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1. In a previous paper? we discussed the probability of resonance
phenomena in the stationary vibration of the surface of a spherical
cavity, and concluded that, owing to the vibrational energy being
dissipated towards infinity, even under resonance conditions, the vib-
ration of the cavity scarcely assumes an infinitely large amplitude for
a finite value of n. In the case of smaller values of n the amplitudes
of the stationary vibration as well as of the dissipation waves were
not sensibly large even under resonance conditions. With a view to
ascertaining the most probable resonance frequencies in such a case,
we assumed a disturbance at the origin of a type differing entirely
from that of the previous case. Since in the case without dissipation,
the vibration type of a body under resonance could be uniquely deter-
mined provided its vibrational mode were specified, the investigation of
the separate cases in which the same mode of vibration are excited
under disturbances assumed to be different would give a better answer
to the determination of the true resonance conditions just mentioned.
In contrast to the previously assumed normal force at the surface of
the cavity, we shall now consider the case in which the surface at
the spherical cavity is subjected to a periodically changing shearing
force. ‘ )

2. The solutions of the problem being the same as those in the pre-
vious paper,” the boundary conditions are such that
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at r=a. In virtue of the relations

1) K. SEzawaA and K. KaNa1, ‘“Resonance Phenomena and Dissipation Waves
in the Stationary Vibration of the Surface of a Spherical Cavity,” Bull. Earthq.
Res. Inmst., 15 (1937), 13~20.

2) loc. cit. 1).



Part 2.] The Same Stationary Vibration of an Om'gz'n.

—_ 0 °
?——)J—}—Z/J -, = /1( v_=v 11)

>t )

where u=u,+u,, v=2v,+v, we find

2A7,{ (’2 Dpe, (}u)+i ,,+2(ho)‘
+Bn{~2—(-%%—1~)H,32( n+ 2 HiZy i) Hs:g(w)}——? :

f( 4 2n(n— 1)‘) @ ;2n+1 - " ]
A”[l(ll hou Hn+ (] )+2 ] Hn_‘, (h/?) H,H,,?(h" J

+2}37,n('n+1){——— e Hony (4r) +- —H,Ma(jr)} =0

at r=a. When A=y, we have

py/ @ 2n(n+1) (n—: e ]
And)—‘ /l ?CI/ l ]a ,,_ (]a) HHS(:’a‘)J’
/al n(n—
B.o— 7’83/;—“—[{1-_ 2—”(}1%}1&1“ (ha)

2[2n+1

e Mg(ha) H<'>g(lza)}],

(/»=[{1- 2D e, ) +2 2 3y (o) - H,:;swa)J]

f_ 2@+l (=1) ., 2n+1 |
l o H®y(Ga) +, = H2y (ja) —H24(ja) |
+ 1. o
4”53‘@ D {”ja HP, (o) ~Hi2y (i)
q_n=t @ hay)
{ T H“+1 (ha) + HS, 5 (ha)J.

The final solutions are such that
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the values of the constants 4,, B, being shown in (4). Using these
equations we shall calculate the displacements u, v at the surface
r=q as well as those of dissipation waves u,, v, at = for three
cases of n, namely n=1, 2,-4; u,, v, being radial displacement of
dilatational waves and transverse displacement of distortional waves
respectively. The results for the three cases are shown in Figs. 1~6.

-

Fig. 1. Displacements ‘at Fig. 2. Amplitudes of dissipa-
r=a; n=1. tion waves; n=1.

In the present results, P,(cost)) in u or dP,(cosf)/d? in v was again
conventionally replaced by unity.

The solutions of the case n=oco are easily obtained in the same
manner as those described in the previous paper which however are
omitted here.
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3. Figs. 1, 3, 5 show that the value of «/v, namely, the ratio of the
radial to transverse displacements at the origin invariably tends to
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Fig. 3. Displacement at Fig. 4. Amplitutes of dissipa-
r=a; n=2. tion waves; n=2.
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Fig. 5. Displacement at r=a; n=4.

zero for infinitely large values of ja, that is to say, the movement of
the surface at the origin is purely transverse for extremely high vib-
rational frequencies. Figs. 3, 5 also show that both % and v assume
maximum values at ja=1-15, 1:5, 09194 n for n=2, n=4, n=co
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respectively.

From Figs. 2, 4, 6 it will be seen that, while the relation that
u,/v,—0 for ja—co also holds, the same ratio at ja—0 assumes the
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Fig. 6. Amplitudes of dissipation waves; n=4

values g/ (A+2p), 2{p/ (2+2¢))*?, (3/10) {¢/(A+2¢)}** for n=1, 2, 4 re-
spectively. The first maxima of u,, v, arise at ja=25 and 4'5 re-
spectively for m=1; at jo=14 for n=2; and at ja=2'5 for n=4.
" The presence of the second maxima obeys the condition such that
ja=44 (for u,), 57 (for v,) for n=2, and ja=13-5 for n=4.

Almost all the properties mentioned above are immediately con-
nected with those of the previous case, namely, the case in which the
spherical origin is subjected to disturbance of normal pressure type,
both the results being arranged in Table I for comparison.

Table 1.
Type of disturbance
Source 7 ja | —
: Normal force - Shearing force
r=a o V>0 ufv >0
) Vafty >0 /v 0
n=1 0 Vafuy=(A-+2)/ 12 vafuy = (A-+20)/ 12
' == 00
! 45 Max. of u, Max. of v,
2:5 Max. of v, Max. of wu,
| 3 o0 viu->0 ufv->0
f r=a 1-15 Max. of # and v Max. of w and v
‘; oo Vol >0 1/ V2>0
n=2 | _d (A2 _A(A+opE
o 0 Vsl = 2( 7 ) Vafuy = 2( 7 >
= 14 1st max. of u, and v 1st max. of 2; and v, (sub.)
j 57 ond max. of 2nd max. of v
’ 4-4 ond max. of v, (sub.) ond max. of u,

(to be continued.) 7
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Table 1. (Continued)
vl >0 o o

| e |
r=a | I
15 | Max. of u and v Max. of # and v
- l’ [ AR
| o Vol >0 /02> 0
n=4 10/A+242\§ 10/A4-20\3
| i — 2 AT 4" )2
oo «i 0 : vl = 3( 7 ) vaofuy = 3\ 7 )
2:5 } 1st max. of u; and v I1st max. of u;, and v,
| 135 ond max. of u; and v2 ond max. of u; and .

It now appears that the resonances for n=2 and n=4 are condi-

tioned by ja=1-15, 1'5 respectively. The resonance condition of a solid
vibrating sphere for n=2 is ja=2'64, which obviously differs from
that for a body having a spherical cavity of the same radius.
4. It is possible, at all events, to conclude that since the ratio of
vo/u, tends to increase with increase in n, the amplitudes of transverse
waves would be unduly large conformably with the extent of the com-
plexity presented at the origin by the distribution of the disturbances.
It also appears that, for a given type of disturbance at the origin, the
amplitudes assume relatively large values for a certain range of vib-
rational frequencies. That it is hardly possible for transverse waves
of very high frequency to exist is also obvious.

Finally, it should be borne in mind that, since the present ex-
amples are here given as idealized models for explaining the nature of
a fairly complex seismic origin, it is immaterial whether the actual
seismic origin be of the doublet type, or a quadruplet type, or even of
such diverse type as to be free from regular geometrical conditions.
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