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1. Introduction.

The elastic deformation of a semi-infinite body subjected to vertical
loads on its surface was discussed some years ago by Boussinesq,”
Nagaoka,” Terazawa,” ete. Terazawa® furthermore gave a criterion such
that the vertical component of surface displacement under vertical loads
should invariably be directed downward. On the other hand, some of
the results in both Matumura’s paper® and Anzo’s® in connexion with
the deformation of an elastic foundation seemed to show that in the
case of a stratified body the surface deformation may be partly upward.
Although Nishimura™ solved a similar problem more exactly, and obtain-
ed a result agreeing with Terazawa’s criterion, owing to his case being
restricted to a very thin surface layer there is still some doubt whether
or not the surface deformation in a body, having a layer of a thick-
ness that is comparable to the width of the load distribution, may still
always be in the downward sense. With a view to ascertaining the
nature of the problem, we solved it from a different point of view for a
wide range of ratio of thickness of layer to width of load distribution,
the problem in the present paper, however, being restricted to a two-
dimensional case.

2. Solution of the problem.

Let p, 2, p, o/, ¥, o' be the densities and the elastic constants of
the surface layer (of thickness H) and the subjacent medium, the axes
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of z, ¥ being taken as shown in Fig. 1. If y, 7’ be Airy’s functions,

the solutions of the elastic equilibrium of both y

media can be deduced from the differential

equations L X’Ml;/
piy=0, P =0, (1) ! *

. \ : ;WL\/L
so that the stresses in both media are such \\ \\\\
that

Fig. 1
Jx= 2/ g = _afz, , -.rl T e ‘82/ s
oy? a2 v a3y
2. 21! DQap! (2)
; _.a_“./ (71’/_—_-\_?_._%,‘ N T;y.—::. —_B_X_ .
92 ox? owoy
If complementary functions ¢, ¢/ satisfy the conditions
%) _ o R A, o
ox oy —7 s ooy =L )
Pip=0, P =0, (4)
then the displacements (u, v), (%/, v') in both media are
p N Ay
2/1'u=—?xf—+(l——a)-(i)~, 2/1'2,——-—+ (1— (r)a—’},
» ox oy 04
o (5)

Nl ’ -
2/,4’1/:__8/;_{_(1-—0/)84’6, 2/1’1)’—_—_24.{.{_ (1—d') ==
ox oy oy

where o, o/ are the respective Poisson’s ratios, namely o=4/2(2+ 1),
o =X[2(X + ).

The elementary solutions of y, ¥, ¢, ¢' satisfying (1), (4) are such
that

y=cosmx (Ayshmy + Bchmy + Cychmy + D shmy), \

/ Al j (6)
' =cosma (Eye™ 4 Fe™),
d=sinma (e chmy + fshmy), ¢ =sinmaye™ . (7)
Substituting (6), (7) in (3), we get
2 2 2
a="2C, I=_2 A, y=—FK. 8), (9), (10
p” I p” r=— (8), (9), (10)

The boundary conditions are
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y=0; u=w, v=v, o=0,, t,=t,, (11),(12), (13), (14)
y=H; 7,=0, a,=¢(). (15), (16)
Substituting (6) ~(10) in (11)~ (16) and using (2), we get

%Jj:[él‘u//(l—-o) (A—d) +mH (n—/) {(3—40’)//.+/1’}]chmH

+-{/12(3~—4o’) —2pple (1—25") 4+ p/2 (1 — 20)}shmH ;

Do_—1|

A '(1— —o') + | 208 — 45" — Ot (1 90!
A m 1[4/1./‘ (1 '7) (1 4 )‘f mH{,u (o 40) 2/1/1 0‘(1 20)

2 (1—29) }] chmH +[ {/z+ ¢ (1—29) } {#(‘-’ —4s")

—u (1 —20)} +dmHu (1 —0) (1 —o’)] shmH} )

_ 17
%: {4;/2 (L—a)2+2mH ! (p—/) (1 —")}ChmH

+2//(1—17)[ {;H-//(l — 20)} ~mH(,u—p’)] shmH ,

M=~T2’L(1:£2 121#'(1 —a) +7?ZH/1(1—0’)]chmH
A m |\ J

+ [2;1(1 —d')y + mH{p(l-—Za’) +/1’}] shmH} y

B=F, a=2cC, p=24, =25,
m m m
where
=24/ (1=0) |(1=27) +4| chinF]
+ [4/1// (1—0) (1 —0d')y —mH (p—p") { (B8—4d')p +-/1’} ] shmH. (18)

The elementary value of ¢, at y=H is
o,=—m? cosma (AHshmH + BchmH + CHchmH + DshmH). (19)

Hence in the special case

y=H; ,=P cosma, (20)
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the solution of the corresponding vertical component of displacement at
the surface assumes the form

__PH cosmz (1—o0) [ 1+2R(mH)e™* " —Ne—""

v, =t A=af _, | e
2 mH L1-2{R(mH)?+ S)e*"""+ Ne """

where
N=N'|M, R=R'IM, S=S"IM,
M = p2(8—40') +2up/ (5—605" —65+8a0’) + 1/2(3—40),
N’ =p2(3 —46") +2pp/ (—3 420" +20) 4 /(3 —49), (22)
R =2(p—p) {p(3—40") + 1},
S/ =p2 (3-4&’) +2pp/ (1—20) (1—20") + p/2(—5+ 1256 —80%).

The maximum value of the dis-

.y
placement v,_,, which is distributed //MM' L’ s
sinusoidally, for different ratios of | = ol 4a
the thickness H to the wave length | 1 i Pﬂ?;‘;x T_ﬁ
27z,m as well as for different values [ ' : s
of p'p/ are shown in Fig. 2. It /M‘:MF ) 1,
should be borne in mind that the / hesiptzie- gl |
broken line specially shows the max- X ’
imum vertical displacement at y=0, i —— ~mH |’
namely, the bottom boundary of the [ v —
layer, for the case p/p#'=1,2. S A S E S B R B

We shall now generalize the so- Fig. 2. Maximum values of v for

lution in (19) in the form sinusoidally distributed loads.

oc

a,(at y—:_H) :S —m2cosmxA¢(H, m)ydm, (23)
0
where

¢(H, m) =HshmH+TBchmH+—§—HchmH+%shmH . (24)

Comparing (23) with Fouf‘ier’s integral (for an even function)

"0

7, (at y:H)=¢(x)=3§

co

cosmxdmg o(A)cosmid?,
0

T
0

we get

_9 "
A= — =2 \ «¢(} Ad2 . 25
g (H, m)S ¢ (A)cesmia (25)

0
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The corresponding vertical component of displacement in the layer is
then

p— 2| cosma g(/f ") gy ¢ (A)cosmid?, (26)
T, 2r mPp(H,m) .
where '

@(y, m) = {my chmy—(1—o)sh my} + —f—msh my
—-—g—{(l—Za)chmy—myshmy}+£~"mchmy. (27)

It is possible to write the horizontal component of displacement in the )
same way as in the foregoing.

3. Distribution of surface displacements and inclinations in a general
case.

The surface vertical displacement is now clearly of the form

E ~2m Il —dmI -
v"’*":S 2cosma 1_0)[ 1+2R(mH)e*""—Ne ]

um 1-2(R(mH)? +Sje+ Ne ]

«(lmg c(A)cosmidr,  (28)
R, S, N being shown in (22).

In the special case, p=p/, o-=6’, that is, in the case of a semi-
infinite body, there exist the relations R =0, S=0, N=0, so that the
integral (28) can be evaluated very readily for any form of ¢(%).

Let

g(a) = L (29)

the maximum and the resultant of the pressure being P and =Pa vre-
spectively. Since the integral (28) is somewhat difficult to evaluate
even in the case of pressure distribution (29), we shall for simplicity
calculate the surface inclination of the body. The surface inclination
in the case of pressure distribution of type (29) assumes the form

avi:—nz ~ w—Pi w (1— g)[, 1+2R (mH) e"?mﬂ?, Ne—-ﬂm{{ w‘] dm
ox 1—2{R(mH)?>+ S}e "+ Ne="""
(30)



364 ' K. SEzAwWA and K. KANAIL ' [Vol. XV,

As already mentioned, in the special case where p=¢/, s=0¢’, name-
ly, that of a semi-infinite body, the expression within the pair of
brackets in (80) tends to unity, the evalution being consequently very
simple.

Unless ¢//p is as large as p//p > 2, the integral (30) can be eval-
uated by expanding in series the expression within the pair of brackets,
the expression of the surface inclination accordingly being

My —5) . aso -
__}[-—_]!:__ - %P‘aglﬁm ) sinma %e—'ma+7/le—m\a+-l[)+7}26 mla+41H)
It

Fpe e ddm, (31

where
71=S+RHm+ RH*m?,
7,= (282 —N) +2RSHwm +4RS H*>m?+ 2R*H*m? -+ 2R*H'm* ,
93 =8 (452—3N) + (4S*—~N)EHm+ 3(45>—N) RH*m? + 8R>*SH*m?
+12R2SH*m* + 4AR3H®m® + AR*Hm?® ,
73=(8S'- 8NS2+N?) +4(25*—~N)RSHm
+16(2S82—N)RSH*m?+. . . .+ 8R‘H®*mS,
75 =S (1654 —~20NS? + 5N?) + (16S*—12NS2+ N?) RHm
+5(16S*—12NS2+ N2)RH*>m2+. . . .+16RHm10,
7= (3285 — 48NSt + 16N252 — N*) 4+ 2(16S* — 16N S + 3N2) RSHm
+12(16S*—16NS2+3N2) RSH*m>+. . . . )
7. =S (645 —~112NS*+ 56 N2S2 —TN3)
+ (6456 —80NS*+24N2S2—N3)RHm
+7(648°—80NS* +24N*S* =N} ) RH*m*+ . . . . . . ,
7= (12858 —256N.S° + 160N2S* — 32N5S2 4 N
' +8(16S6—~24NS* +10N2S2— N3) RSHm
+64 (165 —24NS* +10N2S2—N3)RSH*m?+. . . . . ,
7o S (25655 — BT6N'S® + 432N25* — 120N3S2 + 9Ny
+ (25688 — 448N S6 + 240N2S*— 40N3S? + NY)RHm
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+9(256S58 — 448N S6 + 240N2S* —40N3S2 + N*) RH?*m?

...................... : (32)

In the case where y//s is fairly large, including the case p//p= oo,
the expanded form shown in (31) diverges. Here we shall alternatively
assume that the expression (28) is equivalent to the form

Vy=n —7H—S - ZA e~ dmg e(A)cosm(x—2)dA, (33)
-

-

from which it follows that

1

S = (34)

(1—1)[ 1+ 2R (mH)e " —Ne-"" J
mH 1_2<R(MH)2+S)6‘2”‘”+N@‘4"7” ’

the pressure distribution being restricted to even type about the plane
x=0. Since the right-hand side of (34) exactly corresponds to the or-
dinates of the curves in Fig. 2, the expansion shown on the left-hand
side of the same expression is tantamount to analysing the curves under
consideration in a series of exponential functions, the values of A, and
¢, being thereby determined. The present method is available for a
wide range of cases.

Now, the inclination of the surface corresponding to (83) is written

a_%"fi’:—z S S A e msinmadm| ¢ (d)cosmidA, (35)
x e 0 " 0

hence assuming the same form of ¢(4) as that in (29), we get

20,-r_ Ija s Aw @36

o 7 (c,,+a)2+ 22"

It may be noted moreover that it is the integral of (36) that gives rise
to the displacement distribution, namely,

2 x \2
Puc A ( 4_#<>H—> (37)

,vy:II: 7 e
p 2 _“ L9 ) )
provided the displacement v,., at #=co is zero.

It was found empirically that, for « > 0, the inclination determined
by means of (36) always assumes a positive value for any condition
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of the elastic constants.
next section.
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This matter will be dealt with more fully in the
Using the mathematical results above given, we calculated

the distribution of the inclination on the surface for three cases, (i) /=g,

A0

3 ﬁ
“30

25

<200

35

30H

25

20

40—

S+ & T » U s A e D A
Fig. 3. Distribution of surface Fig. 4. Distribution of surface
displacements. p/=p. displacements. u//p=2.

(i) ¢/p=2, (ili) ¢//t=c0, and for different values of a/H for these
three cases, o being assumed to be 1/4; the results are shown in Figs.
3, 4, 5. From the form of ¢(z) in .,
(29), it is shown that the smaller
the value of p/¢/ or that of a/H,
the greater the concentration of the -
vertical displacement in the neigh-
bourhood of line x=0. It also ap-
pears from Figs. 3, 4, 5 that the
displacements are invariably directed -
downward like that due to Tera-
zawa’s criterion for the case of a
semi-infinite body. From tentative
calculations it was found that the
present conclusion is also valid for

the case of an incompressible body.

<351

Distribution of surface
wip=co.

Fig. 5.
displacements.

4. A more general criterion of the sense of the vertical displacement
on the surface.

Although we have shown some examples of the general deforma-
tion of the surface in a stratified body, we have yet given no accurate
criterion’ with regard to the sense of the vertical displacement on the
surface.
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Now, it is generally possible to write

9yrr —18 A, e'”ﬂ"‘smmmdmg ¢ (4)cosmidi (85')
cx pr)

-0

for an even distribution of the surface pressure with respect to =z,
provided expansion

o 1+2R(mH)e—2mII__Ne—4m,]I ] oAl
T‘A“e am — (1 —g [ - 34
‘f{ ( ) l_z{R(mH)2+S}e—-imll_*_Ne--lm]l (o )
in (34) is possible. Rearranging (35’) in the form
. =1 ) da NT‘A e i 1) d 38
et P ¢(4) > L7 sinm(z—4)dR, (33)
-0 0
and using the integral
T‘A Lmsinm(e—A) dAi=31 A, (x—4) (39)
DGR CRLY
we have
yom =1 A.E=D oyar, 40
ow  pm S_w T et (w— /)2(/( ) ( )
the integral of which is
~1{7 a r—
- /{g loge "": (( ))2<;(A)d/1, (41)

under the condition that v,_, at =4 oo is zero. Putting »—1=-X,
we get

~ VL (X
"'":%S z‘g lo G<H) +(Hl (x+X)dX (42)

g R —— IR
Cn 2 gOOl
(&) (%)
where co, denotes the condition that X tends to F .

On the other hand, we find that the displacement d1str1but10n for
the special type of ¢(z), namely

o(x) = a:zi—l-i’i (29)

is given by
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2 2 ° 2
) )
( H H H /
) a 2 < o )2 ’
LR +(—-
<H H ) H
where A,’s and ¢,s are invariably the same as those in (34'), namely,
those in (42). In the special case where the pressure of type ¢(x) is

concentrated quite close to #=0, it is possible to put a/H -0, so that
the expression of (37) may assume the form

SRSl

rloge L SHZ (43)
c

- 2_"1 (37)

Pa~4
/M ‘qT'Z

Vy=n=—

regardless of whether ¢,/H is large or small. The assumed condition
a/H—0 is virtually equivalent to treatment of the case of a semi-infinite
body. From Terazawa’s criterion,” therefore, the expression of v,.n
in (43) always assumes a negative value for any value of (= 0).
Thus @ in (43) may be replaced by X, whence it follows that the first
factor in the integrand in (42), is greater than zero, that is

A (c') +<%‘ 2 N

log.—
(G
for any X (= 0).

From the condition that the pressure is always directed in the sense
of gravity, the second factor in the integrand in (42) is also greater
than zero, namely,

(44)

o(@+X) >0 (45)

for any ¢+ X(x=0, X =0).
- From (44), (45) we conclude that the expression in (42) is always
negative, that is,

Vyerr<< 0, (46)

the problem thus being proved from general considerations. Whether
the material of the solid is compressible or incompressible does not
matter.

It is easy, though not rigorous, to prove alternatively from common
sense reasoning that v,_, <2 0. The deformation of a stratified body under

8) K. TERAZAWA, loc. cit. 4).
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vertical loads, distributed in whatever way, is virtually the same as the
resultant in the superposition of different deformations, every one of
which is caused by a point load. Since the problem of the deformation
of a body of any stratification that is subjected to a point load, is in-
variably the same as that of a semi-infinite body, the deformation due
to every point load is always directed downward. The superposition of
the deformations of downward displacements gives a resultant displace-
ment of the same downward sense, the proof of the problem being thus
very simply obtained. It thus appears, at all events, that all problems,
whether of a semi-infinite body, or even of a multi-layered body, can
be reduced to that of the case of a point load. It should however be
borne in mind that although this final discussion has resulted also from
a special case of Terazawa’s criterion, the explanation shown in the
beginning of this section, in which the general case of Terazawa’s condi-
tion was partly availed of, is a more exact one.

21. R HRITHE 23 2 B A OMRPEMERIE M3 T

g e vk
i % WF 5 B f
ST e o ow

PEEMEEV IR T 220 2 A0S BORBIES OB I 2oTk LS, %
DY ITRITEY BT TR 2 2 O FREERLN IR M LR ITL L2 TL 20
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