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1. Introduction.

1. Stoneley,” in a recent paper, showed that, although it is pos-
sible for Rayleigh-type waves to be transmitted along the surface of
separation of two solids (for some conditions of two solids), it is im-
possible for Love-type waves to be so transmitted. It appears that
Stoneley’s result just mentioned has an important bearing on the fact
that the horizontal amplitudes of distortional waves are much larger
than vertical amplitudes of the same distortional waves as well as am-
plitudes of dilatational waves. In the case of dilatational waves, or dis-
tortional waves with amplitudes orientated in a vertical plane, the ener-
gy of the waves is partly converted into that of boundary waves in
passing through every discontinuous surface within the earth’s crust,
whereas in the case of distortional waves with amplitudes orientated
horizontally, no boundary wave is formed at the said discontinuous sur-
face so that the conditions of the problem for the two cases are quite
different.

In the present paper we shall show, mathematically, how bodily
waves generated from a point source in the solid excite boundary waves
at any discontinuous surface in the same solid, the problem being two-
dimensional. The method of calculation is somewhat similar to that
which Sommerfeld® used in his paper on the transmission of electro-
magnetic waves, by means of which it was possible for us to get the -
solutions even in the case of some difficult conditions of the problem.
We shall first deal with the behaviour of waves in the case of dilata-
tional primary waves. The case of distortional primary waves, which

1) R. STONELEY, “Elastic Waves at the Surface of Separation of Two Solids”,
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2) A. SoMMERFELD, “Uber die Ausbreitung der Wellen in der drahtlosen Tele-
graphie”, Ann. Phys., [4], 28 (1909), 665~738.
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will next be discussed, will be divided into two subcases, namely, the
one in which the amplitudes of the primary waves are orientated in a
vertical plane and the other in which the amplitudes in question are
orientated horizontally.

II. The Case of Dilatational Primary Waves.

2. Let the axes of & and y be drawn in coincidence with and
perpendicular to the surface of discontinuity, the densities and elastic
constants in the media on the positive and negative sides of y being p,
A opy oy Xy 40 respectively. In the case of plane primary waves

¢0 —_ S‘)(e?‘)l+i.fz—i1;z, ( 1 )

where tan-1(f/ir) is the angle of incidence, the reflected and refracted
dilatational and distortional waves assume the forms

¢=Ae—ry+ilx-i):z, ¢=Be—5y+i_/;—i,;;, ]

- . (2)
¢’ p— Cer’_r/+ tfx—wt’ g,/ — Des’g/+1jx,-ipt’ I
where
r2=f2 P2, sZ=f2 2, 12=f2_}'2, §2=f2_J'2,
h2 = Ppi. kZ= B.@% h/2=-————‘l),p2 y ]5'2=——~‘”l pz . ( 3 )
A2 ’ )7 ’ A4 2u 24
The displacements in both media are then expressed by
0 o¢ [? oy
u= +e)+L, o= +g)—27
(ot ) + 22 = |
4 n' / 1! ( 4 )
u,:i¢_+ﬂ_, v,=%_39' . J
o oy dy on

Since the two media are continuous, the conditions at the boundary
=0, are such that

u=uw, v=1,

I3 / 4

i ai-}-_aﬂ .;-2/13_0:).' a_u+9?~)+2//av
ox oy oy ox oy

ﬂ(a-v +Eﬁ>:ﬂ/ (_a?)’+ Bu/)
ox .oy ox  oy/’

Substituting (1), (2) in (5), we get

oy’ (5)
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J

where
P=2 (= =12V~ 7f2)l(2f2 IRy Afr P )

N—

— ! KBE2 (3 p2y R 12y R 2 = h'2)
+20 2 (20/ 2= B2y PP IR P =20%) (2 =K =2/ A 12y )

+/12(f2 — fZ_h/Z]/fZ_ 7’2){(2f2 _k2)2 4f2 /f2 h2]/f2 kZ} ( 7 )

Although we have discussed the problem of reflection and refrac-
tion of waves at a plane boundary, yet owing to the type of the ex-
pressions in (1), (2), the disturbances may be assumed to be a kind
of boundary waves near y=0. The condition that $=0, exactly cor-
responds to the equation for determining the velocity of the waves that
are possibly transmitted along the boundary under consideration. The
velocity equation obtained by Stoneley® is

ct I(A‘)l_.l‘)Z)z_ (mAz+pA,) (mBy + 1’231)]
l J
+2Kc¢? {,0

3) loc. cit. 1).

1A:B; —02A By —p ) +K2(A,B,—1) (A,By—1) =0. (8)
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If the symbols used by Stoneley are replaced by the corresponding ones
in the present case, such that

=p, A= =,

2T~ 2 2 po==p', A=k, po=y/
P ,2’ {32 , 3 ‘ 2 ’ 2 ’ /2 / ’
72 p*h "’2 PPk’ (9)

e\ 2\1 1 1
Al=(1—?>-, A2=<l—%>~, B, = 1__)~, B,= (1__)—

K=2 (l‘)lﬂi - Pzﬂzi) ’

the form of the expression in (8) reduces to that in (7).
Let us next consider the condition in which the primary dilata-
tional waves are radiated from a point
source at =0, y=%5. Then / SIS
/// -/ [y

o = Ae~"H,P(hR) . O/ x

p)L

Y —ipt b rly-8)+ife
_ e \ I g < \i\'
T ) (10) \

I p—int e =rCy—¥)+ifx -
= Ae S e ——df. [y > €] y

////

T Fig. 1.
From (1), (2) it follows that the reflected and refracted waves assume

the forms

¢=

-

(e o] o0
e~ Aeg-ru+oifs e—int Be—su-1s+itz
daf, ¢= d
7‘. s — 11

(11)

0 o
e~ iadt Cer’y— ritife e~ it Dex’y— rE+ifr
¢= df, ¢'= af
T 1 w r
—cc J -0

The displacements at any point are obtained by using (10), (11), (4).

3. To evaluate the integral expressions of displacements, we con-
sider such integrals in which the f-value in (10), (11) is replaced by
a complex quantity Z=X+¢Y. The paths of integration are: (i) the
real axis in the Z plane from — o to o, (ii) a circular arc of infinite
radius in the first and second quadrants in the same plane, (iii) an arc
around the pole Z=x, which satisfies the condition ®(x)=0, (iv) four
branch lines connecting the respective branch points with Z=%c. The
sum of the four kinds of contour integrals vanishes, from which it
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is possible to obtain the integrals performed along the real axis from
—c to «. The integral performed along the semi-circular arc van-
ishes owing to the factor e~#**"0  whereas the integral of

1(Z)
gd?(Z) dz | (12)

around the pole Z ==, is merely written

_ 7 (%) 9y -
—2“1{{)’ (;];5 . (10))
There remains the integral along every branch line.

The branch lines assumed here are similar to those used by Som-
merfeld. Let Z=h, k, &/, &' be four branch points. Four branch lines
are drawn in such a way that the values of /7212, v/ Z2 k2, 1/Z2 -1’2,
v/ 72’2 along the respective branch lines are purely imaginary for
any Z on the same branch lines. Z =17 satisfies this condition, at least at
infinity. Every branch line near its branch point makes angle (=7 —¢)
with the X-axis, where ¢ is the angle of inclination of the line pas-
sing through the branch point and the origin X=0, Y=0. To prove
this, we shall take, for example, the line through Z=h. Then Z—h

=¢,=1¢, €%, h=|h|e®, so that 1/22—:7[2:-1/2}h[c,,[em;m. In order

that the value of 1/Z2_h2 shall be purely imaginary, ¢ +0 should be
7, the problem being thus proved. Although the condition of /Z2_p2
being purely imaginary for
intermediate points .is not
verified, the existence of such
special points, arranged in a
certain line, is quite possible.
It should also be borne in
mind that the two values of
v/ Z% ]2 on both sides of the
branch line have opposite -
signs. The conditions here
given are valid for every
branch line in the Z-plane. NGRS
4. In the present paper 1.
there are six cases of repre- - X
pre
sentative integrations along

branch lines, the respective ones of which will be shown successively.

Fig. 2. -
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In every case the sense of the integration along the contour is opposite
to that along the X-axis.

n _ Y
Gy | Y& gy ‘
o —1/Z2—772
e
—VZa—nzy+iZx \
+S UperBmmysize (14)
1/Zz_,,/z

along the branch line through Z=7.

We change the variable, such that

~ —e\.
+V/ ZE =i, Z=1/7242, , I N
; Ao 7
ch=———/Z:dr _, (15) A X
ey Fig. 3.

with the condition that y0, a<0. -
The limits of integration ¢c, 7, in Z-plane become o« and 0 in the
r-plane. The integrals (14) then assume the forms

0 0 '
S Ueiv-v"3-72=  {rdr _I_S Use-twv-vE—mEz  rdr (14')
- -7 1/72—772 . 2T 1/72—‘//2
If we write t=—7' in the first integral, the integrals transform to
" Ure-vwvvrmmar (U =
e-y-vVizaZz dr ety Viz=1dx r
g b S + ER R — , (14"
) 1/7/2 _,72 . 1 72_,72

U; being equal to UY for r=0. If U{ is important merely in the
vicinity of the branch point =0, the integral (14”) is evidently

=U{H(yR), (16)
where R2=2a2+ 92, yx0, 0.

a3 i
ZZ—r2y+iZx -V 723y £
(i) Uerzmize |\ U v@dvvize , (17)
w V=7 V272
along the branch line through Z=r. In this case, we write
bV ot pin, Z=iV/Tor?, dZ=—"0T (18)
1/ 72 — 2

so that the limits of integration {c, £ in the Z-plane become o and 0
in the r-plane. The integrals (17) transform to
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0 =
U'e-t»32=%2+ wgy-Vii-#ie odr U'e-iV=E=#2 ¥ nzy -Vii-w2x wdr
! e i el B e S
1/72—m2+'//2 1/ 72— K2 1/,2__,;2_*_,72 1/ 2 —52
17)

In the present problem the values of U;, U, are important near =0,
in which case U;=U;, and both the integrals in (17’) then cancel each
other.

Y g0
(iii) g Ule"’m.v+z'hdZ+S Uy~ 7 mized . (19)

Jix Y4

Writing + /72 —2== +4r, this reduces to

/»—._.-,-.
1/ 2 2 1/ 22

o 0

O > ’
S Ulet v Aj}_’_df_,_;_g Ule-i7v-via—rs _ trdr . (19')

If we put t=—7' in the first integraly of (19') and put =0 in Uj,
U;, then (19') becomes

o vtyeverem, | dTdT
S U,e ITY-Vrily2y h‘;;‘;:iv_; . (19//)
1 TE—R

—cc

Since U, is a constant and

* e—i“!/‘l/‘am,v . aH‘CD(/;R)
-\ e frdr=x T AT 20
g_m 1/ 7252 2y 0
(19") reduces to Y
=UkHP(sR) 1’ (21)
where R2=2%4+ %220, y=0.
! VZi-m2y+iZz i ‘V’ﬁy-ﬁ- £
(iv) Uilmwntrs pag 4\ U220 pag, ©2)
- ...]/Zz__,?z 1/Z2—'62

In the same way as in the preceding case, the integral transforms to
zg Uie v 32— ([, (22")
By means of the condition

—l‘g or- VI I =Zﬂ§(ﬁ3 (23)
&

o
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the integral finally assumes the form

wURHP(R) &+ [0, 90] (24)
9
(V) S g}e‘ ” VW:_L_/‘ZCZZ"I'S U2e—/1—22_i_2y+izdeZ . (25)
- 1,/ 2_,2 ) V72 42
ix / 7 i

In this case the integrals transform to

n oo
O Y e vy e R .y S T arec Y e v
S U,G W2 L a3y~ .z—uzxrd‘ g Uﬁe DRanE bz, VAR
—_ -

e ———vdz, (2b)
- 2;/72—/c2+7/2 . 1/,2_,52_,_,;2

Thus, when U;=U; for -=0, both the integrals cancel each other.

(Vi) S Ulel"zz—'kzyi» iZx ZdZ + g Uze"’l"ﬁé"__'/::::y-a-ilc ZdZ . (26)

oo 4

Proceeding in the same way as before, the integrals reduce to

(] 00
—S Ujeix'v-r 7= r’dr’—g Uieisv-vems oz, (26")
—co

JO

When U,=U, for =0, the integrals transform to

_S Uie-tv-vai=vter |z, . (26")

Using the relation

i\ v B o 28Y [, 1 zrengepy
vovsiiarde = O HO(kR) = —12 %Y ) — = H®P ,
—S_.,,C ‘ ooy (<) l Rz | () kR (RR)J
(27)

the integral (26”) is approximately
—izU{lﬂ%H%D(mR). [2320, #3<0] (28)

5. Although in the condition of boundary waves any one among
$o, ¢ &, ¢ 1 by itself, would indicate no wave, in the condition of
bodily waves, on the other hand, the respective ones of such quantities
represent separate waves. Besides physically, the displacements corre-
sponding to ¢, and ¢ are inseparable, in consequence of which it would
be advisable to get such expression of ¢,+¢ as has the form
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Po+ = e"“""‘{?ie"” + Ae"y}
9’[ ifx—ipt " . " ] 29
=66 Pcosh1y+Qsmh7yI, (29)

where

%{E=ﬂ/2]/}‘2_-kz {4 21 27— W/ =2 — (2f2 — k/z)z}

R (2f2 =R =2/ I /2y fP = k)
S R A L T ey R

—p B2 R Ayl f2

A G R R (30)

—~p K2 =2y r— W

2 IR —2f) (R — I —2y/ P/ = )
@M = ) T =)

The expressions of ¢,+¢ in the case of a point source thus assume the
forms

¢0+¢_2e-w8 Py = Trcoshre + @sinte | df, [y>¢)
e (31)

—i)t 0 ry-7rE+ife -ry—ri+ifr
fot =2 S (R 207 gy, [y<¢)

6. From the results shown in Sections 38, 4, 5, it is now possible
to get the general expressions of waves at relatively large values of
x, 1y as follows:

$o=Ae-"HP(RR), [RE=22+ (y—£)?
Bo+ ¢=e—m[%:'ﬂAle- wv-strors 4 QHO(RR,) +A2H3‘>(hR2)] ,

y<¢, a0, 0, Ri=a?+(y—9)% Ri=a?+(y+6)% | g5

b0+ ¢=26"”‘[M6“°”*‘“ (P,a coshaé + Q, sinh a&) |

+ILP2%HE‘)(hR)], [y>¢ Ri=at+y7
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¢ =2e"”‘[—20&30&’,’?’81@‘“"‘“-" +irny 2o B B, %H}'P(kR)] ,
19
[Z/>O, x#O, ?/5%0, R2=x2+y2]

Yt A ! Y R,
¢ =2pil?e™ [?i'“_fzﬁﬂ_ Cemose/viine 4 /g™ "1 ;J) HED(h’R)] , 2(33)
. 2 .

o =2yl w'[ 2a,30/3 Dye- e 4 2 P D, 20 H“>(lc/R)]

. [y<0, 230, y350, R2=a%+y?]
where # is the root of ¢(£)=0 shown in (7) and '
Ri=a24192% a=+4/k2—] h2 B=q/rk2—I32,
=y F=182-F% : (34)

A0y

T =p/2(k2+ aj3) {4m2a’ﬂ’ —(2r2— lc'2)2} +p/ 1P (3a —a3')

+ 2/ k2 (262~ K2+ 2a3) (202 —[/2—20/3")
+p2(a/F — k?) {4/;%3—{- (252 —102)2} )
IJI(PI = 123 412 13 o2 ]/2 2] 2k 2 3
o W — (@85 = %)% = pyr Bl

A 222 — K2 =20 F) + 4p2r23 (e Y —k2),

.%)% = /22 { (2r2—F'2)2— 4/&%_.91?_’} —/{lz’lczk’Zﬂa'
+ 2pp 62 (k2 —2k2) (262 — K2 —2a/3') 4 2 (262 — %) 2 (k2 — '),
E_ﬁi,: ’2{4n2a’ 7 — (k2 —F'2) }+ (462 —12) (262 T2 —20'%)

+ 202202 — 1) (/F —i2),

C)‘;"l—/z'{w —) 20 |+l 22— k) F —26%

D‘{’ =/ (22— T2 —23a") + (200 + KR —252), (35)

R

&, = 47203 (k2—af) {2(2}:2—15’2)a’;?’ 2473 -7m2,?’2—/c2a’2}v
+ 2l (@ — 19)2{41;%’3’—— (22— 15'2)2}

— B2 (33 +afa +ad'{ +afd)
+4/1/1 a 9!2 13"(2a,9+ 2 —2&2) (2!1’/ ]v’2—2(2« 'i/)
+2up e’ ¥ (2632 + 2602 + IPaf—4raB) (262 — lu"’—Za/p’)
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+2mrea B(2e3+ k2 —2x2) (dea/ 3 — K23 — 2632 —260/2)
+Eaf(a — 19')2{4;;205,9_ (2A'.2—Ic2)2}
A+ 4pal B (B2 —al ) {2 (262 —k2)af—2a%3% - K232 _mzaz} )
429%@ = 22 {41121 SRR W= — (2R~ )2}
R LV Iy Ny A
+ 2/ W2 (2h2 — Ie2) (202 — K2 — 24/ REZ %/ REZ %)
+ 12 (VIR =2 RE=T2 — h?) (2h?— k2)?,
R f)‘ff—.—,l ; hz_/cz{4h2,/h2 Wy BT E (2h2—k’2)2}
— it P2 B g2 4 APl T TR (1 TR Ty R = I 2 — Re)
+dpyt 12y B2 —K2(2h% — 12 —27/ hE— 1'%/ hE-K2),

$, =P, = ,/%2{ (22— k%)% — Al FE— 2y hE = /5"2}

— ! 122/ =,
+ 2l B2 (k2 —2R2) (2R — K2 —2y/ RE—h/%y/ W2~ %)
+p2(h2—y BE—=R?/ RE—F%) (2h2 —I2)2.

2;?12.-«,/2{4k2./k2 e/ =R — (2]c2—k’2)2}

+ 3 R (2R — k2 —2y/ KE— I FE— )

+2/2k2 (v/ K2 —]

W2/ Rk —
¢, = ,u’%ﬁ{ (2K —1'2)2 — AR/ T2 — W2/ 2= I 2}

k2,

— ! K22y TR TE TR 4 2R (2 — o/ R — Ty =T
+2m K2V R~ KR+ 221, |
__C;L= o {(27@’2—70’2) VIR —21? ,/Wz—_zz@}

+ { Ch2—E2) vV W2 202/ hrzjcz} ,

$p, =2 (W2~ B2=R2V/ WE=T2) (2]
—~ K2 WE—REy/ K2
+ 2/ W2 (21 B2 — Ry W —

/2_kl2)2

T4 k2 K2y .
+ 2R { (W2 —12) 2 —AR'2)/ T ]i2y/ ii'2?1¢2} ,

—21/2) (212 —

[Vol. XVI,

(36)

(37)

(38)

(39)

(40)
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D2<I[,,z it (RP—2/ TR T )

YV ER=E K — W kR —2k2),
B, = p2(K2— K2 —h?% /T2 —L2) K
Y74 i FERV ey v 02
+2up KA (2 =12 T < TR+ 12 —2K'2)
+,/.2k'2{(219/2—k2)2—475'21/732:7@’2’,/1’572' ':k’z} .
The expressions of displacements are as follows:
“1 =%(¢0 _!< ¢) — e—ipl [_2‘9a/f?lAlea—y/—a§+ irr
— WAL HO(E,) ~hAy % HP(hR, )]
vy = _9_(9’)0 + (/;) — g i [—E%é Ale—uy-a“-.+ ixx
oy 5

Q 1 1 [ C
— hl[“zleHg >(hR1) —_ hAZ}—/éIJII)(th)] 3

(Ri=a+ (y—25)% Ri=a+ +2)% a0, yx0, y<é)

o :aix (Po+9) =2e—"l"[—- 2303 emovtine {Placoshaf + leinhaé}

— k2P, %HgO(hR )] ,

i l J
2P, V2 g® (hR)] ,
R2

O 1
o :% ($0+9) =2e-im[_21‘.”ﬂ_“ﬁ_e-ww [P asinha + Q,coshas!

[R2=a%+y% ax0, y>§]

Uy = E"= g it [ZaﬁzalﬂrBle—a“:—ﬁme
oy
I — LT E—
’—]C')e l/&t~—112: BZ ﬁ‘RLgWH%D (]CR)] )
vy=— ¥ 2e—fz't[2ix 030/ B e-es-tvtens
ox
2
+ I VT Bg%—Hﬁo (kR)] ,
[Rr=a2492, a0, 730, y>0]

(41)

(42)

(42")

(43)
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L a¢/_. 2,—ipt) 1 —as+a’y+iva
U= =2k 2ap3a'¥ Ce
x

_ hlze—v//;T-[z%Cz%?_é_Hg‘) (h’R)] ,

V= %:2/1](;2@“'1"[.2@%33’,’ C,e wstevrirs
oy . o
h2e-vwitizs s HO(WR i
—h'2e % wz—R—z- SP(WR) |,
4 . - . .,
U= oy =2/1]026""‘[—Zaﬂa/p’lee““‘*“"’““ (44)
oy
12
~k’3e""m?‘iD2—a}g3 H®P (k’R)] ,
4 aso, 2 -":l ) ¥ ie el —aSt3lytive
Vy= ~= =2ple~ ] 2icafa [y Dg=* Y
x _

It VI Dz%?éj— HP (lc’R)] .

[Be=a%+12 230, yx0, y<<0]

The first term within every pair of brackets represents the bounda-
ry surface waves (for some conditions of two media) and the second
one the bodily waves. It will be seen that, whereas the amplitudes of
boundary surface waves do not vary with changes in the epicentral dis-
tance, those of bodily waves decrease rapidly with increase in hori-
zontal distance and, furthermore, the horizontal components of the same
bodily waves also decrease fairly rapidly with increase in vertical dis-
tance. The law of decrease in the amplitudes of bodily waves for a
given y(==Y) and for a given 2(=X) is shown below.

Table I. Amplitudes of bodily waves/H".

w v Uo Vs . u vy Us V4

T aY 2 xY? 2’y xY 2 xY? x*Y

At Y R'Z 2 R3 R3 RE RZ R3 R3
At X Xy v Xy Xy Xy v Xyt Xy
RI RZV ) R3 RS R2 2 R3 RS

At a relatively large z for a given Y, the values of u,;, v,, u}, v;

o)

are proportional to B~*%, and the values of v, u,, v{, 4, are propor-
tional to R~°”. At a relatively large y for a given X, the values of
Uy, Uy, U;, U, are proportional to R-** and the values of wv,, v® are
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proportional to R-%3 the exception being that at these values of 7, X;
v, v; are proportional to R~

It should be borne in mind that the decrease in amplitudes with
increase in radial distance R is always proportional to E-%. More de-
tailed feature will be discussed in Chapter V.

III. The Case of Distortional Primary Waves with
Amplitudes Orientated in a Vertical Plane.

7. TUsing the same axes of x, ¥ and p, 4, pr; o/, ¥, ¢/, as in the
preceding section, it is possible to solve the present problem. KEven in
the case of plane primary waves

4’0 =Besy+ij,c-ipt, (45)

where tan~'(f/is) is the angle of incidence, the reflected and refracted
dilatational and distortional waves are of the same expressions as those
in (2)." Proceeding in the same way as in Chapter II, and re-
membering that the expressions for the displacements are

06, 3(dotd) L, _ 38 3t

x oy oy ox
9¢' , oy’ o0¢ 3¢ 46)
W= 45, V= F S,
ox oy dy ox

it is possible to determine the constants 4, B, C, D. The result is given
below.

AQ=2if+/ T8 | 22 @2 1) (P =/ PP= I = %)

gl QP ==/ FTPR T (= A7)
| @p—erye—apy/ P PR |
Bl =22 o/ Tty ) 4/ iL’21/f2fE’2 @k
+ R (o TR 2 W=/ PRI rm )
R 2/ P Ty ) Q=2 I )
12/ P I FmIE—  {@—14f P =16 |
OO =sinflen/ PR (o= =/ Pl F= )

+ /l’ (zl/fz;:_h}‘l/m + ]5’2_2f2) } )
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DO =2pkt o/ =12 p{ o=y v = W2ty = T
1 {@R—l) V= le—2p/ F=T |, (41)

where ¢ is of the same form as (7), i. e. the velocity equation of the
boundary waves.
8. If primary distortional waves are radiated from a point source

at ®=0, y=£, then

o .

e~ ipt es(y -8)+ife .

([/,0 — ¥ S S df, [y < ;]
-

"

(48)

0
Ve -t g sy -8+ife .
9"0=L g - daf, [?/>’§]
-

T S

so that the reflected and refracted waves assume the forms

6—1’pl = !]')e—-.s(y-)-t)-kijz e ipt « Ae ry—st+ife ‘

47’,’-_—_ — g R p df, ¢= — s dfr [?/>0]
’ - (50)

e~ . Ce'v-st+ife . —ipt = De’'v-ss+ife [

g=" S o =t S —df, =<0l

and the superposed values of ¢, ¢ are

(50)

—ipt ” —~s¥4ife
¢+ ‘/,=§ —,-pg ¢ (Be + Be ) df, [U<5]1

/ ,_e ™ g N, -5 ~ £
ot p=2" — (et Bem)df. [y=>4]

After calculating as in the preceding chapter, we get
$o=Te~ " HP(kR), [Ri=22+ (y—2)?]
. ,
Dot & ==t [M Bje-tr=vsire | RHO (KR, + BZH$‘>(kR2)] ,
[y<<d, ax0, y=x0, Ri=a%+(y—4§)% Ri=22+ (y+£)% ((51)

</’0+<,!/=2e“‘“‘[ 2080 o -vyrirs(p, Bcobh[%+lemhﬂ»)+IvPZ;J%H<‘\(kR)]

K

[y>35, ax0, RZ=a?+y?
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¢=2e- [—2m;'?a’,'?’Ale‘“”““E+"’” + hi'e""ﬂ_—/ﬂ&Az%HF,” (hR)] ,
[y=>0, a0, yx0, R2=a2+9?
=2pl%e [—2a,7a"‘?’01e°‘”"-‘°‘*“"+ h’Ze-v’W—ﬁeCzﬂJ;Hsﬂ (h’R)],
R? ‘ (52)
[y=0, R2=ua%+y?
N 1
200305 1y gry-sesine g g u'wTEeDZ%HW (Ic’R)] ,

K

' =2pk2eir [
[y<0, a0, yx0, R2=2a2+7y? .

where r is the root of ®(x)=0 shown in (7) and
a=y/KT=h2, B=y/i2=k2, o =4/2_h?% F=112=F2
B; =2 (k2 +a3) {41\ 2q/ 3 — (262 —K'2)2 }+ R (e —pa’) W
+ 2/ 12(262— K2 4-2a 3) (262~ K2 —2a'F)

+ 2 (a3 —k2) {(2;.-,2_152) 24 4/;%,9} ,

&gl =20 {41&211’ 7 — (262 —I'2) 2} — ek
D

FApplR2a (22— T2 — 20/ 7Y + dp2i2a (a/F —k2),

QP p2pef (2n2—pr2y2— 4/@%’,?’} — R
$ { l I (53)
+ 2/ K2 (2h2 =2 —2a/3) (K?—2k2) + 2 (k2 —a/ ) (282 —12)2,
4;? =2/2(2k2—K?) (82— a'3") +ppf (262 — K2 —2a'3") (K2 —4xr2)
+ 2 {(2.&72—75’2)2— 4fcza’ﬂ’} ,
C (I 2 o ! ol /2 -2
= (202 =12 =227 + ¢/ (223 + K2 —252),
D\, —,1‘(2»2 I?)a’ — ﬂ.?al + 4/ ff(2n2—k’2)a — 22/ ,
¥ \ J l J )
P, =p/2(1r2—ad) {(2/.72—15’2)2 —4n2a’,9’} — k2K (e + 3aT)

+ 2 2 (20 3+ I —2k2) (262 — |2 22" 3")
+ /42(1.12—a'ﬂ’){(2!.:2-—152)2—4;;2@,9}, (54)
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Bg’m =2)2 {4 L2y =R =k — (27‘32_]0/2)2}

+ 22 TRy =T 4 2 (VIE— RV BE— R — R !
+ 2l kA (22— 2 — 29/ FF— h’21/lcz—lc'2), (55)

“"P?é?"a = //2{4 12y =Wy TR~ (2k*— k') >/ I~ 1*
D

+ 4 12/ kE—R22K2— K2 —2¢/ 2 R/%/ 12— ]2 k'?)
— pp B2 TE—T + 40202y 1= B2 (VIR — 12y TR =2 — 12,

P, =P, =p2? { (212 —1'2)2 — 4%/ T2 — W%/ k2 — Ic’2}

—2upl It (2N — K2 —2v/ T — 1'%/ [T —?)
— 12K TR =12y BT+ 2Rt (k2 —/ P =%/ 12— T'2), (56)

__A;fh. 2,2 (212 — 12) (W2 —y/ HEZT%/ T )

+ppt (2R2— 12 —29/ 2 =12/ B2 = '2) (I2— Ah?)
12 {(2h2—Ic’2)2—4h21/h2—h’21/ 7 -19/2} ,

(57)

R hz{(ZhZ—Ic'2)2—4hz1/ e e hz—w}
— KR hE %/ R R
+ 2/ B2 (2 — 2h2) (212 — 2 — 20/ RE— W2/ FE—I¢'2)
‘ Cgse(e—y R =) (2h— k),

ng’c_z =p(2h2—k2—2¢/ WP—Rh%/ WE—F?)

1 @V =12y =T —1'2),

P, =2 (W2—1/ W2 =2/ W2 —F2) (W2 —K'2)*
— i K2R BTty W 2 (58)
+ 2/ W2 (20 WE =Tty BE= T2 + k2 —2R'2) (22— K'2)
S R s e

_Dggvz - /1{(2k’2—k2)1/W—2k'21/m}

+ ,u’k’z{1/k’2—h2—21/k’2—h’2} ,

Op,= (2K (K2~ FE—h2y R —=k2) — i K22 T e/ TR = 2
+ 20 K (2 KE =Ry HE— T2+ k2 —2K'2)

+ ,1%'2{ (212 —F2)2— AK'2y/ KE—T2y/ k'z——k"z} . j

(69)
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The expressions for the displacements are shown below.
U, =—2£ =26-ipi[_2imaﬂalﬂlAle—ay-BE+mz —hae_'/m3A2%H§D hR)] ’.
x
v, = 0% _ggin [Zazﬂa'ﬁ’Ale-”‘-‘“m — hee~vimrm 4,%0° oo (hR)], (60)
2y R?
[Re=a2+12 a0, yx0, y>>0]

uz — a (9”0 + 9") — e—ipl [_ giﬁ’ga,‘?l Ble"ﬁ!/"ﬁ‘i‘i-i‘/-x 1
oy 7
— 1B L HPKR,) — kB, L HP (kRZ)] :
yi R
vy = —9 (g’;)/j;‘:f’) e~ [zaa[lﬂ/Ble—ﬁy-BE{-i%x (61)

+ 1B %H&‘J(le) + 1By o P (kRz>] ’
[y<f X0, yx0, Ri=a?+(y-%)% Ri=22+(y+£)?]

_ ) g, | _ 222

wy = et 2 g-tvrirxr (P 3cosh3Z + Q,sinhj3%)
oy I
—12P, Y2 HO (KR)
2 R2 0 b
!
Vy = i(‘é“;;iﬂ =Q¢-int [2a a’Je=tr+7x(P,3cosh3z + Q,sinh3%) (617)

+12Py S (kR)] ,

[y>2 a0, Ri=a+y?]

/
= 28 —2yte-iw | —2inafa/ FC;e" T
HA

_ h!se—v’iﬁz-/\zzcz%? HP(WR) ],

! 3¢' 2 5 —ipt 1200 @’y -BE4inz
v1=T=2/1lce vt —2a 3225 C e v 0%
Y

_hlse—i/hlz-k‘licz%‘/:H?) (h/R)]! (62)

" — oy’ =2ulte [27:“/30',/9’2 Dje¥v-pivire
Ty K

_k:ze-,fm_mpz%:'_HgU (k’R)] )
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n! . , .
V= __aay =2uk?e~ " [Zaﬁa’ [F D, et vi-drrine
X

1 J2e v FTI Dz% HS» (k/R)] .

[y=<<0, a0, y=x0, Ri=a+197]

In the present case, too, the first term within every pair of brackets
indicates the boundary surface waves (for some conditions of two media)
and the second one the bodily waves.

Although the amplitudes of the boundary waves do not decrease
with epicentral distance, those of bodily waves decay in some manner;
the law of decrease of amplitudes of the same waves for a given y(=Y)
and for a given x(=X) is shown below.

Table II. Amplitudes of bodily waves/H.C”

’ ’ ’ ’
J Uy V1 I Ua V2 ) Uy vy I U Vs

ALY Y oY | ¥ aY &Y ¥ Y oY
RS R R2 R R R® R Re
At X Xy Xyl v Xy Xy Xy? v Xy
? R3 R R3 R’ R3 R R

At a relatively large x for a given Y, the values of u,, v,, u;, v;
are proportional to R~**, while the values of v,, u,, v{, u; are pro-
portional to R-*?. At a relatively large y for a given X, the val-
ues of v,, v,, v;, v. are proportional to R~*? while the values of u,,
u; are proportional to R-"*, the exception being that, at these values
of ¥, X; u,, u; are proportional to R-'>. More detailed feature will
be discussed in chapter V.

The amplitudes distribution at a relatively large z for a given Y
in the present case is quite similar to that in the case in which the
primary waves are dilatational, whereas the amplitude distribution at
a relatively large y for a given X in the present case would become
similar to that of the last one, provided the letters #'s are replaced by
v’s, the letters v,, v; by %, u;, and the letters v, v{ by u,, w.

1V. Primary Distortional Waves with Amplitudes
Orientated Horizontally.

9. In the present case 4, # do not participate in the problem. The
expressions of incident, reflected, and refracted plane waves assume the
forms
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v0=%esy+if.v—im, ]
v zBe—syi'ifx—ipl, ?)’:B/e"/y“f"il“‘,l (63)
where
_rs=rs o 28 o
Bty S B= s (64)
p1s+ s ps+ /s

When the primary waves are radiated from a point source =0, y=§¢,
the displacements of the three kinds of waves assume the forms

T S

i Ap—ipt * s(y—~%) i/t'
V=L~ HP(IR) =52 S RN A, [y<é],

%e—- iyt

T

. =y=)+ife
Se Js af,  [w>2,
daf, [y>0]

e"il” z Be"-?(!/\‘“‘;)“"if»‘
. S
-0

T

df. [y<0]

£
—ipt ! ps?y—=sS+ife
/ 4 BG TR
S

Since in every integral of the present case no principal value of the
integrand exists, it is impossible for boundary waves to exist. The su-
perposition of v,+v gives

=]
e—ipl es(y—”;)+if.c Be—s(y+“;)+ ife a
V=0V, +V= S [23 + df, [?/<C]
S
]

T S

T

(66)

n

p—int [ I E i 1o! . i .
. 2% e"“'&"[ ' coshsi+ % . sinh s;‘]df. [y>¢]
— B //8+//S’ 3(//S+ //81)

Integrating (67) for 220, y2c0 in the same way as in the preceding
cases, we finally obtain

v, == [%Hf,”(le) —BH{> (Ich)] ,
[Ri=a%+ (y—¢)?, Ri=a’4+ (y+5)3, yx0, y<<]

ey _Q_Hglo (kR), [R2=2a2+ 17, y=>£] (67)

v, =2Ve" " —
! WV IE=E? R

v =2Le~ " i ,2”1,"*,;—;%H?"(’”’R)- [RE=a2+92, yx0, y>0]
Vive—r '

Since the calculation is rather approximate, the result in (67) is only
qualitatively correct. It will be seen that the distribution of the am-
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plitudes for v;, v’ are such that at a relatively large z for a given Y,
they vary as Y/R, while at a relatively large y for a given X, they
vary as y/R.

V. Comparison of the Three Cases.

10. In the cases of dilatational primary waves and distortional pri-
mary waves with amplitudes orientated in a vertical plane, the ampli-
tudes in the epicentral region that decay the least with distance are
proportional to R-"*(y/R)%, whereas in the case of distortional primary
waves with amplitudes orientated horizontally, the amplitudes that
decay the least are proportional to R-'*y/R, from which it is possible
to conclude that in the former condition of the two, the region (epi-
central) in which large amplitudes of the waves appear is much nar-
rower than that in the latter condition.

Similar conditions exist in the region of large epicentral distance,
that is to say, at a relatively large x for a given Y. In the cases of
dilatational primary waves and distortional primary waves with ampli-
tudes orientated in a vertical plane, the amplitudes that decay the least
with distance are proportional to R~ (x/R)(Y/R), whereas in the
case of distortional primary waves with amplitudes orientated horizon-
tally, the amplitudes that decay the least are proportional to R~ Y/R.
Thus, even from this feature, in the former condition of the two the
region of a large horizontal focal distance in which the amplitudes
decay the least, is much narrower than that in the latter condition.

In the actual condition, the phenomena just given occur repeated-
ly in passing through successive discontinuities, from which it is
possible to expect that the regions (the epicentral region as well as the
region of large horizontal focal distance) in which large amplitudes of
the horizontal distortional waves appear, become increasingly greater
than similar regions for dilatational waves and distortional waves with
amplitudes orientated in a vertical plane.

Aside from the above condition, there is the feature that, in the
case of dilatational primary waves and in the case of distortional
primary waves with amplitudes orientated in a vertical plane, the
energy of the bodily waves is converted, in a majority of cases, into
that of boundary waves in passing through or reflected from a dis-
continuity, whereas in the case of distortional primary waves with
amplitudes orientated horizontally, no boundary wave is formed even
in passing through or reflected from any discontinuity. There is no
doubt that there are a number of nearly horizontal discontinuous sur-
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faces in the crust, so that the energy of bodily waves other than hori-
zontal distortional waves are successively converted into that of bound-
ary waves at such discontinuous surfaces. It is therefore obvious
that the amplitudes of bodily waves, excepting those of horizontal
distortional waves, become smaller and smaller in passing through or
reflected from discontinuous surfaces.

Dynamically, it is possible to conclude that the condition that the
region in which the large amplitudes of horizontal distortional waves
appear, is broader than the similar regions for other kinds of waves,
is equivalent to the condition whether energy of bodily waves is un-
changed or changed into that of boundary waves.

It also appears that the reason for S¢S waves being of relatively
large amplitudes, is possibly explained to a certain extent by the present
theory.

From the present investigation it has also been ascertained that
Lamb’s and Nakano’s (and also our) mathematical condition that the
amplitudes of bodily waves accompanying Rayleigh-waves on a semi-
infinite body shall decay very rapidly, is nothing more than the condi-
tion on an azimuth difference in a spherical wave front.

In the present paper we have given ohly an approximate discus-
sion of the two-dimensional case of the problem from the standpoint
of the formation of Stoneley’s boundary waves, the case of the three
dimensional condition being now under investigation in a more rigorous
manner.

Note on the paper No. 19 entitled “Anormolous Dispersion of Elas-
tic Surface Waves” Bull. Earthq. Kes. Inst., 16 (1938), 225~233.

When the paper in printing had already been revised, some one asked us as to
whether or not there is any part of dispersion curve within the range between L/H=0
and 4-635 in Fig. 3, p. 230. It was theoretically proved in the same paper that dis-
persion curve with ordinate higher than p,/p/u/f =1 is impossible to exist at that
range. Since, furthermore, the functions contained in the velocity equation (10) are
all hyperbolic and not sinusoidal, the curve in thick line is the only dispersion curve
lying below the ordinate p,”p/u/f =1. The dotted line extending from thick curve is
nothing more than the indication that the thick curve near its end (not the very point
of the end) inclines in that sense.

Although in the case of very small ratio of L/H, Stoneley’s boundary waves are
possibly transmitted along the surface between two media, since in the present case
the velocity of distortional waves in one of the media much differs from that in the



526 Boundary Waves at the Surface of a Discontinuity. [vol. xVI,

other, Stoneley’s waves are scarcely transmitted as has been proved by Stoneley.
Thus, there is no evidence of transmission of waves of surface type at such range
of L/H as less than 4-635. It should, however, be borne in mind that when L/H=0,
Rayleigh-waves of such velocity as 0-9194,/p//p’ are physically possible to exist at
the free surface, but since, in the present case, the conditions as to @/)*=1, (/=0
are restricted, the waves under consideration does not concern the problem.

Since, furthermore, we discussed the possible existence of waves of permanent
type, the consideration of waves that shall decay with time in consequence of the
boundary conditions is out of question. (This note was read by K. SEzAwA, June
21, 1938.)
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