48. The Effect of Viscosity on the Gravitational Stability
of the Earth at its Liquid Cooling Stage.

By Katsutada SEZAWA and Kiyoshi KANAI,

Earthquake Research Institute.

(Read Sept. 20, 1938.—Received Sept. 20, 1938.)

1. Introduction.

In the previous paper” we discussed the gravitational stability of
the earth at its liquid cooling stage without taking into account the
liquid viscosity. Since, as a matter of fact, stability is a statical prob-
lem, not dynamical, we thought that the viscosity of the liquid would
have no effect on stability. On the other hand, Lord Rayleigh® and
Jeffreys® found that the stability of a layer of fluid that is heated be-
low it is affected by its viscosity, which has raised the question wheth-
er or not viscosity also affects our problem. Since, however, the prob-
lems treated by Lord Rayleigh and Jeffreys are restricted to that case
in which a liquid is bounded between two parallel rigid planes, and
therefore not immediately available for our use, we have treated our
case independently of that due to the authors just mentioned, although
it is quite similar to that used in our previous paper.® The condition
in our present problem which differs from that in our previous one is
that, for simplicity, we deal with a two-dimensional problem of the
earth’s crust without regard to the surface curvature of the earth.

We shall first discuss the problem of the stability of a plane bounda-
ry between two liquids extending upward and downward to infinity and
next treat the problem of the case in which there is a superficial layer
of liquid on another liquid extending downwards to infinity.

The criterion of stability is such that, after discussing the vibrato-
ry motion of a boundary between two different liquids, the neutral state
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of the vibrational stability is specially examined. Since the physical
conéeption of instability is that the vibratory deformation at every
boundary between different liquids never assumes its original state, the
criterion of the problem just mentioned is quite reasonable.

Our investigations show that viscosity affects gravitational stability,
though not very much. Instability without viscosity would be changed
to stability were the liquid viscous. Furthermore, for the stable con-
dition in question to be realized, it is not necessary that the whole of
the liquid shall be viscous. It is possible for the liquid to be in a sta-
ble condition provided a certain part of the same liquid near the bounda-
ry under consideration is viscous.

2. Mathematical solutions for the case in which the two liquids extend
to infinity.

Let o, y be drawn in coincidence with and upward normal to the
boundary between two liquids, and let «/, v', u, v be the »- and y-com-
ponents of the velocities of the upper and lower

layers respectively. The equations of motion and y
continuity for the upper and the lower layer are 7/ '//);f/
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where p', p; v'=/jo/, v=p/p are densities and the kinematic coefficients
of the viscosities in the respective media. These equations are satis-
fied by
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under the condition that
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rg=0, =y, (5)
LY
rg=0, =, (6)

Solving (5), (6), we have

¢/ =Be_—/cy+i/m+m, ¢'=De""’y+”~‘x+"t, ( 7 )
¢:Ae’:y+ikx+m’ ¢ =Cenzy+'ikz+7xt’ ( 8 )

where m2=Fk?+n/v, m2=k2+n/v.
The normal displacements at the surface and the corresponding
normal pressures are such that

77/=£(B_*_ iD)ei(~x+7zt,
n
C (9)
ﬂ’:%-—gv’: {n_z:glc B-—ig_l.c_ D] e““‘"“’ ,
PO n n )
__f‘;‘ (A__z'C)eikx»Hzt, )
n.
2 (10)
R ) a¢ g’l I ne gkA ZQZC‘ C] eikz+7)t.
Iz U n n )
The velocity components in both media are
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The boundary conditions at y=0 are

ov' | ow u
,/< +—-) ( +_) 0. (13
oy ! dx 9y = ox  dy (13)

!’

7=y, p+2//a—J— p+2/1

These relations imply the conditions that although all stresses and nor-
mal velocities are continuous respectively, there is a relative tangential
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motion at the boundary, that is to say, both media are slidable at the
same boundary. If one of the media is inviscid, this condition is
obviously satisfied.

Substituting (9), (10), (11), (12) in the boundary conditions (13),
we get an equation in n as follows
12 (14 @) + 4nk? (v + wv') + {4k} (2 + av'2) + gk (1—a) }
—4I3 (Pm+av?m’) =0, (14)
where a=p//p. Since m2=k?+n/v’, m:=k%+4n/v, the accurate treat-

ment of this equation is, generally, fairly difficult.
In the special case, // — 0, £ — 0, we have

w2 (0 +p') + gl (p—p') =0, (15)

which is the same as that shown by Lamb.”
In the special case, a =0, we have

(n+2vk2)2 + gl =4v2km, (16)

which is of the same form as that shown by Lamb® for the case of
a semi-infinite fluid.

3. Approximate solulion of the above case.

Although it is possible to solve (14) in elimination of m, m/ by using
the relations m2=Ik2+n/v, m'2=k%+n/v, since the equation thus obtain-
ed is of the eighth degree in n, we solve (14) by omitting m, m/.

Even in such a solution the correction due to m, m’ is of the se-
cond order in vk n.

Now, the approximate solution of (14) is

n=—E&+10 a7
where
2 1 v'
£ 2k gfa““), a=1_*1_a1‘4lc4a(u—u’)2+glc(1—-a2). (18)
If
{41 (+2 + a2'2) +gk(l—a)} >0, (19)

the oscillation of the boundary is stable, whereas if

{44 (2 + 22'2) + gh(1—a)} <0, (19)

5) H. LAMB, Hydrodynamics, § 267.
6) H. LawmB, ibid., §349.
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the same oscillation is unstable.
If we put, specially, v=1/, the criterion of stability becomes

o=

of gk + 4k y? 8v2[3
4 ~1+ . 20
o gk—dki'? g (20)
On the other hand, Lord Rayléigh” has given the criterion of stability
for a fluid contained between two parallel plates, the result being that in
the disturbed condition of density of fluid due to its temperature change,
the condition of stability is defined by

1y 2R
p 40C

where »=diffusibility for temperature=5»/2 for air from Maxwell’s
theory and ¢ is the distance between parallel plates. Since, further-
more, the case of maximum instability in a two-dimensional problem
is given by the condition, 2=/k=27, where 2x/k is the wave length cor-
responding to the disturbed state of the fluid taken along the lengths
of the plates, the relation (21) reduces to

-, (21)

a <1 +l§—5£u2/63

(1)

for air,which is nearly four times as great as that which we obtalned
for the fluid extending in both vertical directions to infinity.

It will be seen that, if either one or both of the liquids be visc-
ous, the critical condition of stability is raised somewhat beyond that
for the case of non-viscous fluids. The greater the kinematic viscosities
or the smaller the wave length of the disturbance, the greater the in-
crease in the critical condition of the stability.

Finally, the components of the dlstulbed velocities can be derived
from

S/):Ae-izﬂywtuioo, ¢=Ce-§t+rny+t(kztnl)’
' ' (22)
¢/=Be—‘il—k'y+ic’wicl), S/j/=De—“:t—m’y+x‘{Lu:;l:r.u)’

where

C_—2k B _—(m+2/k) D __ -2k (23)
AT ny20k’ AT nt2vkr T AT nt2k?’

so that the velocity components correspbnding to the viscous state of

7) Lorp RAYLEIGH, loc. cit. 2).
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the fluids are very small compared with those corresponding to the in-
viscid state of the same fluids.

k4

4. Mathematical solutions for the case in which an inviscid liquid
layer is on a viscous liquid extending to infinity.

fn this case the equations and the solutions for the fluid in the
subjacent liquid are the same as those shown in Section 2, whereas the
solutions for the superficial layer are

¢ = {A’e‘y +Blc—ky}eikx+:zt’ &' =0, (24)
o/ o o o ,
u/=—_5?; ’ ”’:_35’ %:a—if_g"/,’ Py =—7" (25)

The boundary conditions are
y=H; Py =0, ; (26)
y=0; Dy =Dy D=0, v=0" (27)

Substituting (9), (10), (12), (25) in (26), (27), we get the frequenéy
equation

i (1+ e thkH) +n*(49%%) +n*{gk(1+ thEH) + 4271
+n{4vi?glkth kH) + gk{gk(1—a)+ 422k} th kH
=4v2Pm {n% gkthkH}, (28)

where H is the thickness of the surface layer, a=p'/p, and v the kine-

matic coefficient of viscosity of the subjacent Y
medium. Since, in the present case, too, the ef-

]
1

fect of m is negligible, we shall solve equation // H/ /P
!

1(28), omitting the term on the right-hand side < x
of the same equation. Even 1T1 such a 51m1.>11- \ l?\\p':\\
fied condition of the problem, since the solution ‘ 9 '
of a linear equation of fourth degree is some- Fig. 2.
what difficult, we shall use the following approximation. Let

ny=—E& 410, MNy=—F5,%i0,, -~ (29)y
then, there are such relations as i

202,45 = (30)

1+ athiH’
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&+ 01425+ 84 o= IE(Q L (31)
9 (E o) 125 + o) = R EgEh (32)
(E2+0%) (824 03) = IRk 1—:)(;1?;}?;4”}1@[ . (33)

From these conditions we shall first solve
b 2L+ thEH) + 42068 | ghoigli(1—a) +4s2]) thH 0, @y

1+athkH 1+athkH

under the assumption that vk? is small, that is to say, §,=0, £,=0.
Solving (34), we get

2 g2 Ok (L+ thkH) + 4ot
o 2(1+athkH)
+ / {”gvlr_:(1+th KH) +40%k4\*_ {gh(1 — @) +4v°k*) ghthkH (35)
2(1+ath kH) 1+athkH

approximately. Substituting these values of o;, 7, in (32), and solving
(80) and (32), we get

f= 11 LJM_z(1+atth)thch} ,
1+athkH|  /mMz=N |
_' (36)
N ok 1 . }
g= N1+ Iy 21 +athkH)thEH) |,
1+ athkH| YT (1+athkH)
where '
M=1+thkH, N=4(l1—a)(l+athkH)thkH. (37)

Again, substituting the values of ¢, & in (36) in those of (31), (33),
we get more accurate values of o, o, as follows

where

”1=y/é{P1—1/Pf"4Q1} ’ |

/1
=y {

2

P,+ 1/P§;TQ§} ,

(38)
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From the expressions of o, 4, in (388), it is obvious that the vi-
bration corresponding to n,= —&,+1%7, does not participate in the prob-
lem of stability. Thus, n,=—¢& +%7, only concerns the stability prob-
lem, its condition being

P,—1/'Pi—4Q,+2% >0 for stable condition, ]

40
P,—v/'Pi—4Q,+25 < 0 for unstable condition. I @0
The deformations or velocities of the fluids are determined from
¢ =Ae—-=,l+ky+f(k.vtot), 9!} — Ce—iz+7ny+i(1.-x}.oz),
(41)
) ¢1___.Ale—=,!+x-y~+i(L~pj:ot) +Ble—‘:l—ky+ i(k.ri:m)’
where
C _ —2ik? A
A n+2okz’
A' nné—glk)e "
A7 2(n+20%) (n¥chkH + glshkH) (42)
B’ _ —n(n2+gk)e'”
A 2(n+2vk?) (n2chkH + gkshkH)
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It will be seen that in this case too, the component of velocity corre-
sponding to the viscous state of the fluid is very small compared with
that due to the inviscid state of the same fluid.

5. Interpretation of the two kinds of vibrations in the above case.

It has already been ascertained that the vibration corresponding to
expression #,=—¢ 440, only concerns the problem of stability. We
shall now examine the kinds of disturbances that the vibrations n;=
—&, &0y, Ny=—E&,+ 10, represent.

Let us take the case ktH — 0, then

§,=0, ai=gk+4v2%kt, 0,
- (43)
E,=2vk2%, oi=gk, — 42,

g0 that ny,=—&,+10,=—2vk?+ 1/ gl; represents the gravitational waves
on a semi-infinite viscous fluid as already shown by Lamb.® In other
words, the vibration n,=—&,+1s, corresponds to the vibration of the
free surface of the case of a very thin layer, the vibration being sta-
ble even in the present special case.

Let us next take the case tH — oo, then

2v[?
1+a’

&= §,=0, a=gk, (44)
the expression of ¢, being rather complex. Since vibration n,= —&,+140,
in the present case represents the gravitational waves that are trans-
mitted over the surface of an inviscid fluid, the vibration in question
corresponds to the one on the free surface and has no place in the
problem of stability. '

It is now established that vibration n,= —&,4is, concerns the con-
dition at the boundary between the two fluids and contributes much to
gravitational stability, whereas vibration n,=—§&,+1s, represents the
waves on the free surface and is outside the problem of stability.

6. The calculation for the case in which there is an inviscid surface
layer.

Using the equations shown in Section 4, we have calculated the
ratio of p'/p, namely @, corresponding to the critical condition of sta-
bility for different ratios of L/H, (L=2=/k), and gk(and »k?). The
values of gk taken here are gkﬁ =006 and 0:02, both of which corre-

8) H. Lawms, loc. cit., 6).
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spond to the waves of lengths, 1km and 1/3 km respectively. The val-
ues of v, on the other
hand, roughly corresponds
to the viscosity of rocks
or of soils. It should be
borne in mind that vk? 0¥
should change in agree- 4
ment with the change in
gk.

1016

1-010)

The calculation for s
the two conditions (I) U

gk=006, vk?=001 and " psymptate

(I1) gh=002, vie= ot smoer

000111 are shown in g L e — L
Tables I, IT and Fig. 3. / ' 4
It will be seen that the +0og 0 W 3 0 20 50

value of p’/p correspond-  Fig.3. Critical conditions of stability for two cases.
ing to the critical sta- '

bility decreases as the ratio of L’'H increases, that is to say, as the
thickness of the surface layer decreases, tending to approach the asym-
ptotic value:

a=1+423g (45)

for L/H — oc. This asymptotic value incidentally coincides with the
value of ¢ for »'=0 that has been obtained in using equation (19) in
Section 3. The value of ¢ for L/H=0 does not agree with that ob-
tained in the manner in Section 2. This results from the assumption in
neglecting higher orders of vk’ in both the cases.

In any case, if the liquid viscosity is not zero, the value of p’/p corre-
sponding to the critical stability is greater than 1.

Table I. Case I. gk=006, v/i2=0-01.

kH 0 0-1 0-2 05 1-0 2-1 ks o

L/H oo 62:832 | 31:416 | 12:566 6283 2:994 2:000 0

o’lo 1-0067 | 1:0087 & 1-0100 | 1-0132 1-0152 1-0164 | 1-0165 | 1-0165
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Table II. Case II. g¢gk=0-02, vk?=0-00111.
——7kH 0 01 0-2 1 2 o
L/H o 62832 | 31416 6283 | 3142 0
\‘ 74(_1-’_/() 1:00025 1-00026 7*1;)00727 1-00057 1-00059 1:00065

7. Concluding remarks.

From the mathematical calculation it is shown that in stratified
liquids, even should the upper liquid be denser than the lower liquid,
the dynamical condition may be stablilized to a certain extent by means
of the viscosity of one or both liquids. It was also found that although
the disturbance at the boundary between the liquids contributes only to
the problem of stability under consideration, disturbance at the free
surface, on the other hand, does mot participate in the same problem.

In the liquid stage of the earth, as scon as the part near the free
surface, as the result of cooling, becomes slightly denser than the sub-
jacent medium, the same part becomes gravitationally unstable and sinks.
But, since at such a stage, the liquids were perhaps fairly viscous,
stability is likely to have been maintained to a certain extent even if
the density relation in the liquid layers was in unstable condition.

The general feature of equilibrium seen in the present state of the
earth’s crust, is probably a continuation of the stage just mentioned.
Some local changes in the gravitational forces may at times result
from the unstable displacements of layers in the earth’s crust. If that
is the case, it ought not to be hopeless to attempt to examine the ori-
gin of earthquakes by means of careful observations of crustal deforma-
tion, or of changes in the gravitational forces, or even of changes in
terrestrial magnetism.
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