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1. Introduction.

The problem of elastic stability of the Earth under gravitational
forces was first solved by Jeans,” whose result then attracted the spe-
cial attention of Lord Rayleigh.® The assumption made in Jeans’s paper
and also in Lord Rayleigh’s is such that the coordinate position of every
material point does not shift, even in the deformed condition of the
Earth. Love™ afterwards discussed the problem with some regard to
the change of the mean position of the material points. While Love’s
problem concerns the case of a gravitating uniform sphere, Matuzawa®
extended the same problem to the case of a stratified Earth. Almost
all these problems were solved by using such Cartesian coordinates as
were given by Lamb.” On the other hand, similar vibrational problems
in polar coordinates have frequently appeared in our papers.” D Thus,
our previous solutions will now be extended to the case of the elastic
stability of the Earth. The treatment of the problem in the condition
that will correspond to Love’s idea is extremely complex. But, even
should the condition of no shift of material points be allowable, the
resulting defect or excess of mass on the moving free surface would be
fairly effective on the change in gravitational force. From this con-
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sideration, while dealing with the differential equation in the same sense
as that due to Jeans and Lord Rayleigh, we have modified the boundary
conditions as follows. The usual conditions at the free boundary of the
sphere in polar coordinates are such that A
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on r=a. Instead of the first of these equations, we have used the
equation
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that is,
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on r=a.
2. Mathematical solutions.

The general solution of the problem for the case without gravita-
tional force was solved in previous papers.® In the present paper we
shall reinvestigate the problem from the beginning of its treatment
with special regard to the earth’s pressure as well as with the gravita-
tional forces in the Earth.

The stress components in polar coordinates are such that
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where p, is the pressure at », 0, ¢. The equations of motion are

written

ot _ oV oW @ 180, 1 o
Cotz =% "% T ar T 7 00 " rsind 9

1 o~ = —

+7(27'r—00—¢¢+@c0t0),

o 19V 18W+8'r(f+1aéid 1 26g
o= o0 TP o 7 20\ rsind o¢

4)

%{ /?S cot0+3@},
Fw_, 1 oV, 1 aW+ar¢+ 1964

Ptz Prsing op " rsind o¢ r o0

1 a¢¢ 1
rsind a¢

-+

{3r¢ +269 cow}

where u, v, w are components of displacement in 7, 8, ¢ directions, V
is the gravitational potential due to statical distribution of the mass in
the Earth and W that due to increased or decreased mass per unit
volume in the vibratory condition of the same Earth. On the other
hand, we know that

v _op 13V _10p, 1 oV 1 2p ®)
Cor=r” P00 7 a0 ‘O'rsin(ia¢ rsinf 3¢ °

Use the dilatation and rotations
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It is possible for Poisson’s equation to hold for increased or decfeased

mass per unit volume in the Earth, so that

r2W=4nypd

(9)

where 7 is the gravitational constant. The first term of (8) reduces to
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the solutions of (8) become
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The solution satisfying @,=w,=w,=0 and corresponding to 4 is
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The solution satisfying d=w,=0 and corresponding to the respective
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first terms of =, @, is
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The solution satisfying 4=0 and corresponding to =, and the respective
second terms of w,, w, is
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The solutions u,, vy, w, are not concerned with the stability problem
because of the condition that, besides being independent of 7, it is com-
bined neither with u,, v;, w, nor wu,, v, ws,.

3. An elastic Earth of uniform density and homogeneous elasticities,
the shift of mass position being mneglected.

In this case the boundary conditions are such that
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at r=a. Substituting (14) and (15) in (17) we find
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The critical condition under which the free vibration of the Earth
becomes unstable may be expressed by p=0. In that case (18) reduces
to )

2
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unless n=1. Equation (20) may also be transformed into
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In the case n=1, we have
3:7(ha) 273 (ha) +10hat s (ha) —6 (ha)?Jy(ha) =0 (21)

instead of (20). Equation (21) reduces to
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’3ha{20—(;;+2)(ha)2}
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Although it may appear strange, if the number » were assigned,
the critical condition would be the same irrespective of the number m,
according to which the deformed figure of the Earth will differ.

Using (20'), (20"7), (20"""), (21'), we obtain the critical conditions
for various cases of n and 4/, the result being shown in Table I. In
these treatments we shall assume that p=55, a=6370 km, y=648.10-10
(C.G. S.). The velocities of transmission of longitudinal and transverse
waves corresponding to the elasticities given in Table I are shown in
Tables II, III.

TABLE 1. The value of £/101! (C.G.S.)

n | Ap=1 2 } 0 ] 200
0 ‘ 510 334 0-915 00507
1 | 262 1:566 0-441 0-0247
2 1-29 0-892 0-252 0-0152
3 0-848 0-593 0-178 0-0102
] i
TABLE II. The value of 1/ (A+2/)/p¢ in km.
n ’ Mp=1 2 1 10 ’ 200
0 } 5-28 495 447 1:370
1 378 3.38 310 0-952
9 ; 265 255 235 0-748
3 | 215 208 197 0612
TABLE III. The value of 1/g¢/p in km.
n | Ap=1 2 10 } 200
0 3-05 246 1-29 ‘ 0-0959
1 218 169 0-896 0-0670
2 153 1-27 0677 00526
3 1-24 1-04 0-369 ' 0-0431

It will be seen that the higher the order of.n, the more diminishes
the value of 4 or ¢ corresponding to the critical condition of stability
for any ratio of 2/.
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4. An elastic Earth of uniform density and homogeneous elasticities,
the shift of position of the material point being taken as a stress con-
dition on the free surface.

We sha11 next consider the case in which the condition of normal
stress on the free surface is

4 u

—arp2u+Ad4-Cu—= /

3 T d+4,uar 0, @)
on r=a, the conditions of shearing stress being the same as those in the

previous section. In this case the frequency equation of the vibration
assumes the form
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where 4myp%a?’ (1+24), arising from the boundary condition, is assumed
to be ha under the condition that p is ultimately made zero. In the
critical case where p=0, (22) ﬁnally' reduces to
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n=3; tanha—

ha {6480 +3(i"_254) (ha)z—zi(i_l) ( ha)4}
Jad Jz _
6480 + 3(%—974)@(1)2—3(%—38) (hayt + (ﬁ +2)(he)®
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In this case, too, notwithstanding the differently deformed figure of

the Earth, the critical condition for various cases of m is the same,
provided the number n is assigned.

The result of calculation of the ecritical stability for the same

numerical conditions as those in the previous case is shown in Table IV.

TABLE IV. The value of /10 (C.G.S.)

n Mp=1 200

0 2:358 0:0325
1 1-010 ' 0-0150
2 2:414 0-0333
3 1-082 0-0165

The volocities of transmisston of logitudinal and transverse waves
in the media given in Table IV are shown in Table V.

TABLE V. +/(2+2p)/p and v'#/p in km.

Mp=1 M =200
n
VA+2m)io Vaulp V(i+amp Viplo
0 1135 0655 1-093 00769
1 0-742 0429 0742 0-0522
) 1-148 0-662 1106 0:0778
3 0-768 0-444 0779 0-0548

It will be seen from Table IV that in this case, the value of 4 or
p is minimum at n=1 and maximum at n=2 but tends to decrease
with further increase of x.

5. The Earth in a stratified condition in density as well as in elastici-
ties.

We shall now consider the case wherein the density as well as the
elastic constants of the core respectively differ from those of the rocky
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shell. The expressions of the general solutions for the core are the
same as (14), (15), (16), whereas the solutions of the movements of
the rocky shell are somewhat complex, as shown in (23)~(27) Let
the density and elastic constants of the rocky shell be ¢/, #, ¢/; then
the treatments of the differential equations of elastic v1brat10ns and
Poisson’s equations of gravity potential give rise to
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, , n+2(k /r) ’r 11+2(k,,}) de(COSﬁ)
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where
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The three kinds of displacement therefore assume the forms
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, n(n+1)C,, Juy (K1)
u';: - { mk’Z' 743/2
+1 C Yn+1 ]C’]
+ n(nmk/z) = ,,3(, )}P"’(cosﬁ) cosmg cos pt,
, C.1d
”3=—{W7a<1/7‘ s (k’l))
> (26)
Cw 1 dP (cosf
T onk? dr(VTYMi(’C T))}%cosmgﬁcosm,
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W} =\ ar r J,H.x(k?)
Com 1 d(1/’l‘Y (k'r )>1M inmg cospt,
k/z r d n+} S SP
u,=0,
,U'_{ mB:’m J’“’%(k’lr)
lam+l) Vo
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+ nn+l) 'r | sind Cosmg cos i, > (27)
IV B PR U ‘
T lnm+l) Vo
B, u+1(k’7)1dP'"(cos0) )
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In this case, too, u:, v:, w; do not participate in the stability problem.
For simplicity, we shall assume that the rigidity of the core is zero,
—a rather probable state of the actual core. We neglect here the effect
of mass defect or excess at the free surface of the Earth resulting from
the assumption of no shift of material position. The boundary condi-

tions in this case then assume the forms

v v 1 o
r=a; ’A’+2p——0 ?—T'}‘?E:Oy

(28)
1 2w ow w
rsind 0¢ or 1
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ou' ' v 1 ow
—he N = = St %)=
r=b; Vd+2u— =14, /‘(ar r ao) O’I

(29)
1 2w ow w J
I —_ )=
a (rsmd o¢ L 7'>“0’ :

where @, b are radius of the Earth and that of its inner core respec-
tively.
Substituting (23), (25), (26) in (£8), (29), we have the relations

A L AL C..2nn+1) , C,.2n(n+1) ,
{mzf*wz }{%5_7;*”ﬁiﬁ‘_ﬁ——@}=a (30)
A AL, Conl , Gl

{ h’2 2a7 h’2 2 } { k’2 +‘Z72—;_ 2 }=O) (31)

114, ., - Con2n(n-1) 1) C! 2n(n+1)
[{hfz‘”‘* w2 } {k/2 m. o ‘}}

/4'[{ ‘;1;,";" 20} + “2:,”/;' 2w;’} + {%,2%; + %%f}]
| - Gean] o
(Bt} (G, Conterh g
gy g S RO, ()

IA:nn ’ Amn /} + ICmn 1 C:I:ﬁ_l‘ Nl Amn. Cmn 1

Une ™ e T el T e T e 1 e 39

where the constants in (30) ~ (35) are as follows:

a, _{ (ha)2—2n(n— 1)}

+2(2n+1)hal, 3 (ha) —2(ha)?], 5 (ha),

Jn+ 1 (ha)
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i/
) = {%(h’a)z—2n(n—1)1J“+§ (Wa)

J
+2@2n+1)h'a], g(Wa) ~2(K' )2, s (h'a),

o (X, l
o ——{ /‘,(h a) —212(%-—1)J
+2(@2n+1)WaY, .3 (h'a) ~2(W'a)*Y,, s(Wa),

Y..i(Wa)

oy = {%(hb)z—:Zn(n—l)

N

1,0 (1)
+2 (2n+ 1)han+§ (hb) —Z(hb)zJ,H,g (hb):

o —_—{%(h’b)z—2n(n—1)1Jﬂ+;(h'b) |

J
+2@n+1)bT, 5 (WD) —2(W'b)2J (WD),
I L e
/= g (D)= 2n(n— )} w3 ()
+2@n+ 1YWY, 3 (D) —2(W'D)2Y,g (WD),

Cus C;’ 6;’, = (?'I/— 1) {Jn+§ (ICCL) ’ Jn+§ (k,a) ’ Yn+§ (k/a/)}
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873

(36)

(37)

—alld, g (ka), BT,.q(Fa), BY,.3(a)},  (38)

T T;’ T;"= (n'—l) {‘LH% (kb)’ Jn+§ (k,b) ’ Yn+§ (k,b)}

—b kT, q), KT, (D), KT, (KD) ),

Aoy Aoy (L;’, = (n—l) {Jn.+§ (ha) ’ Jn+§ (h’a) ’ Yn+§ (h,a')}

(39)

+a {th+§ (ha/) ) h/Jn+§(h,a/) ’ h,Ym»g (h,a) 1’ (40)

@yl afy=— 0=1) Ty (00), T3 (WD), Y,y (WD)
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5[0, (WD), M,y (WD), WY,y D)), (41)
Ca cé) C;’,= ——2(%2 —1) {vaé (ka) ! Jn+§ (IG/CL) ’ Yn+§ (k,a)}
+ (2n+ 1)0,{Ic=LH s(ka), K'J,,3(Ka), k’Y“,,g(lc’a)}
—a? {sz,H g(ka), W, 5 (Ka), W2, e(Ka),  (42)
TQ’ T;5 7’;’,: _2(1/),2—-1) {J'Iﬂé(kb,)’ J’n+%(k/b)’ Yn+§(k/b)}
+ @A 1D, 5 (10), KU ,g (D), K05 (6D)
—b? {k?J,H 5(kb), K'*J,.5(k'b), Y, ;(k'D) } ,  (43)
sy a:,’n d.;’, =N {Jn+§ (h‘b)’ Jn+§ (h,b) ’ Yn-l»% (hlb)}
~b{W g (WD), W, (D), WY, q(B)],  (44)
Tas T 7’.',$,,=Jaz+§(kb): Jn+§(k,b): Yﬂ+§(k,b)’ (45)
d’u a’«;y “;I, = Jﬂ-l»% (hb)’ Jrn i (h,b)’ Yn+§ (h/b) ’ (46)
T4 7';: T;,:"—‘ ("+ 1) {Jm %(kb): Jﬂ%(klb)’ Yn+%(k,b) }
~b {kJ,Hg (b)Y, #J,.3(ID), K'Y,y (D) } (A7)
Eliminating A.., A, ...... , C... between (30) ~ (35), it is possible to

get the frequency equation of the free vibration.
It is an outstanding fact that, were =0, the volume elasticity 2
as well as density o in the core have no place in the problem of elastic
stability of the Earth.
Using the equations (30)~(47) and assuming that the density of
the rocky shell is p/=4'5, we get the values of &, ¢/ at which the
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stability is critical, the result being shown in Table VI. The velocities

of transmission of longitudinal and transverse waves in the media shown
in Table VI are tabulated in Table VII.

TABLE VI. The values of /10" in (C.G.S.)

n Mip=1 2 f 200
0 575 458 2715
1 0691 — _
2 0770 — —

TABLE VIL /(¥ +2/)/¢ and v/¢/]p in km.

?ip =1 2 200
n
V2D | VW W2 | VT TR apnId | i
0 1:959 1131 201 10059 11-04 0779
0-680 0-392 — — — —
2 0716 0-414 — — o —

In this case, provided the ratis of 7/4 is not too large, the general
properties with respect to the critical condition of stability is fairly
similar to those of the condition shown in Section 3 and somewhat
similar to those of the condition shown is Section 4. For a large ratio
of X[y, say X[y =200, the lowest values of 7, ¢/ are V=>54310%3, /=
27151011 respectively. Thus, were the rocky shell incompressible,
namely ¢//# -0, the Earth would be gravitationally unstable, even at
such a large value of A'=5'4310!% as hardly obtains in.the actual rocks
of the Earth’s crust.

6. General discussion of the result.

Our mathematical solutions show that for the case in which the
Earth is entirely uniform in its density as well as elasticities and we
neglect the mass defect or excess on the free surface resulting from
the assumption that the position of the mass never shifts, the greater
the value of n, greater the decrease in the values of 4 and x at which
the elastic stability of the Earth is critical, whereas, on the other hand,
in the case where the mass effect on the free surface under considera-
tion is taken into account, the value of 1 or 'z ‘which is minimum at
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n=1, and maximum at n=2, tends to diminish with further increase
of n. ’

It is now possible to imagine that the past condition of the Earth
has gradually changed from an extremely deformable state to a more
and more rigid one. Thus, if in the past stage of the Earth, its elastic-
ities were less than those of any of the ®’s in Table IV, the vibra-
tional motion of the Earth for the mode corresponding to every n would
have been unstable. We shall assume that the Poisson’s ratio is 1/4.
Then, the respective vibrational modes =0, 1, 2, 3, ...... are unstable,
provided 2(=p) is less than 2358, 1010, 2-414, and 1082 respectively.
Similar conditions exist for different Poisson’s ratios. Had the elastic
constants of the Earth gradually increased, the next stage to be expect-
ed would be such that, while the vibrational modes corresponding to
n=1 is stable, every other mode will be still unstable. With futther
increase in elastic constants, the modes n=3 then becomes stable, and
so on. Since, on the other hand, the deformed state is likely to remain
unchanged in the condition of higher elastic constants, owing to the
probably lower temperature of the solid in that condition, the traces of
the unstable state of such a mode as became stable in a relatively later
stage will be marked. It follows than that the traces of the past
unstable conditions for =0 and n=2 would be pronounced. Among
other modes traces of instability for the cases n=3 as well as n=1
would be quite marked. It is impossible for us at present to discuss
the cases in which » is greater than 4. But so far as our present in-
vestigation is concerned, the conclusicn at which we arrive is that
traces of the past unstable character of case n=0 and n=2, that is
the cases corresponding to the spherical type and the spheroidal (or
particular ellipsoidal) type, will probably be very marked. The par-
ticular ellipsoidal type in question indicates such a condition as (n=2,
m=1) or (n=2, m=2). It should be borne in mind that the above
explanation is probable for every case of Poisson’s ratio.

From the results in Sections 3, 4, 5 it appears that the problem
for the case in which there is a core of no rigidity is likely to assume
the character just mentioned, even without regard to the effect of mass
defect or excess on the free surface.

Since, furthermore, both cases n=1, n=38 are also unstable condi-
tions at a stage somewhat earlier than that for n=0 or n=2, it is
impossible to conclude that no trace of the deformation of a pear-shap-
ed type or tetrahedral type can ever remain in the present figure of the
Earth.

The question may be raised as to whether or not the condition of
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elastic stability might be affected by such a high viscosity of the Earth
as is extremely possible at a high-temperature stage of the same Earth.
Since, however, the present problem concerns a divergent stability, and
not oscillatory stability, the damping effect has virtually very little
place in the criteria already given.
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