complex.

We shall take twenty different condltlons of the contour, namely,
conditions relating to the position of the line of steepest descent rela- -
tive to the singular points, that is, the poles. The coordinate of the
saddle point for integral (9) is shown in (16), namely,

X = W, Y=0, (23)

and that for integral (10) is given by
x——(At—2)
2Bt

We shall call the saddle points shown in (23), (24), Zo,, and Z,, respect-
ively. '

Y =0. (24)
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(A) Let us assume that B is positive. :
(i) When the positions of the saddle points and poles are arrang-
ed, as showe in Fig..2a, we have the conditions

At—x+a> At—x) o
i>—(Al=2tay , 25
= ( 9Bt = (ZBt (202)
CAt—xz+a At—2x
0= , 2
2BE ~ 2Bi (262)

in which case the contribution to the integral comes from both poles.
In that case, the contribution from the poles to the integral v, is

vy = _%[__2e—iltCA—R}.)+iAr,_261‘AICA+IH.)- 1).2]
=eeosd(x— At). . (272)

(ii) When the saddle points and poles are arranged as shown in
Fig. 2b, we have the conditions

At—24a At—2x
— Al—=Z+a
== < 2Bt ) =% ) - @D
At —z ¥ a>0>At—~x ’ (26b)

2Bt 2Bt

the contribution to v, ‘being then
vy = %ei)\(x—fil)ﬁ-ﬂ.’h’t. ' (27b) ;

(iii) When the saddle points and poles are arranged, as shown in
Fig. 2¢, the conditions are

At—2x+a At—z

ez, e () @

< 2B1 2Bt (25¢)
At—z+a At—ax

0 - (26

2Bt~ 2Bt | (26c)
the contribution to v, being v

,vz= ”% e—il(a{—Al)+ilzl?l. v (270)

(iv) When the saddle points and poles are arranged, as shown in
Fig. 2d, we have
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At—z+a At—x
2 _<_ , > (AT 25d
= 2Bt ) 2Bt (25d)
At—z+a At—zx
At—z+a_, , 26d
2Bt = > 2Bt ( )

in which case the contributions from both poles cancel each other, so
that

0,=0. - (27d)

(v) When the saddle points and poles are arranged as shown in
Fig. 2e, we have :

’ At—x) At—2
— > ; 0, 25e), (26
= (23& 9Bt (25e), (26e)
from which
v,=0. ‘ (27e)

(vi) When the saddle points and poles are arranged as shown in
Fig. 2f, the conditions are '

At—x+a At—z At—x
—_—— ,  —AZ— ; , - (25f), (26f
= ( 2Bt ) <~( 2Bt ) om0 (280, (26D)

so that
Vy= _;_eh\(x—xlt)+i).2nt. (27f)

(vii) When the saddle points and poles are arranged as shown in
Fig. 2g, the conditions are

At—-x+a) At—zx
— A — ; 0, 25¢), (26
( 2Bt 2Bt = (25¢) _( £)

the contribution to v, being
’l)2=0. (27g)

(viii), (ix) From their quantitative natures, the arrangements
of the saddle points and poles, as shown in Figs. 2h and 2i, are impos-
sible. :
(x) When the saddle points and poles are arranged as shown in
Fig. 2j, the conditions are '

At—x At—z+a . .
p _( . At—zta (25), (26
= ZBt> 2Bt (251), (261)
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the contribution to v, being zero, that is
v,=0. . (275)

(xi) When the saddle points and poies are arranged as shown in
Fig. 2k, we have the conditions

s At—x+a At—zx At—x+a
N\ ) )‘ - ; 07 b
= ( 2Bt ) = <ZBt) sgr 0 (25K), (26K)

so that
Vy= %e-i).{x-m)ﬂ).zm. (27k)
(xii), (xiii), (xiv) From the nature of the problem, the arrange-

ments of the saddle points and poles as shown in Figs. 21, 2m, 2n are
impossible.

(xv) When the saddle points and poles are arranged as shown in
Fig. 20, we have the conditions

A — <0, (250), (260),

At——x;!—_a_), - At—x+a
2Bt ’ 2Bt

from which we get
. v,=0. (270)

(xvi), (xvii), (xviii), (xix), (xx) For the same reason as that
already shown, the arrangements of saddle points and poles as shown
in Figs. 2p, 2q, 2r, 2s, 2t are impossible.

(B) If B be negative, we Wrife B=-—RB.

(i) When the saddle points and poles are arranged as shown in
Fig. 2s, we have the conditions '

At—z+a 3 At—x

s 4 25s’
9Bt 2B't (255)
At—x+a At—zx
0 , 265’
5Bt~ 2Bt (265
the contribution to v, being
Vy=—e M #tcosA(x—At). (275')

(ii) When the saddle points and poles are arranged as shown in
Fig. 2r, the conditions are
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At—z+a At—zx

A -2, 251/

Bt " 2Bt (25r)
At—z+a At—zx .

0>== , 261/

5Bt~ 2Bt (26r')
from which we have

1)2 —_ _%‘ei)\(.'ll-x}—hW]f’l' . (271‘,)

(iii) When the saddle points and poles are arranged as shown in
Fig. 2n, the conditions are -

At—z+a At—x

2 —4, 25n’
2Bt 2Bt (25m)

At—2 +a At—z '
= 2170 , 26n’
| 5Bt~ 2Bt (26ry

from which we get

1 —EA(AL=2) A2 !
vz=—§e (M=) —dA2BTE - (2Tn')

(iv) When the saddle points and poles are arranged as shown in
Fig. 2m, we have

At—zx +a At—zx
2 -2 o5m’
2Bt 5Bt~ - (@m)

At—-xv+a At—x
S T S0 26m’
2Bt~ 2Bt (26m’)

from which we get ‘

V,=0. : (27m’)

(v) When the saddle points and poles are arranged as shown in
Fig. 2h, we have

At—x__ At—z +a .

-4, /0, 25h’), (261

2Bt 2B't < (2507, ( )
the contribution to vy being

V=0, " (27h')

(vi) When~ the saddle points and poles are arranged as shown in
Fig. 2j, the conditions are
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At—2+a At—zx At—2x +a . '
T >, —2; == 70, 25t'), (26t
9Bt 5Bt 9Bt (251, (261
from which we have
1 —tACAL=-2) =1 X2BI !
vy = — TS, (27t)

(vii), (viii), (ix) From the nature of things, the arrangements
of the saddle points and poles as shown in Figs. 2g, d, ¢ are impos-
sible.

(x) When the saddle points and poles are arranged as shown in
Fig. 21, the conditions are

At—2x+ ¢ _,. At—zx

; 0, 251'), (26
2B't 2B't - (251), (26)

from which we get

v,=0. E (211)

(xi) When the saddle points and poles are arranged as shown in
Fig. 2q, the conditions are

At—az + a>1, At—m<a; ﬂ:f
2Bt 2Bt 2Bt

=0, (259", (26q¢")

from which

Vy = __;_eil(;u—x)—i).zh"l. (27(]’)

(xii), (xiii), (xiv),. (xv), (xvi), (xvii), (xviii). No such arrange-
ments of saddle points and poles, as shown in Figs. 2j, b, k, o, e, {, a,
can possibly exist. '

(xix) When the saddle points and poles are arranged as shown

in Fig. 2p, the conditions are
At—ux At—zx ‘
> = >0, 25p'), !
2Bt ~ 0 Tomt (250, (26p")

~from which we get ‘
v,=0. ’ (27p")

(xx) When, finally, the saddle points and poles are arranged as
shown in Fig. 2i, we have

At—z+a At—x+a

_2; o
2Bt =

<0, (251, (261)
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~
N
o’ ~o

Fig. 2a. Fig. 2b. . Fig. 2c.

Fig. 2g. . Fig. 2h. Fig. 2i.

Fig. 2j.



Part 2.]  On the Packet Velocity of Dispersive Elastic Waves. 219

Fig. 2p. Fig. 2q. Fig. or.

Fig. 92s. Fig. 2t.
from which the contribution to v, becomes
v,=0. 27)

We shall now summarize the results shown in (25)’s, (26)’s, and
(27)’s as follows, |B| being the absolute value of B. The upper and
lower signs correspond to cases for B-positive and B-negative respec-
tively. :

{a+t(A—2|B|A))>a>t(A+2|B|2);

Vg = %[eix{p—zcli—nz)}+ e-zx{z—t(A-uu)}]’
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{a+t(A—2|B|}))>w=>At, t(A+2|B|})>z;
' 1 ofe-wa-
1)2=:l:§e“{ (A /m},

(a+At)y>a>{a+t(A—2|B|)}, a>t(A+2|B|d);
— o 1 —iafe-rcarm)

Vs :!:2f3 ’
(a+At)y>a>{a+1(A—2|B|d)), t(A+2|B|\)>ar>At; v,=0,
{a+t(A+2|B[2))>a>t(A+2|B[2), a>(a+At);
vy = i‘%e—ll{z-t(:i+lil)},
HA+2|B|)>a>(a+At); V=0,
x>{a+t(A+2|B|A)}; V,=0,
{a+t(A—2|B|) ) >ao>t(A—2|B|%), At>z;

' _ o 1 ale-a-my)

Vg :tEe )
t(A—2|B|A)y >z, V=0,

At>x>{a+t(A—2|B|d)}; V=0, (28)

As already remarked, v, is the contribution from the saddle points
and v, that from the poles. Strictly speaking, v, is distributed through
the whole range of x for any ¢, whereas v, extends through only a
narrow range of x for every f{. If we examine the natures of », and
v, more closely, there are some features to be noticed.

For v,;, the wave amplitudes are maximum at two phase conditions,
namely, .the condition of the phase x#—At¢=0 and that of the phase
x—~At—a=0. With increases in the absolute values of phases (x—At)
and (z—At—a), amplitude v; decreases. Independent of these condi-
tions, v; also decreases with increase in ¢, in consequence of which v,
tends to decay with time. o

The conditions of phases (2—At), (x—At+a) above given are
rather approximate. Mathematically, there are four phases, such that:
(A+2BA)t—z, (A+2B)t—x+a, (A—2B)t—z, (A—2B)t—2x+a. Al-
though the phases (A+2BA)t—=x, (A+2BA)t—a+a represent the group
wave that corresponds to wave length 27/, the forms of the remaining
phases, namely, (A—2B2)t—x, (A—2B)t—x+a are very odd.

Another feature of v, to be remarked is that, with increase in the
absolute values of phases x—At, x—A{—a, the form of w; becomes
increasingly undulatory, the wave lengths of the respective undulatory

parts augmenting with lapse of time.
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The amplitude of ¥, does not change during the transmission of
waves through a medium. The disturbed part of the waves also does
not change much, except in certain special cases. Although the veloci-
ties of the leading and trailing parts of the waves cannot be expressed
‘in simple forms, it is however possible to conclude that, whereas the
velocity of the leading part of the disturbance never exceeds A +2|B|4,
the trailing part is never less than A—2|B|2  Since A+2|B|2 and
A—2|B|2 are group velocities of waves of length for B-positive and
B-negative respectively, it is likely that the usual criterion that a wave
group shall be tansmitted with group velocity, in the present particular
problem, is available only for the velocity of the leading part for the
case of B-posmve and to the velocity of the trailing part for the case
of B-negative.

In the case of B-positive, the group velocity is higher than the
phase velocity, while in the case of B-negative, the condition is exactly
reversed. On the other hand, the energy of the waves is transmitted
with a velocity that corresponds to the group velocity of the waves.
It holds, then, that the leading part, at least, of the waves for the case
of B-positive, should be transmitted with group velocity. It is likely
that a similar condition exists for the trailing part of the waves for
B-negative.

The values of the phase velocities are indicated by the exponent in
every expression of v, in (28) It will be seen that although, general- .
ly, the phase is propagated with the corresponding phase velocity, in
some special cases the velocity of transmission of such phase differs
from what it ought to be.

Now, since the conditions of the waves v, as given by the expres-
sions in (28) are fairly complex, the nature of the problem, in its
details, is somewhat difficult to interpret. On the other hand, the
quantities A{+a+2|B t4,--- in the same expressions can be arranged in
the order of their values, as in the following five possible conditions.

(I) (At+a+2|B|t))>(At+a)>(At +a—2|B|tA)>(At
+2[B i) >At>(At—2|B|t2),

(II) (At+a+2|B|t))>(At+a)>(At+2|B|t)>(At
+a—2|B|t)>At=>(At—2|B|t?),

(III) (At+a+2|B|i)>(At+2|B|i2)> (At +a)>(At (30)
+a—2|B|t2)>At>(At—2|B|t2),
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(AV) (At+a+2|B|t)>(At+2|B|tA)>(Atl -
+a)>At>(At+a—2|B|t)>(At—2|B 1),

(V) (At+a+2|B|t)>(At+a)>(At+2|B|t))>At>
(At+a—2|B|tA)>(At—2|B|t4),

between the respective limits of which # may be intercepted. If we
write ten cases

(i) v,=e**cosl(x—At), (vi) 2,=0,
(i) wvy= L Btritle-dn, (vii) v,=0,
(iii) vy ____%eil'ﬁ’m—ncx—m)’ (Viii) ’l)2=%6"'2m+“<‘—‘" ), (30)
(iv) v,=0, (ix) v,=0,
(V) vz___%eu‘-’m-ncz-m), (X) 1)2:0,

for wave amplitudes, these cases can possibly exist for = lying within
their respective ranges between the limits defined by the conditions as
shown in (29). They are arranged as follows. The meaning of
>(v)>, for example, is that the value of v, at o between >z should
assume the value (v).

(I) 0>(At+a+2|B|t2)>(v)>(At+a)>(ili))>(At+a—2|B|t2)
> (i) >(At+2|B[t) > (i) >At> (viil) > (At -2 | B |{1) >0,
(II) 0>(At+a+2|B|t)>(v)>(At+a)>({i)>(At+2|B|t2)
>0>(At+a—2|B|[t)>(ii) >At>(viii) >(A{—2|B[t2) >0,
(III) 0>(At+a+2|B[t2)>(V)>(At+2|B|tA)>0>(At+a) _
' >0>(At+a—2|B|th)>(ii)) >At>(viii) > (At —2| B |{2) >0,
(IV) O0=>(At+a+2|B|tA)>(V)>(At+2|B|t1)>0=>(At+a)
>0=>At>0>(At+a—2|B|t2)>(viii]) > (At—2]|B|t4) >0,
V) O>(At+a+2]B|t1)>(v)>(At+a)>(iii)>(At+2iB[tl)
| >0>At>0>(At+a—2|B|tA)>(vili)>(A{—-21 B|t4>0. (31)
It will be seen that, in every condition, no wave exists for r>At+a
- +2|B|t4 and x<<At—2|B|t?, —the same result as shown previously.
For conditons II, III, IV, V, no wave exists for an intermediate phase,
and the wave train is split into two packets. For condition I, not only

does no split of the wave packet occur, but also the amplitude of the
waves at the middle part of the wave train is doubled.
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Although it may appear that the above feature is-of interest mere-
ly from the mathematical point of view, the same feature has, as a
matter of fact, an important bearing on the nature of the group veloci-
ty of the disturbance. —Comparing the respective conditions in (31),
we find that the centroid of the whole of the wave trains is transmit-
ted with velocity A. A represents the group velocity of the infinitely
long waves, not the group velocity peculiar to the wave length 27/A.

It is now possible to conclude that, notwithstanding that the perio-
dic disturbance has a group velocity that is proper to the wave length
27/2, the centroid of the train of the disturbances, that is, the centroid
of the wave packet, should rather be transmitted with a group velocity
that is peculiar to the periodic waves of infinite length, that is, L=
27/0=co. It is not a matter of importance whether or not the group
velocity under consideration is higher than that for any wave of finite
length.

It should be borne in mind that ¢ must be finite, otherwise the
integral expressions do not apply to the present problem.

3. A single pulse that obeys dispersion formula (a).

The problem of periodic waves of the type shown in Section 2,
which however obeys dispersion formula (a), has already been shown
in a previous paper,” the result of which was that the leading or trail-
ing part of the wave train is transmitted with group velocity A. We
shall now show the case of a single pulse obeying also the law in (a).

In the case of a symmetrical pulse, we put

c:A-I—%, F(o)=e & (32)
in the integral
o=\ erar mF(a)eﬂ@-ﬂda (33)
2] ’

which then reduces to

—(ﬂ’_"ﬁ)2+im
a .

v=e (34)
In the case of an anti-symmetrical pulse, we shall write
F(a)=ae @ . (35)

6) loc. cit., 3).
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Then, from (33) we get

At-2

V= (x—At)e_( «

)24 z‘l.’t. (36)

Taking the respeétive real parts, we have

Al—x

At—2

v=e 5 )zcoth, v=(x—At)e"(T)zcoth 4 (387)

in place of (34), (36), respectively.

From these expressions, it will be seen that the respective centroids
of the symmetrical waves and anti-symmetrical waves are transmitted
with group velocity 4, without any feature showing diffusion of wave
forms with time lapse. The factor cosB¢ in each of the equations (37),
however, represents the condition that the amplitude of the whole wave
changes sinusoidally with period 27/B, showing that the sense of am-
plitude of the pulse changes periodically during its transmission, and
also that the amplitude at any part of the pulse wave disappears
periodically. This implies the condition that the whole energy of the
wave changes from potential to kinentic and then from kinetic to
potential.  Interpreted physically, since B in (382) gives the phase ve-

“locity B#/2z for very long waves of length 4, 27/B represents the period

of the same long waves, with the result that the amplitude of the
pulse appears and disappears with a period corresponding to that of
the long waves just mentioned.

At all events, since the centroid of the wave energy is defined by
the phase relation x—A¢ without regard to the kind of energy, whether
potential or kinetic, it holds that in this case, the centroid of the wave ,
energy under consideration is transmitted with the group velocity of
the wave system. Since, furthermore, the position of the maximum
amplitude (or maximum displacement velocity) relative to the centroid
of the wave packet remains constant, it is indiscernible in the present
case whether it is the centroid of the wave or the phase of the max-
imum amplitude that is transmitted with group velocity.

4. A single pulse that obeys dispersion formula (b).

The case of a single pulse obeying the law of dispersion in (b) is
not ’sQ simple as that shown in the preceding section. -
In the case of a symmetrical pulse, we write

c=A+ Bf, | F’((t):(z"s23 (38), (39)

in the infegral
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'v=21:S e’fc‘dfg F(o)e -2 (g, (40)
Substituting (88), (39) in (40), we get

. @ ” —"2—’2”/{(,14-1;,0:—1}

0—21/?&6 4 df. (41)

To integrate (41), we shall consider an integfal of the type
je—%wiz((fl-i—liz)l—z}dz ) ‘ : (42)

taken round the contour shown in the sketch. When the radius of each
circular arc is very large, the in-
tegrals along such arcs vanish, parti-
.cularly, when the arcs are restrict-
ed within the ranges #=0~45° and
180°~225°, the reason of which is
that if these arcs be of the ranges
just given, the factor exp.{—a2Z%/4
+iBZ%) of the integrand in (42)
will always tend to zero of the order e-*** for R—co. Although the
factor exp.i(At—zx)Z of the same integrand may diverge to infinity of
the order e’%, the resultant of both factors still causes the integrand
to vanish. There is no singular point within the contour.

The inclined part in the contour is so chosen that the same line
passes through the saddle point of the exponent in the integrand just
given, and traverses along the line of steepest descent of the same ex-
ponent. To determine the saddle point, we write, as in Section 2,

@(Z)—_—_a_zfz+iz{(A+BZ)t—x}, ENCS))
the stationary point of which is given by
(Z) =0, (44)
its coordinate being therefore
7,=t(At=2)  (45)

@ _ 9Bt
2

which is the saddle point already given. The same coordinates may also
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be obtained alternatively. Wrife

S(Z)=R+1il (46)
where

R= _Eg(xz—yz) —2XYBt Y (At—g),

. (47)
1=Bt(X2—Y2)—%XY+X(At—x).
Performing the operations
9R °R
=0, —=0, 48
X oY (48)
we get the coordinates of Z,=X+1Y as follows
_8Bt(z—At) y_ —2a*(z—At) ' (49)
a*+16B-t? a*+16B3t?
The value of R at the saddle point is
_ —at(x—Atl)? (50)

T at+16B%2
We shall now equate the general expression of R as shown in (47)
to the particular value of R above given, when we get a quadratic
equation in X and Y, the expression of which can, however, be decompos-
ed into the pair of equations

IGBt Y/1+16B2t2[ 4Bt +/ IGBZt )

|

uX /1+1632t2{ 4Bt /1+16Bt j+ Y/1+16B252

__2(_—_){ 4Bt+}/1+163t } =0, (52)

both being equations for straight lines, These straight lines represent
the loci of points at which the value of R is equal to that at the saddle
point. The inclinations of the lines (51), (52) to the X-axis are given
by :
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1 . . 16B%M* 4Bt
tand, = L 16BE _dBr tan02=-{/1+ & }, (53)
'/ + at | @ " :

respectively. Since tanf,tanf,=—1, both lines intersect at right angles.
The valleys of R exist at places between 6, and 6,. Thus, the inclina-
tion « of the line of steepest descent is represented by

o E 1 1= - e
¢=0,—4=tan { 1652 4Bt} 4"
: 1+, PTI a2

The inclination of o is between 0° and 45°. Because, for Bt/a2=0,
0, is 45° and for Bt/a?=co, 0, is 90°; it follows from (53) that 6, shall
always be between 45° and 90°, so that ¢ is between 0° and 45°.

The contour of the integration is now drawn as shown in Fig. 3.
The inclined part passes through the line of steepest descent. The
parts of the integration for the large circles contribute nothing, be-
cause @ is between 0° and 45°. _

Taking the important part near the saddle point, it is possible to
work out the definite integral belonging to the present problem.

We finally get the solutioh for the displacement, the result being

=_“_ (At— =) (a®+4iBt) a] s
° (a4+16B2t2):}exp'[ A@iriemE) (55)

From this result it will be seen that the part of the largest am- .
plitude is transmitted with the group velocity of infinitely long perio-
dic waves. The general wave form, nevertheless, appears and disap-
pears with gradually varying periods. After a very long time, the
periodic change of the wave form disappears. At the same time, the
general amplitudes of the waves decay with time lapse.

It is now possible to conclude that, in the present case, the centroid
of the wave energy, that is the centroid of the energy of the wave
assembly, is transmitted with a group velocity of infinitely long waves,
regardless of whether or not the same group velocity is higher than
the group velocity of any wave of finite length

-5. A single pulse that obeys dispersion formula (b). (continued)

This problem is very similar to that in the preceding section, with
the exception that, here, the initial wave form is anti-symmetrical and
of the type
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d(0) =ae-% , (56)
the dispersion formula being again of the form
c=A+ Bf. (57)

Proceeding inl the same way as in the preceding section, we finally get

_ —a*(At—x) exp.[_(Atéx)z(a2+ 4iBt)

. _14Bt]
7—(a4+1632t2)% 1(a* § 16B°) +ia +tan — (58)

In this case, too, the general feature of the problem is the same as
that in the preceding section.

6. The case of a trapezoid-formed pulse that obeys dispersion formula (b).
In this case we put
(o) =—Ko, [—b<u<—0a] ) (59)
=0, [—b>w, —a<i] |

the dispersion formula being c¢=A+Bf; the displacement velocity of
the waves ’

%=2—t—rg fce‘»’“’dfg F(a)e~do (60)
changes to )
v —if - '
—— e— ifI( A+ Bf)—ifr, ifo _ _
% = ox S_z(A+Bf)e af g_ffae do, [—b<w<—d] 1)
=0. | [—b>w, —a<a]
Since
e o —@e™  De i g7t gt
S-:w =" Tg tpEp p (62)
we have
ov_K ) —ifa —i —iv( ; ; e e
3t—2ﬁg_ie f1(Aa—1iB) + e ¥( Ab+zB)+zA<— 7 + F )

+B(afe“if“—bfe""f")}df. (63)

We shall now use the method of the line of steepest descent. The
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two kinds of exponents ®(Z)’s in the functions of the 1ntegrand in (63)
have saddle points of the forms

Z":_(At;gt_va)’ Zo=- (AtZth b) (64), (64')

respectively, which arise from the relations

®(Z)=R+1l, - (65)
oR OR
==0, Z=0. (66)

The boundaries between the valleys and hills are

: At—x —ay
X=_(Al=—2—a ) Y =0 67
2Bt SO

for the first case and
At b)
X = — 67’
( 2Bt . 7

for the second case. The value of B on these boundaries, including
the saddle points, is

R=0. (68)

The line of steepest descent is therefore inclined at 45° to the X-axis.
The contour for integration is shown iy
in Fig. 4. From the nature of the
integrand in (63), there is a pole at
the origin of coordinates. Parts of
large circles contribute nothing to the
integration, owing to the condition
that these circular arcs are between
0° and 45° and also between 180°
and 225°. .
In agreement with the position Fig. 4.
of the saddle points relative to that of the poles, contribution from the
same poles to the integration may or may not exist.
The results of calculation are as follows

0V _ av1+ 00, - , (69)

where
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v, AK -—wn-rar| a . iv/ B a(a+x—At) 2iv/ Bt
e S ] ATz —_ —_
ot 2¢/z VBt AVt 24VB8 a+x—At

L AR ez b VB b(+e—At)  20/BE | 70
21/? '1/—373— A1/T ZA]/W b+x—At]’
" and
0V _9:4K, [At—a>z>At—D)]
at | (71)
=0. ' [At—a<z, At—b>7]

Although the initial condition is given for the wave form, for
mathematical simplicity, the calculation is performed for displacement
velocity of the waves.

In this case, although the main part of the waves is transmitted
with a group velocity of the longest possible waves, the additional part
extends outside the main part, and its phase condition is undulatory.
This additional part decays with time lapse. Tt is now possible to con-
clude that in this case, too, the apparent centroid of the wave energy,
that is, the centroid of the energy of wave packet, is transmitted with
a group velocity of the longest sinusoidal waves.

6. Summary and concluding remarks.

From a few mathematical examples, we have ascertained that,
even should the wave form be irregular, the energy of the waves is
transmitted with a special group velocity. If the sinusoidal components
composing the irregular waves have different group velocities, it is
likely that the centroid of the wave energy, that is, the centroid of the
energy of the wave packet, will be transmitted with the group velocity
that corresponds to the waves of infinite length involved in the irregular '
waves.

If the group velocity differs with difference in length of the sinusoid-
al waves, even should the disturbance be of sine form of finite extent,
the centroid of the same disturbance is still transmitted with group
velocity of sinusoidal waves of infinite length.

It is not a matter of importance whether or not the group veloci-
ty of the longest wave is higher than that of any shorter wave.

It is also likely that in the case of irregular wave form, the veloci-
ty of change in the form of phase waves concerns the velocity of phase
waves of infinite length. '

. Since the cases that we have here discussed are likely to correspond
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to that of relatively long waves and that of relatively short waves, both
for Rayleigh- or Love-waves, the results in the present paper could
be adapted to a rather wide range of dispersion conditions of waves of
irregular form.

The condition that the wave packet of irregular form shall be
transmitted with group velocity of infinitely long sinusoidal waves,
holds in the problems discussed by Coulomb.” Notwithstanding that,
in Coulomb’s case, the dispersion formula is of the type ¢=A—Bf?,
he arrived at the same conclusion as that in this paper.

It is then likely that, if the dispersion formula is of the form,

c=A+Bf7,

the centroid of a packet of irregular waves is transmitted with velocity
A, that is, the group velocity of the longest possible waves composing
the wave packet. It is not important whether or not the group veloci-
ty of the longest waves last given is higher than the group velocities
of other sinusoidal waves also composing the irregular disturbance.

In the analysis of such dispersive seismic waves as the L-waves

and M-waves, it is usually assumed that nearly periodic oscillations are
of sine curve, so that the waves are transmitted with a group ‘veloci-
ty peculiar to the period of those oscillations. Xven in the case of
only one or two oscillations existing, the condition for transmission is
also assumed to be the same. In the case of a period varying in suc-
cessive oscillations, the above criterion applies to every one of the suc-
cessive oscillations. One of us, also, once had such an opinion.® From
the present investigation, on the other hand, if the wave form deviat-
ed slightly from a sine curve, the wave packet would be transmitted
with the group velocity of the longest waves composing the disturbance.
It follows then that a good deal of error will invariably result in the
usual analysis of dispersive waves.
- Another way of estimating the velocity of long waves is to examine
the approximate beginning of the osciilation that corresponds to the
same waves. As has been remarked, although the veldcity of transmis-
sion of the leading part is not always the group velocity of the waves,
in taking it as such, however, the error arising from reading the begin-
ning of the motion in estimating group velocity, will be far less than .
that resulting from assuming the apparent periodic oscillation to be a
sine curve.

7) M. J. CouLoms, loc. cit., 2). ‘
8) K. SEzAWA, Bull. Earthq. Res. Inst., 8 (1935), 245.
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Macelwane” obtained a table of the travel times of seismic waves,
including the L- and M-phases. According to his table, the values for
the L- and M-phases are rather regular, irrespective of wave lengths.
He probably took the wave part of the largest amplitude or, at least,
the beginning of the motion that coresponds to the long waves. There
is a reason for his values for L- and M-phases being arranged with
fair regularity.
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