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1. It is established that the vibrations of a surface layer, whether
‘free or forced, must be of such a damping type as shall depend on
the ratio of both density and elastic constants of the layer to those
of the subjacent medium.” The question may arise as to how the
vibrations should be damped in the case of a layer with varying den-
sity or elastic constants. Although the way of damping in such a
case naturally differs greatly according to the distribution of densities
or elastic constants in both the layer and in the subjacent medium, it
is nevertheless possible to conclude that the damping is due mainly to
the dissipation of vibrational energy into the subjacent medium and
very little to other causes of damping, such as internal friction in the
ground, etc.. It is therefore obvious that the rate of damping is a
certain function of density as well as of the elastic constants, and of
no other physical constants.

As already stated in our preceding paper,® the method of rep-
resenting damping by the terms at present used in differential equa-
tions of motion, and even by the functions in energy equations specify-
ing damping forces, is not dynamically satisfactory. The semi-empirical
form of dissipation function due to Lord Rayleigh® appears to have
been misused by succeeding mathematicians. It will be plain from
the nature of the problem that the dissipation problem of a vibrating
body should be attacked by solving the usual simultaneous differen-
tial equations of motion for the body under consideration as well as
for the neighbouring media through which the energy is dissipated.

2. Let the axis of « be drawn vertically downwards [or upwards)
from a certain point 0, and let u, ’, p, o', 4, p, ¥, ¢’ be the displace-
ments, densities, and elastic constants of the subjacent medium and

1), 2) K. SEzawa and K. KaNAlL “Decay Constants of Seismic Vibrations of
a Surface Layer”, Bull. Earthq. Res, Inst., 13 (1935), 251~264.

3) Lord RAYLEIGH, Proc. Math. Soc., London, [il, 4 (1873), 357~368; Theory of
Sound, 1, 2.
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the surface layer respectively, H being the thickness of that layer.
In the case of distortional
waves transmitted vertically,
the equations of motion of the
two media are expressed by
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In the case of dilatational waves transmitted vertically, it is only nec-
essary to replace ¢ by 242y and ¢/ by A’ +2¢/, not only in these equa-
tions but also in those that will appear hereinafter.

Let us suppose that p, g, p' are constants and that ¢/ varies as

f‘, =Aa/n’ (3)
when equation (2) then transforms to
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provided p is the frequency of vibrations of the disturbance, and the
time factor is omitted. The solution of (4) is written -
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(i) When the elastic constant in the layer increases downwards,
the axis of z should be taken also downwards with its origin, 0, at
distance h above the free surface, where h is so adjusted that the
distribution of elastic constants in the layer is in a specified state.
The form of the vibrations in the subjacent medium is found from
equation (1), which in the present case is written
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U= eik[}'lt+x)+ Be'ik(l'll—:v) , ( 6 )

in which V,=v"g/p, k=p/V,.
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(ii) When the elastic constant in the layer increases upwards, the
axis of = should be taken also upwards with its origin, 0, at distance
h below the free surface of the layer. The form of vibrations in the
subjacent medium in this case is expressed by

U= ei’.{I'lt—x)+Beik‘(I'1l+x) . ( 7 )
The boundary condition at the free surface x=~h is
ou' fox =0, (8)

while the conditions at the lower boundary of the layer, (i) =h+H,
(ii) x=h—H, are '
ou , ou’

—u, po_ g 9), (10
u=u Poag =" (9), (10)

in the case of distortional waves. Substituting (5), (6), (7) in (8),
(9), (10), we obtain the values of B, C, D.

3. Tor the case in which the elastic constant in the layer in-
creases linearly downwards with its value Ah at the free surface, we
put n=1 in (5), and solve (5), (6) so as to satisfy boundary condi-
tions (8), (9), (10). The final solution is expressed by

! =7?_;2I§{J0(2k' VIZ)Y, (20 h) — Y, 2k M)Jl(zkfh)} .
.cos{pt+k(h+H}—tan‘1§} , (11)

in which &'=pv/p’[Ah, and
P= / P_’M@{Jl(zkf VR H)) Y, (2 h)
op
Y, @k T ), @), (12)

Q= {J,2k'v h(h+H))Y (2K'h) =Y o(2k'+/ h (h+ H))J (2k'R)), (13)
corresponding to the incident waves
u,=cosk(Vt+x). (14)

For the case in which the elastic constant in the layer increases
linearly upwards with its value Ak at the free surface, we put n=1
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in (5), and solve (5), (7) so as to satisfy the same boundary condi-
tions, the final solution being

[ 2 f 'S T A ’ 1~/ )
W= | 0@ ) Y120 + Y 21/ /z:c)Jl(Zk’h)} .
.cos{pt—lc(h—H)—tan“g} . (15)

in which ¥’ =py/ 0 /Ah, and
P:}/A‘_’L‘MUI(Zk’V}L(h—H))Yl(ZIc’h)
or \

~Yu(@k v EG=H)T,@I'D),  (16)

Q={J, 2KV h(h—H))Y,(2I'h) - Y ,(2K'v h(h—H))J,(2k'R)), (17)
corresponding to the incident waves
u,=cosk(V,t—x). (18)

If the densities or elasticities of the two media were to differ ex-
tremely from each other, P would be zero, so that Q=0 becomes the
frequency equation for the vibrations of the case without dissipation.
When the frequency of vibrations becomes relatively large, it is pos-
sible to apply asymptotic expansions to the cylindrical functions in (11),
2), (13), (15), (16), (17), so that, under the condition correspond-
ing to resonances at relatively large frequencies, the ratio of the amp-
litudes at the free surface to those of incident waves becomes

A A as)

where //0( Ah), pi(=Ah+H or =Ah—H H), ¢ are elastic constants at
the free as well as the lower surfaces of that layer and in the sub-
jacent medium, whereas p’, p are the respective densities of the two
media. Relation (19) arises from the condition, @=0, which should
exist at resonance frequencies. Since, again, at frequencies that are re-
latively large the factor consisting of cylindrical functions in (12) or
(16) vanishes periodically with respect to &/, P vanishes at such values
of %', when the denominator corresponding to the root sign in the ex-
pression of %’ in (11) or (15) contains only @, whence it follows that
the ratio of amplitudes at the free surface to those of the incident
waves assumes the value
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2(ﬁ1)% | (20)
Ho

When pu=p'p;, the ratio of amplitudes at frequencies, relatively large
and corresponding to the resonance, becomes

z(ﬁl)i. 1)
Hy

It appears therefore from (20) and (21), that, when pu=p’r;, the ratio
of the amplitudes of vibrations at the free surface to those of the in-
cident waves tends to take a constant value as shown in (20) and (21).
The amplitudes at the lower boundary of the layer change periodical-
ly (not sinusoidally periodically) by values twice those of the incident
waves. At frequencies corresponding to resonance without dissipation,
the amplitudes of vibration at that boundary are necessarily zero.

4. In order to confirm the nature of the vibrations more thor-
oughly, we selected five cases, namely (i) po/t5=1/2, p/n=1; (i p/ti=
1/16, pijp=1; (iii) p/ri=1/16, p/p=1/4; (iv) p/m=16, m/n=1; and
calculated the amplitudes of vibrations at the free surface, u,, and
those at the lower boundary, #5, of a surface layer for different lengths
of incident waves; they are plotted in Figs.3~6. In these figures,

Fig. 5. plo=1, f/i=1/16, t/p=1/4.

L; is the length of the incident waves in the subjacent layer, the
amplitudes of which are assumed to be unity.
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From these figures, one can readily ascertain the nature of the
vibrations that we have described in connection with equations (19),
(20), (21),----. Should in the case, pp=p’y;, the thickness of the
stratum exceed by a few times the length of the incident waves, the
amplitudes of vibrations at the free surface will be practically constant
for any frequency of vibrations. This shows that the relatively short
waves are totally reflected, even when the elastic constant in the layer
varies very sharply. Examination of the dynamical theory of the flow
of vibrational energy through the layer with respect to the ratio of the
amplitudes at the surface to those at the upper boundary of the sub-
jacent medium, also shows that the incident waves are totally reflected.

It is a suitable occasion to add that the action of a seismograph
of stiff type like acceleration seismographs resembles the nature of the
vibrations of a layer shown in the example (iv). Amplitudes recorded
on such seismographs that were set on a soft ground are relatively
diminished, particularly in oscillation with periods synchronizing with
those of the seismographs. The reverse is the case in similar seismo-
graphs set on a rigid ground.

5. In order to find the nature of the free vibrations of the layer,
a generalisation of solution (5) by means of Fourier’s integral was
resorted to under the assumption that the asymptotic expansion is per-

missible for any wave length. In the case of increasing elasticity with
depth, we obtain

' = 1(h+H) e 1)"'(1 ; ;’2“ [F{B(V2t+¢2—(2m+1)¢1+h;H)}

h+ H\)
: )J] 22)

+F{,8<V2t—s!12— @m+1)p,+

where
2—n h 2—n J
(23)
/p'A(h-l—H)" B= / V.— Az
’ Ah" 2 ‘0/ ’
corresponding to incident disturbance
u,=F(Vi+x). (24)

The vibrations are therefore of the exponentially damping type.
The ratio of vibration amplitudes of successive similar phases is con-
stant and expressed by
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. 25

1+a (25)

When the elastic constants of both media are continuous at the
lower boundary of the layer, we have a=1, so that the ratio in (25)
is zero and no oscillatory motion is possible, which shows that the
waves that come upwards are totally reflected in the neighbourhood
of the layer. But this conclusion is based on the assumption that eylin-
drical functions can be expanded asymptotically for any wave length,
which however is not generally valid, so that what we have just stated
is only probable for the case of very sharp initial disturbance.

It is possible to get similar expressions for the case in which the
. elasticity decreases with depth. In the special case, for example, in
which the decrement is linear, we have

f=i<h*H B gy (A= | of ( _ ,_h—H }

¢ a X ),%i,( 1) (1+a)™ lﬂ Vit —d,+ 2m+1)¢, 3
+ F{B(Vat +-60 @mt 1>¢1—’%H_)}] (26)

where ’

p=2n((/A=B 1), g=oi()/E 1), a=)/TAO=H),

h h op
=y LL, Vz=}/z‘”-, (27)
PAR 0
corresponding to incident waves

w,=F(Vi—z). (28)

Since in this case, too, the ratio of amplitudes of successive similar
phases is the same as in the preceding one, it is also improbable for
the layer to oscillate repeatedly, so long as the elastic constants of
both media are continuous at the lower boundary of that layer.

6. An approximate method of solving the problem of damped vi-
brations of a superficial layer due to dissipation of their energy into
the subjacent medium, is to use integral equations. Although this
method has already been used by some authors® in applying integral

4) For instance, T. IToo, Journ. Astr. Geophys., 12 (1935), 173~218; The pro-
blem as he has worked it out may be attacked in the same way as similar problems
are done in the usual textbooks and in a number of professional papers; in his case
particularly so, owing to the very simple assumption made with respect to bound-
ary conditions. The usual methods of analytical mathematics would suffice to deal
with such problems. However, his attempt to solve the problem of vibrations in a
superficial layer subjected to periodic force applied to its lower boundary, by as-
suming it to be extremely rigid in the case of free vibrations, is opposed to the dyna-
mical point of view.
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equations to the solution of free or forced vibrations of a surface
layer lying on an extremely rigid substratum, the case of the decay
of seismic vibrations of a surface layer dissipating its energy into the
subjacent medium has not received the attention of investigators, pro-
bably because of the difficulty in determining the Green’s function that
fulfills such conditions. We found that this problem can be solved
very simply provided the incident waves are of pure periodic type.
Take the axis of = directed downwards with

its origin at the free surface of the earth, and % 2NN
let H, p'(x), ¢/ (x) be the thickness, density, and = H AN
rigidity of the stratum. Taking into considera- ' .

tion again the special nature of the integral equa- N
tion, we shall discuss the problem apparently stat- 7 N
ically. Let the horizontal displacement of the e &
lower boundary of the stratum due to a unit load pm,/tu; o
applied horizontally at any point in the layer be

A, its value being finite and different according ’ Fig. 7

to the frequency of vibrations, except in the case
of zero frequency in which A may take an infinitely large value. The
reason why A takes a finite value in vibration problems is very simple.
The nodal surface lying just below the common boundary of two media,
if the subjacent medium were replaced by the extended part of the
upper one, corresponds to the surface supporting the loads in the
stratum. The position of the surface under consideration varies as
the difference of vibration frequency, and the value of A also differs
correspondingly. The horizontal displacement at = due to a unit load
applied at x=« in the layer is then such that

H

k(xy a) = flz +A’ ”(.’L'>a)
L H ) '

(29)

i

lc(x,a):S dz +A. (x<a)

# ()

These represent Green’s functions for the present problem. In the
vibration problem, if the horizontal displacement at x=a be «’(«)cospt
and the frequency of vibrations be p, then the load due to the inertia
force acting on element da at x=«, will be

P20’ (@)u' («)cos ptda. (30)

The displacement at x=x due to this load is therefore expressed by
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D2’ (ayu’ (@) cos pt dak(, a), (31)

so that displacement, u/(x)cospt, at x=a due to total loads in the layer
assumes the form

n

W (@) =] p @k, O (9)ds (32)

0

the time factor being omitted. The inertia forces in the subjacent
medium naturally have no part in the problem; the movement in that
medium being taken only in the boundary conditions at z=H. We
now write

P,((l)k(x, (l) :K(x) (1), (33)
when (32) reduces to
b4
u'(x) =p2j K(zx, a)u' (2)da. (34)
[

This is a homogeneous integral equation, K(z, «) being its kernel. The
boundary conditions at x=H are such that

uw' (H) =2sin(kH + ), (35)
Ir
p2\ 2EUH, @) u'(a)da=2(-/i)kcos(kH+ 9, (36)
°H 7
0

where p, 27/k are the rigidity and wave length in the subjacent layer,
while 7 is the phase angle, which may be determined by the condi-
tions of the vibrations. The right-hand sides of (35) and (36) rep-
resent the effect of the incident and reflected waves. Now, (35) and
(36) are equivalent to the single equation

e H

[u/(H)]u[g%'g KD 1y 1] ma. &7

5) The form of this expression represents the resulting motion due to incident
and reflected waves in the subjacent medium. The importance of 7 (as well as of
A in Green’s function) will now be understood. Many authors seem to have missed
the use of 7. Infinitely large amplitudes in vibrations are the result arising from
the calculation under such incorrect assumption.

It is necessary to insert a certain quantity similar to 7 in all like problems.
Even in the problem of microseismic vibrations of a surface layer or in that of sei-
ches in a lake, under periodic pulsation in atmosphere, the insertion of a quantity
analogous to 7 is important, particularly in the discussion of the oscillations under
resonance condition.



Part 3.] The Rate of Damping in Seismic Vibrations. 493

For simiplicity in evaluating the integral in (34) satisfying con-
dition (87), we used the trapezoidal rule. We divided the layer into v
equal horizontal slices and put 8,=1/2, 8,=---=8,=---=8,.,=1, f,=1/2,
when (34) is then equivalent to v+ 1 simultaneous algebraic equations
of the forms

sH. @I)u ((_IZ{)= u(fﬂ) S [5=0,1,2,-,1]  (38)
) v v 14 '

and (37) is equivalent to

1—0

aK(H' aH ) .
i+ P # H s u’(q )] .

[ (F)] +[k2 pov qZ‘BI oH' =4 (39)
Eliminating v+1 values of #/ in (38), it is possible to obtain only one
value of A, although it may seem that v+1 values of A exist. Sub-
stituting now the value of A thus obtained in »+1 equations in (38),
we get the ratios of

u’ (0) .u’(T teee s =) cu'(H). (40)
Substituting these ratios in (39), we obtain the absolute values of

u' (0), u’(g) ooy u’(s—yq) cer, u'(H)..

The solution of more general cases, namely, the case of forces of
irregular periods or the one with certain initial conditions, may be
easily obtained by the usual familiar methods of analysis.

With a view to compare the result of the present approximate
method with that of an accurate one solved by using differential equa-
tions, we selected a case such that

(@) =p, o (@)= po";“ 2 (41)

when Green’s function becomes

k(x,a):ﬁ,logh+H+A, [x>0a]
Mo h+w
(42)
h+ H
E(a —1 +A
@ o= Vo % hta [zl

Substituting these in (38) and (39) for the two cases (i) p/m=1/16,
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tlp=1, 2282 H =525 h=035), (ii) #/r5=1/16, 1i/p=1, Zﬂi_wf
=825(k' h O 55), which correspond to the marks shown by the verti-
cal strips in Fig. 4, we calculated the distribution of displacements in
the layer. These two examples indicate cases corresponding approxi-
mately to (i) P=0, and (ii) @=0 respectively in equation (11). The
values of A derived from (38) by putting v=4 are (i) —2:24h?/¢H,
(ii) 17°5h2/pH respectively for the two case under consideration, while
the corresponding distributions of displacements obtained from (38),
(39) are shown diagrammatically by the full lines in Figs.7,8. The
accurate values determined by (11) are shown by broken lines in the
same figures. The values of A found above were very roughly ob-
tained. It was found that some differences in the values of A are

1 L
7 =3

Fig. 8. p'lo=1, p/p=1/16, L? =525. Fig. 9. ¢//p=1, pj/p=1/16, Q—Z?L:S-%.
not, in fact, much important in the present calculation of displacement
distributions.

It will be seen frcm the foregoing how the probable values of
displacements may be obtained by such a rough method of integral
equation as that using merely five trapezoidal ordinates; and also that
it is possible to confirm the nature of the dissipation even by the
method of integral equations.
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