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1. It is well known that such forms of microseismic disturbance
on a ground surface as are probably caused by local impulses in the
atmosphere, generally point to undamped coupled free oscillations,
their periods and amplitudes differing with localities as well as with
meteorological conditions. Disturbances of this type that have been
observed in the Kwanto region had very often periods ranging from
10 to 30 sec, with amplitudes of the order of from a few microns to
a fraction of a milimeter. The question arises why these vibrations
should be undamped in spite of their small amplitudes. For undamped
free vibrations to be maintained, it is obviously necessary to postulate
the existence of some surface strata, the whole thickness of which is
a few kilometers, with the lowest surface bounded by another stratum
whose elastic constant differs greatly from those of the upper strata,?
although a part of the vibrational energy is dissipated into air. But,
if the surface crust were really in such a condition, the amplitudes
of forced vibrations under resonance would be abnormally large, as
will be discussed presently. If, on the other hand, the lower boundary
of the upper strata were not too rigid compared with these strata,
the amplitudes of vibrations, even under resonance, would be within
a certain range, but the free vibrations then would assume 2 quickly
damping type. It is therefore of pressing importance to determine
whether the microseisms under consideration are free vibrations or
forced vibrations as well as to determine the state of stratification
near the earth’s surface. '

2. We shall first consider the case in which a uniform layer rests
on an extremely rigid substratum. Although the pulsatory disturbances
on the earth’s surface are as a matter of fact variations in dynamic
pressure due to irregular flow of the atmosphere, for simplicity we
take the case in which periodic pressure waves, whose approximate
intensity is of the order of the variation in dynamic pressure, impinge

1) K. SEzawa and K. KANAI, Bull. Earthq. Res. Inst., 13 (1935), 251~264,
484~495,
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on the ground surface. The differential equation determining the
pressure change p,d%/dx in air may then be ex-
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the axis of x being taken vertically upwards Fig 1

from the lower boundary of the layer. Since
in this equation it is assumed that the pressure change takes place
isothermally, owing to the relatively slow variations in the state of
the air, we may put c2=p,/p,, so that the air pressure varies as
p,9¢/dx, where p,, p, § are mean pressures as well as density in
atmosphere and displacement of any point in the air in oscillation

considered statically. The solution of (1), which is the result of vib-

ration in air with amplitude «, is expressed by
E=21sin(fx -+ y)cospt, . 2)

where f2=p?%c2=pp%p,. The vertical vibration of the surface layer
of the earth is obtained from the equation

9u d*u
—— =442 , 3
T ’)axz (3)

p, 4, p, u being density, elastic constants, and the displacement of the

layer respectively. The solution of this equation satisfying the condi-

tion at the lower boundary of the layer, =0, is expressed by
u=Asinf'xcospt, 4)

in which f'2=pp?/(A+2¢). The conditions at the upper surface of the
layer are

u=¢, A+ 2p0) dujdx =p,9s/dx . 5), (6)

We thus finally get ’
§=2asin[f(x—H)+tan‘1(atanf’H)]cospt, )
2aasin f/x cospt ®)

T asin?f'H +cos? f'H ’

where a=1/p0p0/p(l+2/z). If we put p,=0'00129, p,=76.136.930,
p=2, 2+2¢=10"1, we obtain «=0-309 .10-4. It should be borne in mind
‘however that, under resonance, the common boundary of the two media
becomes loops of vibrations for the layer as well as for the air. We
have calculated the values of u at the free surface for different values

w
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of f'H, that is, for different frequencies of the pulsations in air, the
result being plotted in Fig. 2.

Let us take as an example the case, 7 1,
in which the maximum in pressure vari- a4t a
ation in air is 1/10,000 of the baromet- 1 |
ric pressure, and which roughly corres-
ponds to a variation in wind velocity of 0 ] S
4-5m/sec, while the period of the same
variation 2z/p is 10 sec. Then, if V be
the velocity of sound waves, we have
f=p/V=(21/10)/280.102=2-24.,10-5cm"?,
so that under resonance conditions, f'H
=n/2 (roughly corresponding to H=15
km~38km in rocks of superficial nature), we have 20=(5¢/9x)/f =
(1/10,000)/2-24.1075=4°5 cm, whence the maximum value of 2u (=4a)
becomes 9 cm. This is obviously much too large to expect in micro-
seisms under such small pulsations in the air pressure, thus rendering
improbable the existence of an extremely rigid substratum.

3. In order to ascertain the nature of the free vibrations of the
layer, generalization of a solution of types (7) and (8) by means of
Fourier’s integral was resorted to. The form of the free vibrations
of the layer is such that

Fig. a.

u=2ago(--1)m%{p[ﬂ{w+x+H<%_z—m)}]

+F[,B{Vt—x+H(%—27nﬁ>}]}, ©)

where B=f'/f, corresponds to the initial disturbance
§=F(ct+2), (10)

which is supposed to act on the free surface. Thus, the damping .
factor is given by

(1—a)?/(1+a)?. (11)

Since a is very small compared with unity, it is possible to expect
undamped free vibrations in this case. But since for the reason that,
in almost resonance conditions, the amplitudes of forced vibrations be-
come abnormally large, the presence of an extremely rigid substratum
under the surface layer is hardly possible.

4. We shall next take the case in which the ratio of the elas-
ticity of the surface layer to that of the subjacent medium is finite,
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so that it is possible for the vibrational energy in the layer to dissi-
pate not only in air but also in the subjacent medium under consider-
ation. Let u, w', p, o', 4, ¢ ¥, ¢ be the displacements, densities,
and elastic constants of the surface layer and the subjacent medium
respectively, H being the thickness of the layer, while & is the dis-
placement of air particle such that the change in dynamic pressure
in air may be expressed by p,95/dxz. The solutions for the vibrations
of the respective media

E:aei(pt-kfz)_'_Ae’i(J”l—f”) R (12)
W= BeiwtID 4 Cgfrt=1'a) | (13)
W =Dl (14)

where f2=pp?/p,, f'2=pp% (A+2p), ["2=p'p?/ (X +2p'), are to be substi-
tuted in the conditions

w=0:  u—=u, (A+2p)ﬂ=(l’+2ﬁ’)§—g, (15), (16)

3

x=H; u=§ (Z+2/A)——=p0 (17), (18)

The final solutions for &, u, u’' take the forms

E=acos(pt+fx)

L@V {(Pa* —T)cos?f H + (a* —a'*)sin®f H) + {2a(1 — o'*) cos" Hsinf' H}*
{(ad’ +1)cosf H)?+ {(a+a’)s1nf’H}2
3 B 2a(1—a'?)cosf’Hsinf'H }]
' cos[pt fa+2fH+tan {(a2a'2—1)0082f’H+ (a2 —a'?)sin*f'H
(19)

2aay d'2costf'x+sin?f &

U=
V'{(ad +1) cos [ HY?+ { (a+«') sin [’ H)?
_ -1 atd ! —li ! 1
.{pt+fH tan (aa,+1taan>+tan (a,tanf x>J, (20)
, ‘ 2aaa’

vV {(ad +1) cosf'H)>+ {(a+d')sinf H}?

/
{pt + s+ FH —tan‘1<~a+—at3n f’H>} , (21
. ac’ +1

where a=1/p0’p0/p()~+2ﬂ) , o =V A+21)p/(¥ +2¢')p’. We have calcu-
lated the surface displacements for two cases, namely (i) p¢/p' =1/4,
(i) g/ =1/16, unde1 the conditions that p=p/, A=p, ¥=¢/, the result
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being plotted in Figs. 3,4. It will be seen that, owing to the great
dissipation of vibrational energy into the subjacent medium, the am-
plitudes of vibrations at the surface are fairly small, even under re-
sonance conditions.” Taking an example

similar to that in the preceding section, ’ 57?

we put a=(9%/dx)/f=4'5 cm, so that the 2 |

maximum value of wu(=2waC), C being e
the ordinates in Figs. 3, 4, become 146 ! A i, fyﬁ
microns and 29 microns for the respective Fig. 3. p/w'=1/4.

cases of p/p’'=1/4 and p/¢' =1/16. These
are more like the values probably to be
expected in an actual microseism. If the
period of pulsation in air be 30 sec, we
have 44 microns and 60 microns for the .
amplitudes on the ground surface for the

! 1 1 1

respective cases. The wind speed of 45 ¢ 7 7 3 & 5 &

—fH

m/sec and its fluctuation period of 10 to Fig. 4. p/p'=1/16.

30 sec are rather underestimates, and we
may expect larger amplitudes of microseisms in the case of strong
wind, say 20 or 30 m/sec.

5. The forms of damped free vibrations correspondmg the above
case are obtained as in the preceding problem by using elementary
solutions and generalizing such solutions by means of Fourier’s inte-
grals, the result being

’ w_ (I=ai"(L—a)" of o+ HEmi1
u=a(t+a )5~ 0 T (Ve S H2m )|

_ga(l_a/)z( pyr_(=a"(d—a)" o {ﬁ(vt—xjt-%—}lzmﬂ)},

=0 (1—}-(1)"”1(1 +al)m+l
(22)
’— /00 1y (1““(‘)"1(1_(/)"' { l( ¢ i___H‘z 1>}
W =4as’33(~1) Tr (13 o) BE(V't+a+ i )k
(23)
where B=f'/f, B’ =f"/f', corresponding to the disturbance
E=F(ct+z). (24)

2) The calculated microseismic amplitudes of the ground surface may be made
small by introducing viscous resistance in the surface layer when the substratum
is exceedingly rigid. However, the value of coefficient of resistance is then too
large to be expected from the data of earthquake waves, Furthermore, it is im-
possible for microseismic amplitudes for any wave length to be equally small
under such resistance.
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The decay factor <
(=) (1 —r )" (25)
(I+a)?(1+d)?

in this case is much less than unity. This tells us that microseisms
cannot be regarded as free vibrations of the surface layer even under
the condition that the subjacent medium is not infinitely rigid.

6. The case of two surface layers resting X

on an exceedingly rigid medium could be solved :
in a similar way, although the nature of the / i pAL Y
answer thus found will not differ greatlsf from \ \}k PN
that of the case of one layer. The equations of 10
displacements in air and in the first as well as / 7

the second layers are expressed by Tig. s.
Szhéi(pt+fz)+ Aei(])l—f.t)’ (26)
w= Bei@t+11 4. Cekt-1'o , (27)
ul:Deipr-j"x)_*_Eei(p!—f’z) , (28)

in which f2=p,0%/p,, f'2=pp? (A+2p), ["2=p'p?/(X +2¢/), the conditions
at the boundaries being ‘
x=0; ' =0, (29)
o=H; w=u, @+20%%=@+2:)%%,  (30), (31)
ox dx
o=H'; u=f, (+2p)2%_p, 9% (32), (33)
Jx dx
The final solutions become

_ 20 1y —tan-1 ] ' P
& cos{f(x H’)—tan 1QJcos{pt+fH +tan IQI’ (34)

VPR Q

200V @ s ["H + cos? ["H
vV P+ Q*

.cos{f’ (x—H) —tan™? c_cfc;lf_”_}i} cos {pt+ fH' +tan™? g—} ' (35)

u! =1—/%Z—TQ—2 sinf""x cos {pt +fH' +tan! %} , (36)
where
P=cosf'(H' —H)cosf"H—d sinf'(H'—H)sinf"H, )
Q=a{sinf’ (H' —H)cosf"H +a cosf' (H' —H)sinf"H . |

Two cases, namely (i) p/¢/=1/4, (ii) p/¢'=1/16 (H'=2H), other

(37)



DPart 4.] The Nature of Microseisms of Local Type. 735
conditions being the same as in the preceding one, were calculated,

the results being shown diagrammatically in Figs. 6, 7. In this case
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Fig. 6. p/p’=1/4. Tig. 7. p/p=1/16.

too, owing to the fact that the energy is capable of flowing only into
air but not into the deep stratum of the earth, the maximum values
of the surface displacements become very large. It is nevertheless
certain that for some ratios of p/¢' as well as of H/H’, the resonance
periods for different types of vibrations approach each other, so that
the selective forced vibrations would resemble the coupled free ones,
at any rate, in the type of vibrations.

7. An approximate method of solving the problem of damped
vibrations, due to dissipation of their energy into the air, is by inte-
gral equations. The method is similar to that employed in the previ-
ous paper.  Although the case in which the subjacent medium is
infinitely rigid is of no practical importance, as mentioned in Section
2, we shall nevertheless show how integral equations may be applied
to such dissipative system.

Take the axis of a directed upwards with its origin at the lower
boundary of the surface layer, and let H, p(x), L(x)
be the thickness, density, and elastic constant of the
stratum respectively. Taking into consideration the
special nature of the integral equation, we shall dis-
cuss the problem as being a static one. Let the re-
action of the air at the free surface of the layer
due to a unit load within that layer be A, its value
being different according as the frequency of vibra-
tions are different. The vertical displacement at x due to a unit load
applied at z=« in the layer is then expressed by Green’s function
such that

3) K. SEzawA and K. XKaNa1, Bull. Earthq. Res. Inst., 13 (1935), 490.
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k(x, a)=(1—A)de(f) ,  (z<a)
v (38)
(Fde 4 (7 de "
k(z, a)_LL(z) ALL(z). (x> )

If in the vibration problem, the vertical displacement at x=a be
u(a) cospt and the frequency of vibrations be p, then the load due to
the inertia force acting on element da at x=a will be

pPo(a)u(a) cospt de . 39)
The displacement at x=2 due to this load is therefore expressed by
p2p(a)u(a)cosptdak(z, a), (40)

so that displacement wu(x)cospt at x=2x due to the total loads in the

layer assumes the form
n

@) =p| Pz, a)u(a)da, (41)
0
the time factor being omitted. The movement in air is taken only for
boundary conditions at x=H. We now write
p(@)e(z, @) =K(, «) , (42)

whence (41) reduces to the homogeneous integral equation
big

u(w):p?S K(x, @) u(d)da, (43)

K (z, @) being its kernel. The boundary conditions at x=H are such
that

u(H)=2sin(k’H+7), (44)
7 v ’
p? o _‘g{%u(a)da —_-ZLLSE cos(K'H+7), (45)

where p,, 27/k’ are the barometric pressure and wave length of the
disturbance in air respectively. Since
)
dx =11 L(H)
(45) redueces to

H
—7?| Ap(@)u(e) = 2w cos (WH+7) . (45')
0
From (44), (45’) we get

[u(H)]2+[ ff’ g:lp(a)u(a)bda]z:=4 . (46)

0
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By the trapezoidal rule for evaluating the integral, (43) and (46) are
equivalent to

p2H qZ{(SH qH) (qH) <sH>’ (43"
q=0 v

2 p2A2H2[ qH gﬁ ]2_ ,

[u(H)] P2k 22 Eﬂq ( v )u( v ) =4 (469

where 8,=1/2, fy=- - -=B,=- - - =p_=1, 8,=1/2. Eliminating

v+1 values of u in (43'), it is possible to obtain the value of A.
Substituting the value of A thus obtained in v+1 equations in (46'),
we get the ratios

u(O):u(lj—):n--:u%): - ..ot u(H) . 47)

Substituting these ratios in (46), we obtain the absolute values of
S CAN
Y

With a view to comparing the result of the present approximate
method with that of an accurate one in Section 2, we selected the case

p(x)=py,  M&)=ty, (48)
when the Green’s function becomes
bz, a)=(1—A)-2-, (z<a)
. 10

—Ax

#(0), u H
.V

(49)

le(w, @)= (w>a)

o :

After substituting these values in (43), (46’) for the two cases (i)
f'H=n/2 (resonance condition), (ii) f’H=1, we calculated the distri-
bution of displacements in the layer. If we were to take five ordi-
nates, namely, v=4, A would take the form

A4 1-329432042—1024¢° +512¢*

’ 50
1—-32¢+320¢2—1024 ¢* (9)
where ¢=4/(f'H)2  The result —r
of the calculation is shown dia- N /
grammatically by the full lines \j‘j{
in Figs. 9, 10; in which the ac- H ‘*ﬁ’
curate values determined by (8) M !
are shown by broken lines. , AL ﬁ
> . 0 65 R s 4 7 2 3 4
8. Concluding Remarks. Fig. 9. f/H=r. Fig. 10. f/H=1.

From a comparison of the
results obtained in Section 2, 3, 4, 5 it seems now established that
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microseismic vibrations of local type are mainly formed by selective
forced vibrations of the surface layers due to the pulsation in air
pressure on the surface of the earth, and also that the rigidities of
the underlying strata are not very large compared with those of the
upper layers, the ratio of the rigidities for the two being probably in
the range 3~20. Under this condition the amplitudes of microseisms
range from a few microns to a hundred microns when the variation
of 4‘5m/sec in wind velocity takes place with period of the order of
10 to 30 sec. Even in such a state, no free oscillations can be main-
tained because of the fact that the energy is dissipated relatively rap-
idly into the subjacent medium. The flow of energy into air, when
the underlying media are assumed to be extremely rigid, is tco small
to participate in the dissipation, in which case the vibratory motion
of the surface layers under resonance becomes exceedingly large, say
9cm in amplitude, even in a very slightly disturbed condition of the
atmosphere, say a variation of wind velocity 4'5m/sec with period 10
sec. It is also impossible to expect large damping due to solid vis-
cosity in meterials. It follows therefore that microseims of local type
cannot be free vibrations of the earth’s upper layers unless we assume
that no resonance conditions would ever arise. It would seem that the
regular periodic motion in the microseisms under consideration has its
origin only in atmospheric disturbances of such a character as would
give rise to easy selective resonance of the surface layers. This im-
plies that the variation of atmospheric condition is due to an aggregate
of fairly regular periodic pulsations. Records of air conditions ob-
tained by means of meteorological instruments, and data of vibrations
of tall buildings in stiong wind seem to confirm this conclusion.
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