37. On an Elastic Wave Animated by the Potential
Energy of Initial Strain.

By Hirosi KAWASUMI and Ryditi YOSIYAMA,

Earthquake Research Institute.

(Read May 21, 1935.—Received June 20, 1935.)

One of the writers estimated the energy carried out by seismic
waves in case of a few earthquakes and attributed the energy source
to the hypocentral regions. Recently Prof. Ishimoto reminded the
writers of the possibility of an alternative explanation that the energy
may possibly be the released potential energy which has been stored
throughout the medium in a strained state. On his advice we have
studied the question theoretically and could prove his opinion actually.
Although the case we have treated is a very simple case, the result
obtained contains something more than expected, so we will describe it
in the following.

I. As a nucleus of strain we have adopted the simplest case of
“centre of compression or dilatation”. We are now concerned with the
case in which the initial strain is suddenly released at a limited
portion (say r=a) by the disappearance of stress prevailing there. We
have therefore to study the transient motion from a statical state to
another, and we will employ a harmonic wave function and generalise
the time factor so as to satisfy the required conditions.

As is well known, relevant wave function corresponding to the
characteristic equation
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is
¢, =ArtH ;l)(hr)e“"”’+Br‘% H (;)(hf)e"”’, (2)

where ¢, is elementary displacement potential and

12 =pp? (A +21) = (p/ V)2, (3)

V being the Veldcity of longitudinal wave. Now put A=f(p)dp and
B=g(p)dp and integrate with regard to p from 0 to oo, the result
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0 0

is also a solution of the original equation (1) so long as f(p) and g(p)
are independent of ¢ and r. Then the displacement and stress corre-
sponding to (4) are

—¢~=—j F(pY k=2 Hy (hrye~'ridp — Sg(p)hr‘%H(g”(hT)e"”'dp, (5)
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+j 9(p){— Q+2ph2r -t HY (lor) + 4phr 3 HS (hr)yevdp.  (6)
0

We are now to determine f(p) and ¢ (p) from the condition at the
boundary, r=qa, which is expressed by means of Fourier’s double in-
tegral theorem

oo
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Comparing (6) and (7) we héve

1
1) = 27{ —(A+2¢) h2a3 H(”(ha) +4pha} H“’(ha})

S (w)er*dew, (8)

)
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9(p) = —(Ar2p)hia- sz(ha) +4pha~ 2H(’)(h a)}

Substituting these values into (4), and after a little transformation by
means of the relations (3) and Hf:i%(—z) =(—1)"*1Hf,"+1(z) as well as

;/%xzﬂ?(z):ie‘“ and }/é-nsz;)(Z)=(—1+%)6”“, we have
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provided

a=i 2 +_2b_/ 1_(3)2,
f= 213 _ 2 }/1 ( )

(11)
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and _
b=/ ’. (12)
‘0

It is a matter of evaluation of definite integral (10) which we are now
concerned.

Our first aim is to solve the case when the stress which has been
prevailing is suddenly disappeared. It will be of interest to know the
reverse case as well. But it is impossible to solve these cases separate-
ly, so we will combine these cases and study the case in which the
stress is suddenly generated at ¢{=0, and disappears at {=t; where ¢,
is to be taken large sufficiently.

0 when t<<0,
o(t)y=¢ —P, " 0<<t<<ty, (13)
0 " t,<t,
and
o0 121
¢= a’PO eip‘:dp e—i}uu dw
Zrpr) @—a)@=f))
aPO . ei]ﬂ, — e'ip‘. 1
=_— dp, 14)
?mm'g_wp(p—a) (r—5 (
where r=t— TI—/CL and r;=r—1,.

By means of a contour integral along the real axis with a small in-
dentation at the origin and an infinite semi-circle on the upper side of
the real axis when ¢ is positive, or the lower semi-circle when ¢ is
negative, we can easily obtain

i 37
2m’[ 1 + L (e _e ﬂ, when >0,
2af

gu e dp _ a—ﬁ\ “ B (15)
) _p@=a)(®=p) _i, when <0,
af3
And we have
a) when <0,
¢=0. (16)

b) when 0<r<t,,
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where

c) when 0<7,=t—1t,— 'r;a’
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if Vv —t,>1.

Thus we see from the above displacement potential ¢ that the disturb-
ance travels with the velocity V at a distance and begins suddenly after
" a travel time t="—2% a*P,
14 dpr

and a vibratory part with period 7a/vy/1-(2)2 )y which quickly dies away

exponentially with damping ratio e“‘/ T (=922 when A=p). And if
t, is sufficiently large the deformation before arrival of the disturb-
ance which started r=a at t=¢; is practically the statical one, while
after the arrival of the latter disturbance (0<r,) the statical deforma-
tion disappears and only damped harmonic wave remains which at last
dies away. '

In the representative case b)
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And the total energy flowing out through a spherical surface at » is
B,=\ de| sinbao(" (—mriyréds,
[ 0 0 .
where ¢, is very large by the assumption and may be replaced by <o,

and .
maSP;  maSPi1 1 :
E,="2F 3[___]. 22
b ’11'3 + 2/1 ag 7"3 ( )

The first term in the above equation represents the energy due to the
statical deformation and the latter is due to the dynamical part. We
can therefore obtain the entities in case c¢) if we discard the statical
part in the equations (19), (20) and (21) and change signs. And the
second term in (22) corresponding to the case c)

Ep:%[l_l] (23)

2n La® 3
TalP;
2p
The statical problem is also obtained by putting r= oo in (17), (19),
(20) and (21).

is zero at r=a, and increases with » to the limit

__ P,

9= apr ’
adP

U=— o, 24
dpar? (24)

. a*P

7P =— fr30

The strain energy fun(;tion for this case becomes

— 3a°F; (25)

8urs ’

and since the potential energy is the volume mtegral of W, the poten-
tial energy stored in the medium from r=—a to » is
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LE I 7 P 1 .
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which is exactly the total energy flux E, in case ¢). Thus we could
prove that the energy carried out by the elastic wave in case c) is
the released potential energy which have been stored in the medium
in the strained state. '

We cannot therefore overlook the possibility of the above alterna-
tive explanation on the origin of seismic energy besides the one emitted
from the hypocentral region. But the dependence of £, and E, on r

, . 1 .
is only through the term proportional to 73 and they quickly tend to
the same limit in both cases. We cannot therefore distinguish between .
these cases from the observation at large distance from the origin if

. .1
we do not compare the higher terms in - than the accuracy of usu-

al observation can afford. Strictly speaking the energy source in case
¢) is the whole medium, but from the actual point of view, the most
of the energy is confined to comparatively small region near the origin.

It is also to be noted that the displacement is continuous while
the velocity of the particle and the stress 77 is discontinuous at r=0
and 7;=0.

II. Though our first aim has thus been attained, we shall now pay
some attention to the appearance of the damped harmonic motion. The
period of this wave is dependent on the radius of the boundary sphere
a and the velocities of elastic waves. It thus resembles a kind of self-
oscillation. The occurrence of this oscillation is due to the singularities
in the integrand of the definite integral, and is not merely the result
of our assumption of the form ¢(t). The circumstance bears striking
similarity with the forced oscillation of a pendulum. In fact, the forced
oscillation of a damped pendulum defined by

0+2:0+ n2=¢(1)
is easily proved to be

-1 er'dp .
0= w)e dw,
2er (p—a)(p-ﬁ)g plele

—o0 —oa

which is exacﬂy the same form as (10) provided a=te + /2 =2,
B=ie—1/nZ —¢2. We have ample knowledge on the motion of a pen-
dulum, and we can demonstrate it by experiment. The displacement
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potential ¢ for a given pressure ¢(t) at r=a can be inferred from
the motion of a pendulum under the same force if ¢ is replaced by

T=1— T;a . We shall not therefore enter into detailed discussion of

several other examples we have studied, but we cannot help to state
some bearing in the interpretation of seismic motions. So far as the
writers are aware, elucidation on the occurrence of oscillatory motions
in the earthquake motions hitherto proposed are the explanation by
the breaking up of the non-periodic initial wave forms by dispersion,
or by the self-oscillation of some part of the crust excited by seismic
motions, but nothing is known on the mechanism of the alternative ex-
planation by the intrinsic nature caused at a hypocentre notwithstand-
- ing prevalently assumed implicitly. We can now add an explanation
for it. As we know the occurrence cf self-oscillation in the motion of
a pendulum at every discontinuity of disturbance, so we are to expect
the occurrence of damped harmonic waves in case of an earthquake.

Another point of interest is the proportionality of the period to
the radius of the boundary sphere. We are well acquainted with the
fact that the period of seismic wave is the longer the larger the earth-
quake is. One of the writers pointed out that we have to consider a
kind of hypocentral region, and the seismic phenomena which take
place at the region cannot be inferred from the observation of elastic
waves at large distance from the origin. Such a chaos may possibly
play some rolls in causing seismic waves by the traction at a boundary
surface. Then the well known fact on the length of period of seismic
waves can be easily explained.

Finally we state that in case of such simple cases discussed above,
the motions at large distance from the origin are

2
u=:F—PLle' av sm—}/l ( )
2y prp) T

for each case b) and ¢), and the damping ratio is as large as 92 when
A=p, and the motion is hardly different from that of shock type, and
the appearance of such a type of motion in actual earthquake makes
us feel some interest. '

Concluding Remark. We have proved in a simplest case that elas-
tic wave may be animated by the potential energy of initial strain. We
have seen also that a kind of damped harmonic wave resembling self-
oscillation is excited when stress on a spherical surface is given. Show-
ing the similarity with the motion of a. pendulum under a given force
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we have proposed one of the possible explanations on the vibratory
nature of seismic waves. We should expect that similar treatment is
applicable in a more general case when stress or displacement of more
general form are given on a spherical surface. Indeed we could also
see that similar vibratory waves are excited when displacements (ex-
cepting a few cases) and stresses of general forms are given on a
spherical surface, and the results will be published shortly.

In conclusion the writers wish to express their cordial thanks to
Prof. M. Ishimoto for the precious suggestions.
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