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1. Introduction.

In the previous paper” we discussed the decay of the vibrations of
a bridge through dissipation of its vibrational energy into its piers and
adjacent spans. Whereas in the previous case the exciting force was
at the middle point of a bridge span, we shall now consider the case
in which the position of the exciting force remains fixed at any point
in the same span.
2. Mathematical treatments.

The distances of the position of the exciting force from both ends
of a given span are l,, I, respectively,

so that I, +l,=l. Let EI, p,a,, E,l, E I T

Poltsy Egls, psa, be the flexural stiff- 1 - Y

ness and mass per unit length of the ! I' [l : b Iz,
[

- span in which the disturbing force Yoewel :
is applied and those of the respective , ! 77
adjacent spans, and let also E,a,,
oayy Epag, pias be the longitudinal ,
stiffnesses and masses per unit length of the respective piers, the period-
ic force being of the type Fe™. Taking the coordinates of z,, x,, x,,
X5, X4, g and writing the corresponding displacements by v, y1, ¥ ¥s
u, %', we get the general solutions of the vibrations as follows

Fig. 1.

=" {A 6" Fun + Bie-an + Cye’ans + Dyg=am ), )
Yi=e"{ Aerers 4 Boe-pazs + Cye¥rorrs + Dyg=Viazs ) | 2)
UYp= efm {Ge~ie:  H e ~Viesrs ) (3)
Y= €7 {Gog®iram 4 Hyeiom ), @
U=e"ro,e™, o (5)
w = eﬂptdlgergfzm’ (6)

1) K. Sezawa and K. KANAIL, Bull. Earthq. Res. Inst., 15 (1937). 385~393.



Part. 3,]  Emnergy Dissipation in the Vibrations of a Bridge. 11. 591

where

7% (Pzaz i P3ls
Ci= Co=\"+7=1],
1 (E111> 2 Ezlz) E3I>
p/f1=1/E4/(’4, ‘ p/f2=1/E5/p5-

The two ends of every span of the bridge are supported without
moment of force, and any point of the middle span is subjected to a
periodic force without moment of force. The boundary conditions are
then expressed by '

Sy, dyi %y, oy

= =(: = P — R = , 7 ,. s
2,=0, ,=0; U=V G ow, om ow (7, &), (9)
oy, o i

it (G ) o
o oy,
=, 2,=0, x,=0; U=U, Y=u, a:;;/,;,l=0, “‘—‘a;g:O,

(11), (12), (13), (14)

2%, GRIA
Bliga =Bl s

3
=Eaig, (15)
TY; 2y,
ous cat
(16), (A7), (18), (19)

y=—U, x,=0, 2,=0; y=u, y=u, =0, =0,

GETA ou’
E. I, Py la .5 E;,a‘;axﬁ. (20)
We now write
_ _ F E.Ic;

/ = / oo =7 —_— s 2272 =&y,

vVoeli=r, 1V DCl=rs (1/1) ¢)’El, 2y Elc 3
(21)

.1} Ea,f, Yy E.af, Yo

Elé™ 7 EL(/pey 1 ELG/pe) 1
and take a special case such that

E\l,=E,l,=FEI,=FI, 0101 = Pl = P3lts=0Q,
Eu,=Ey;=E'd,  pa,=p0;=p'd, (22)

61=E2=E’ IJ1=L'2=V.
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Substituting the solutions of (1)~ (6) in the boundary conditions
(7)~(20) for the special case cited above, we get

A1(0=7le"72[—71{ (cosy, +chy,) + shrz} +1 {71 siny,+2(r;+) shrz}]
+7re"ch 7’0[71 {cos 7o+ ch 72} —2giny, —sh 72}
+i{ (7, +4v)siny, +2vsh 72}]
+e~F1gh n{{r?(cos 7a+chyy) +2 (—7ri+vr; +2:2) siny,—7rish 72}
+ z‘;-l{ —2v(cosyy+chy,) + (7, +4¥) sinrz}], . (é3)
Blfﬁ=rle'“ﬂ[n{ (cosy,+chy,) +sh r2} +14(yysiny,—2vsh rz)]
-+ rle"*’chro[r1 { — (cosy,+chy,) +2siny, + sh rz}
——i{(srl +4v)siny, +2(r; +by) shrz}]
+ e"igh ro[{ —7i(cosyy+ chyy) —2v (37, +2v) siny, + yish 72}
—in (21142 (cosra+chry) — Gri+ d)sinn ) | (29)
C 1(P=rle*’[— (71 +2v)siny, + irl{(cos r2+chyy) —2siny, —shrz} ]
+rle‘“cosro[— (r,+2v) (siny,+2shy,)
—irl{(cos 7o+chyy) + shrz}]
+e™m sin;«o[rl (r;+2) {(cos ro+chyy) + sh,rz}
—i{r‘;’sinrz 2420+ 2»2)sh72}], (25)
D, ®P=re ‘*2[ (1 +2v) siny,—~iry {(cosrz +chy,) +sh 72}]

+7,67cos 7'0[(71 +2v) (siny,+2shy,)

+z’rl{(c0S ra+chyy) +2siny, + 3Sh72}]
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+e"sin ro[— 71 (r +2v) { (cosry+chyg) +3 shrz}
+1 { —2ri(cosy,+chy,) +risingy, + 4v(r,+v)sh 72} ], (26)

@
—774—= 71(r1 +2v) (—cosy,shyy+siny,chy, +siny,shy,)

+ i[ﬁ-—-ricos ro(chry+shr,) + siny, {r‘ichro —2v(y,+v)sh 7‘0} ],
(27)

H,¢= 2r1[ { —(ry +2v)sinyshry, + shygsing,) + irl{ (cosy,—chyy,) (siny, +shy,)

— (siny,—shy,) (éosrz+ chy,) — (siny,shy,+shr, sinrz)}], (28)

G,=H,, G,=H,=R"+1iS" (which appears presently), (29), (30)
where
= 1/210111, Te= 1/502l2: To=T1t+T= V/pel,

Epa®l __Fi

. Elra ’ 1T 273EI"

V=XJ1=)J2=7

(3D)

Although not given here, similar results were obtained for the
general case. v

We shall now write the solutions of the present case in their real
forms. Thus, corresponding to the disturbance

Feospt (32)

at #;,=0 (a,=1I,), we have

_(FBNLV1 /R2+S2 .9 _,§) ’
0 =(Fr )T )t prrgos(pt—tan™p +tang) 63)
where

P=v,(r1+2v) (—cosysshy, +sinrychyy+sinyyshy,), (34)

Q=ri~ricosro(chro+shre) +singy{richro—24(ry+3)sh),  (35)
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R=7,(r, +2v1)[—2sinroshro—2sinrzshrz
+shr, {cos 7o(sinyy+2shy,) —siny, (cosy,+ 2shy,) }

+sin ;'1{ch 70(2siny,+shy,) +shy,(2siny,—chy,) }], (36)
S=4v, (7, +v,) (siny,shy;shy,—shy,siny;siny,)
+ 7'3[2(008 r28hy;—siny ,chy, —siny,shy,)
—2siny,shy,—siny,chy,+cosy,shy,

+ cosro{shr1 (cosyy+siny, +2shy,) + chrlsinrz}
+ siny, {shrl(-—cosr2 +siny,+shy,) —chy (cosys,+ chrz)}
+chy, {sinr1 (2siny,—chy,+shy,) —cosy, shrz}

+ shy, {sin r1(siny,—chy,+shy,) +cosy; (cosy,+chy,) } ] (37)

The displacements of waves in adjacent spans and in the piers are

Yy (Waves) = — %?)(—l;— ’ 413 % cos ( ’pt—tan‘lg-+ tan“g,i),
(38)
y:(waves) ___(%)(l;_ : 4; / I—%%%os(pt—tan“%%— tan“%t),
O (39)
u=2y,, w =2y, (40)
where

R'= (ry+2v) (sinyoshr,+shyysings), (42)
S,=T1{ — (cosy,—chy,) (siny, +> sh7,) + (sinyy—shy,) (cosy,+chyy)
+ (siny,shy,+shyysing,) } (43)

R'= (y,+2v) {cos roshrsiny, +siny,chy shy,—sinyshy,(cosy, + chy,) | ,
. : . (4d)
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S = 7’1{ (cosy,chy,—1) (sin 72-— shy,) +cosy,shy,(cosy,+siny,+chys,)
+siny,chy,(—cosy,—chyy+shy,)

+siny,shy,(~cosy,+siny,—~chy,+shysy) }
(45)

When v, is fairly large, v/ P2+ Q% — 2usiny,shy, so that the ap-
proximate resonance conditions are expressed by

siny, =0, { sin(paz4p2/E1)%=o} . (46)

In our example which will appear in the next section, r;=19025.
However, in resonance conditions, even should no damping force exist
in the structure of the span, the amplitude of the vibrations will not
assume an infinitely large value because of the condition that the
denominator of the actual expression for the amplitude is

vV P2+ Q2 47)
each of P and @ being of a certain finite value.

3. A numerical example and its interpretation.

We shall take the case of a deck girder bridge of the same size
and weight as those shown in the preceding paper, but with the dif-
ference that the exciting force is at I/4 from one end (v;=19'025). .

Using the relations already obtained, we calculated .., 0 Yomaxs

VYamaxs Umaxs Uinaxs TOT different values of 7y, namely (oal'p?/ET) 1, the result
being shown in Fig. 2. The ordinates corresponding t0 iy Yomx are
shown on a magnified scale in Fig. 3. Every ordinate of these figures
may be assumed to indicate the relative value of any one of ¥,,,_c, Ysmaxs
Or Yimax fOr a given intensity of f in the disturbing force

F=fri =128, 48)

but for different vibrational frequencies. It is evident that, in the
case of a locomotive or of an exciting machine, the condition that f is
a constant, must exist.

The values 0f Uy, Uax are always twice those of Yowaxs Ysmax LOT
any vibrational frequency. The reason why we may neglect the reflec-
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tional waves in the adjacent spans and in piers was explained in the
last paper. .

It will be seen from - ﬂ
Figs. 2, 3 that, under the %(ylzfo,%mu,,yl’mu)

second resonance (pal‘p?EIE ¢ I
~2n, the amplitude of vibra-

tion is about twice that of ol

first resonance (paltp?/El)% , ,
= or even that of the third ~ \

resonance (pal‘p?/EI)i=3x.

This results from the condi- selbt \
tion that the disturbance im- ol \ (?T>'
parts its force at the loop Yz, | Yimaz.

/4 from one end of the span

for the second vibrational o gl Yo
mode of the bridge span. Fig. 2. Resonance curves of bridge vibrations.

From the * vibrational o

nature of a bridge span, it

is known that the most A Uomas Bonge)”

dangerous condition, if it be L . A
the case, among those in T ,\ ‘ f\
which velocities (.)f moving itk Jl [i
disturbance on a bridge differ, - (‘B’) M Yomaz, I \
is covered in the results of A j ¥ e Ji\
thef pf'esent paper .atnd the , AN ST ,
préceding one. While, gen- 2 4 6 8

erally speaking, the effect of Fig. 3. Resonance curves of bridge vibra-
the disturbance imparted by tions.  Yamaxs Yomax ON & magnified scale.

a locomotive upon a bridge of a finite span dies away before the
application of a finite number of impacts, the cases which we discussed
here, on the other hand, are such that vibrational disturbance continues
to be effective for an infinitely long time.

It should be borne in mind that, since in our papers, we have dis-
cussed the damping from only one out of the numerous likely causes,
such as viscous damping in the structure, energy dissipation in the form
of elastic waves through neighbouring structural members, solid fric-
tion at the ends of every span, etc., the resonance curves in our calcula-
tion should be rather sharp compared with those obtained from vibra-
tion experiments on actual bridges.
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