38. Pulsatory Oscillations of the Earth’s
Crust due to Surface® Force.*

By Kumizi I1DA.

(Read March 19, 1935.—Received J une 20, 1935.)

1. Oscillations of the earth’s crust, exceedingly minute, but having
no connection with ordinary earthquakes, are matters of constant ob-
servation. This subject was first discussed by Milne®, and later by
Omori®, who classified the pulsations as observed in Tokyo into three
types, ¢, Q,, and Q,, according to their periods of oscillations. Since
then Prof. T. Matuzawa® and Dr. K. Wadati® have made detailed studies
of these types of pulsations. The Q,-type has recently been studied
by Dr. F. Kishinouye®.

Although, in the hope of learning the causes of these pulsations,
a number of investigators? have attempted to trace the connections,
if any, between them and meteorological conditions and other agencies
that might be at work, the whole subject is still wrapped in mystery.
But whatever the primary causes may be, there is no doubt that they
are greatly influenced by the geologic and topographic conditions of
the regions in which they occur. They seem to be proper oscillations
peculiar to the particular locality, combined with forced oscillations as
the result of disturbances propagated through the earth’s crust. Since
‘this idea was first mooted by F. Omori, problems relating to the proper
period of the earth’s crust have come to play a very important role
in seismology, with the result that problems of this kind are being
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attacked by many investigators® from the standpoint of both theory
and observation.

To explain the period of pulsations, E. Wiechert” considers the pul-
sations as stationary waves in the upper layer of the earth’s crust,
assuming a surface of discontinuity for its bottom. The upper layer
of the earth’s crust oscillates in such a way that the bottom of that
layer forms the nodal plane of the oscillation, the upper surface of
the layer being the loop-plane of the said oscillation. He calculated

the depth of the layer by means of the formula Dz%TV, where D

is the depth of the layer, V the velocity of the transversal wave in
the layer, T the period of the pulsation. By a similar treatment, K.
Wadati®® estimated the thickness of the surface layer in Tokyo to be
about 1~2 km.

Prof. H. Nagaoka!® regards the pulsations as stationary surface
tremors of Rayleigh type, assuming the existence of appropriate bound-
aries. T. Matuzawa'® thinks these pulsations are coupled oscillations of
two oscillating systems. H. Honda™, who believes these pulsations to
be stationary surface tremors of Love type, obtained the mode of oscil-
lation for the Q,-type, assuming a suitable boundary covering the hy-
pothetical case that the surface layers in Tokyo may be only some ten
metres thick. The Q,-type pulsation seems to be an overtone of that
of the Q,-type. .

All these studies just mentioned concern problems of free oscilla-
tions of the earth’s crust. Recently G. NISHIMURAY, in discussing the
problem of vibrations of a heterogeneous elastic solid due to surface
force, applied the problem to pulsation. By similar treatment the writer
calculated the pulsatory oscillations of the earth’s crust due to surface
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force. In the present paper the writer gives a méthod for calculating
- the pulsatory oscillations with the aid of integral equations. In discuss-
ing the growth of these pulsations and the structure of the earth’s
crust, there are admittedly many unknown facts, but the pulsations
are here treated as shearing vibrations of the upper layer of the earth’s
crust, it being assumed for simplicity that the medium that lies next
below the upper layer is infinitely rigid. The periods of both the free
and forced oscillations of the layer (in some simple cases) are calcu-
lated and compared with those of pulsations actually observed.

9. Take the z- and y-axis horizontally and the z-axis vertically -
downwards, the origin being on the surface of the layer (Fig. 1). The
equations of motion in the layer are expressed by ‘

o
P g u O e Su /g/ 5{4
P 0 T e a0 | & %
2 2 '
0%V, o, OV _ Dv+d/1au

PRALER FLA
. 012 ot 022 dz 0z

Fle' 1.

where u, v denote displacement components in the 2- and y-axis, ¢
the coefficient of damping, g the rigidity, p the den51ty of the ]ayer
Since u is 1ndependent of v, the two equations in (1) with respect to
% or v can be solved in the same way. We therefore treat only the
equation that involves u. In order to obtain the free oscillation of the
layer, we must solve the equation :

2w, dp ou

| Pl P (2)
By 1ntegratmg equatlon (2) with respect fo 2z, we have
du
, # A . ( 3 )
Integrating further, we get
CdE '

where C and D are the integratlon constants.

In the present case, we consider the simplest problem in which
the medium next below the surface layer is infinitely rigid, so that the
boundary conditions are merely denoted by '

(i)  e=0, %_o, |
dz (5)
(ii) z=h wu=0 |,
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where h is the thickness of the layer.
If we assume that unit force per unit mass at pomt z=§, we get

du [*-° du _ 1
== =1, _ . 6
7 WP PR (6)
By means of condition (i) in (5), equatlon (3) is reduced to w=const.,
rCdé
since C= —-0. By means of (ii) in (5), equation (4) becomes u= f 2@’
whence | z 4
I
du| C i(dv do— .1 C. (7)
dz iy ) dz\p(y) /1(5) Gk
Since equation (6).is equlvalent to (7), C=1.
Thus . »
dg
U=\ —_. (8)
SZ 2 (é) -

We assume G (z,€) equal u(z) and take it Green’s function, which
function, of course, satisfies conditions (5). The product of G(z;€) and
the unit force that is applied at the point 2=¢, represents the displace-
ment at that point. ‘ ’

We now introduce a symmetric kernel (Kern) K(z,s)

T

K(z,s)=g ”‘(g A€, z>s,

(5)
S e dé, z<s.

When the displacement of the layer is given by ®(z,t) —¢(2)c™,
the inertial force produced at point z=s is given by pA2¢(s)e*ds. The
product of the inertial force and G(z,&) equals the displacement pro-
duced at point z due to the concentrated mass at z=£. As there are
many concentrated masses at various points between z=0 and z=#h,
~ integration must be made from z=0 to z=h. We have therefore the
displacement ¢(z) given by the homogeneous integral equation

L .
$(2)=2( K(z,5)$(s)ds. (10)
[
Assuming next that force is concentrated at point z=£& and that

the force per unit mass is p(§), the force at the surface of the layer
is given by

hmj zl)(E)dE:T, ., (11)

P00 Jeey
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where T is the tangential stress of the wind or other agencies, ¢, being
a very small quantity.
The force at z=s is given by
AP (s)e™Mds + pf (s) eds + 2ike’ pd (s) eMds,
assuming that : .
pE)=f(Ee™, ¢p=c. (12)
Then the integral equation governing the forced oscillation of the
layer is given by

$(2) = (R+2ie") [ K (2, 9)$(5)ds+F(2), (13)
where
p(z)~hm§ p(E)K(z,E)cE K(,G,O)S GYG (14)
=K(2,0)T.

The above equation is a Fredholm’s integral equation of the second
kind.

Should conditions S[Kz(s 2)JPdzds<1 be not satisfied, as is general-

ly the case, we must then resort to Schmidt’s solution. If we define
$.(z) as the normalised principal solutions (normal functions; Eigen-
funktionen) of the homogeneous integral equation

$(2)=2[ K (z 5)$(s)ds .
0
It is easily proved that

[[.Fdz=1,  $.()$u(21dz=0,
(z ) = Z¢1l(z)¢n(s)

n=1

(15)

(n=1, 2,ec-0-: , m=1, 2. , NUASM.)
where 2,s are the characteristic numbers (Eigenwerte). We have
moreover

K(2, 5) = 5 K E)L %(5)}9&, ©) 4z

h

=58 SK@@%@%

z
0

"21 ¢n (S)l?n(z) (16)

Now that K (z,s) and I'(z) are all continuous, (13) is easily solved.
By means of Schmidt’s solution, equation (13) can be solved as follows:
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h
B4-200e’
@ =F @ +2 5~ g 2iie) mmg F(2)$.(2)dz. (7
(1]
While
B2ile (B =R P-4l 200 R
}?.'L —_ (A:’l" 21:671) (l)ﬁb _/1'2)2_*_ 4125/2

whence equation (17) becomes

s@=ra+E G ¢n<z>S FE$.()dz

R

L

o 92
T 2_{#_%’ re S F(z)%(z)dz (18)

n=1

3. We shall now give some examples in the following cases:
(1) The case in which there is only one surface layer.
If p and z are all constant, the kernel K(z,s) becomes

K(z,s>=5(h—z), [e=>s],
(19)
=L (h—s), [2<s].
/1

In this case the “Eigenwerte” and “Eigenfunktionen” of the homo-
geneous integral equation (10) are given by

¢”(z) / 2 cos 2" 1 nz, l

2 1~(21@ 1)7’/11 n=1,2, - [ W(ZO)

From these we can calculate the periods and amplitudes of oscillations
of the layer. The manner of free

oscillation of the layer is shown “e's s
in Fig. 2. 50
0 < zs
I C . —~
g
E .

=107

o o ooy
a Nl T —
b ‘&& ° 20 —x 30
v=10"7%
Do
-sd—
. " ; ; (2
Fig. 2. a, n=1; b, n=2; ¢, n=3. Fig. 3. Relation between [T)l—

and A% (h=1km).
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Since we obtain in this case
v T

S F(z)$.(x)dz = T]/E »‘ZS (h—z)cos (2“2 D7 g dz,

equation (18) for determining the forced oscillation of the layer becomes

2n—1
13 2y 39 so_r2 COS——————712
¢(z) — P () 421 2p v (Buoy —B) a0 20 i
hpisn (B, ~B) + 48 (2n—1)%a®

aw .

2n—1
2{12”‘ 2e' 242, _, LS 2h mz
=N =248 Gn—1) T
4n?

The curves of the forced oscillations showing the displacement at

2=0 for i =1km when 'v(‘/_/i)=0'8 km/sec, 1km/sec, 1-5km/sec, ¢’ =0
‘0

are plotted in Fig.3. When the period of the forced oscillation coin-

cides with that of the free oscillation of the layer, the amplitude of
the oscillation at the surface becomes infinitely great (Fig.3).

(21)

(2) The case of two superficial layers.
As to the symmetric kernel, we have two cases: (i) z>s, (i) z<<s.
Furter, each case involves the two cases (a) and (b) (Figs. 4, 5).
(i) When z>s.
(a) When &,>>s>0, the “Kern” K(z, s) is given by

ho o Ty O
Dae=\ rC) 4 PE) o >x
K@s)=\ LEqe— de+\ PC g ; 7
( S ZCN S #©) S 28] O
| e O (1 : i | \\\ﬁL\l /"u{:\
= 50— 4 —Z 22 77
/,e' (h4 h’l) + /l ( Ll )’ [Z< Z’l] ( ) ;////// /
. ’ ///// /
K(z,5) =L (hy—2). [e>1,] (23) 2/
e Fig. 4 -
(b) When h,>s>>h,, the “Kern” is giveh by 0

- = . ) 7 /I
hia ( ) /;}:.//?/P'M
S N N
K(%S):Sz f( )df s (ho—2) . (24) \\}}2 R ix\fa;/%g

(ii) - When z<s, there are two cases as fol- / /
lows: / /'2,/ /

(a) When h12920 the “Kern” is given by Fig. 5.
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lig
C K(2,8)= S ‘OES;dE—p(h s)+ (h —h)). (25)

(b) When h,>>s>h,, the “Kern” is given by
Lo
K@s) =\ L8 aqe— L (n,—s). (26)
. 7€) 74

Since the “Kern” in all cases just mentioned are now obtained,
we can find the “Eigenwerte” and “Eigenfunktionen” of the integral
equation

$(2) =2 K (z,5)$()ds, @7

governing the free oscillation of the layer in the two casges, such as
h,>z>h, and h,>2>0. ¢, ,(?) and ¢, ,.(z) stand for the “Eigenfunk-

tionen” of the forn{er and the latter of the above two cases respec-
tively.

When h,>z>h,, the homogeneous integral equation

$2) =2 Kz, )$:)ds,
is written

60(2) /2{5 K (2 5) $a()ds + | K(g,3)¢z(s)ds+5 K (2, 5) 6, (.s)ds}

3%

{g (hz—-z)¢2(s)ds+g ‘07 1, —2)Py(s) ds+S %(hz—s)qﬁz’s)ds}

’L]_

= 222:[50 (s—2)¢,(s)ds+ ﬁzz(hz—s) ¢2(s)ds]

= Z_i /2”; (s—7)$a(s)ds+ const.] : (28)

ha
where, constant—_—g (hy—s)p(s)ds.
The solution of (28) with the boundary condition ¢,(z)=0 at z=h,
is given by

B ) =B sindy/ 1 (1,—2), (29)
. L

where B is a constant.
The values of ¢, ,(z) that corresponds to that of 4, can be de-

termined.

$.(2) =2250 K(z s)qS1 (s)ds
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Jig

B e - (hy—y) + 2 (h —z) J¢1(s)ds +S fe (hy—s) +L£ (hz-—h)}

z

* pi(s)ds+ S %(hz—swl(s) ds]

131

_/12[/ S (s—2)9,(s)ds+c,+ cz} , (30)

where
37

¢, = I—‘i(hl — ) +£, (3‘h1)}¢1(s)ds’
0 lﬂ #

g ,
Co= ‘0—, (hy—s8)$,(s)ds.
/l
0

The solution of (30) is given by :
by, ,,(z)’=Acos2,l‘/ Lz, 31)
23

where A is a constant: A=2%(¢c,+¢,)..
Next, the boundary conditions are expressed by

¢1, n(z) =¢2 n(z)’

a ¢'.’, qb(z) a ¢I n(z) (32)
az 0z

at z=h,, by ¢, ,.()=0 at z=h,, and byM=O at z=0.
Substituting (29) and (31) in (32), we have
Acos?, /ﬂ hl_Bsmi,L}/P (h,—h)), (33)

7z

,uz”‘/ ) Asind,/0 0 =y, / P Bcos),,}/‘(h —hy, (34)
whence the ratio A/B is expressed by
sm)“/ (hz—hl) 1/,?;'77 cos A,t}/ﬂ:(hz—hl)
/l

A_ — . (85)
B cos l,,}/ O h, v ppsin lu‘/ Lh,
/l
and
PI tan )/ £ I tan z,,/ 7 (hy—hy)=1. (36)
o' Z 7

By (36) the “Eigenwerte” 4, for determining the periods of the free
oscillation of the layer can be obtained.
Thus, (29) and (31) are readily written
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sml,,}/ _(hz hy) _
$,,.(2) =B cosdy/ Pz, 630
cosln‘/ £ h, ¢ .

bo (2) = Bsmzﬂ‘/ (hy—2). @)

Since ¢, ,(2) and ¢, ,(z) are the normalized functions, constant B
can be determined by the condition

[/i..@)1dz+ :[¢ () Pdz=1. 37)

From this condition, we find that

sin? A"V/L’i (ho—
/l

1 ] / /1( p Iy : / 0
= _ v+ —s1n2/1,,v th1>
B2 cos? z”‘/ﬂ_h 21 ad

/l

1 /@, 7 1. e
4o By o 1) = G2ty Dln=h)). @9

Thus, the “Eigenwerte” and “Eigenfunktionen” of the integral
equation in the case of two stratified layers can be obtained. An in-
tegral equation to determine the forced oscillation of the two stratified
layers can be obtained by substituting 2,, é1. .(2), and ¢, () in that
of (18). Further, in this case, F(z) in (18) is expressed by

F(z)=K(z,0)T= { (hz—h1)+p(h _\T Ir. 39)

Thus, we finally get
$()_Im o —ales
T lw(hz hy) + (y Z)J 2

rv2

2 zn 10_410 12
) b,

ey e @

g I mn (hZ )+ (hl_z)}¢n’(z)dz

AE—erparer) L/

)‘I
where —/_, =_., m' =L
/4

S 2 G() SI (T + (=) \$.(2)dz,  (40)

!
¢n' (z) =¢1. ,,'(Z) +A¢2, n(z) .

Let us now compute the following simple cases and ascertain the
manner of the oscillations.

Example 1. Let the thickness of the first and the second layer
be each 1km and p'=1'5p, /=3

(41)
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From (29), (31’), (36), (38), we get the values of 2y P1,u(?) and
@ .(2) such that

2= 61%8 3 va, $.1(2) =124c0s64:32,  ¢,,(2) =0-755in4565(2—2),

=140 g ()= —108c0s1493 2, ¢,.(2) = 096sin105'86(2—2),

47180

2659 . .  0-E8 «in ]R8+
Sz_ﬁo_'m, $1,3(2) =126 c05265°92, $5,5(2) =0'585in188-79(2—2),
2= ‘112(5) v7, $y4(2) =126c0s 4652, $. 4(2) =0'655in33015(2—2),

A= 591(‘)1m, $1,5(2) = ~1'16c0s591°12, ¢, 5(2) =0-855in419-68(2—2).

Thus we get the curves of the free oscillations of the layer in
this case for n=1,2,3, and 4 as shown in Fig.6. Since the periods
of the free oscillations are the function of v, we can determine the
values of 2,, that is, T', for various values of v. The values of T,
are as follows:

= 1)”. I ‘ : - 7 T Tq T, T
(knss) [ A ‘ Az 1 Az ’ A ‘ o ’ s ' o I ©
0-8 0-89. 2:08 372 6-49 7-04 301 1:69 0-67

1-0 1-12 2:60 4-65 8-12 562 2-42 1-35 0:78

15 1-68 3-90 6-95 12:15 374 1-61 0-91 0-52

2:0 2:24 520 9-30 16-24 2:80 1-21 0-68 0-39

The manner of free oscillation of the layer in the case of two
stratified layers is more complicated than that in the case of one sur-
face layer, especially as the forced oscillations at z=0 differ entirely
from one another as shown in Fig.7. As will be seen from Figs, 8

o
0 5 V1.0
10 2| J'O I
iy Wt yeogy 40
i i e X
Ve 0§y V10K
‘&(W S
i 1k - o o ¢( ) .
Fig. 6. ly=1km, hy=2km, p =15, p~3. Fig. 7. Relation between and A2
A, n=1; B,n=2; C, n=3; D, n=4, o’ jid
(hl=1km, hy=gkm, =15, F_S)
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and 7, in the case of one surface layer the amplitudes of oscillations
change from ¢(2)——oc to ¢(2)—+ oo, while in the case of two stra-
tified layers, its amplitudes change from #(2)->+ < to ¢(z)— + <, or
from ¢(z)—>—cc to $(z)—>—co.
Ezample 2. Let hy=05km, h,=1km, p=p’, ¢/ =24 By similar
treatment as Example 1, we have
A,=202v, ¢,,(2)=156cos1162, ¢,,(2)=125sin81'9(1—2),
2,=538v, ¢ .(z)=—144¢c0s308z, ¢,.(2)=1-3Tsin217-5(1—=z),
A=9220, ¢, ,(2)=125c08529z,  ¢,;(2)=1"1Tsin372'9(1—=z),
A,=1290v, ¢,,(z)=—1"16cos740z, ¢,,(z)=1165in521'8(1—2),
A;=16'38v, ¢, 5(z)=144c0s939z, ¢, ;(2)=107sin662:0(1—2).
The curves showing the free oscillations of the layer for n=1,2,
3, and 4 are shown in Fig. 8, and those of the forced oscillations in
Fig.9. In this case, the periods of the free oscillations are as follows:

\\\\\\\\ AT e Tt
—x

Eeeh g il 9/»)>»))+”)? \edd ))))gwﬁ)ﬂ» R Qe

Ho

v Ti| To| Ta | Ty
(km ) I IR U P I )

0-5 kim—

—

- 0-8 |1-62 4-30 7-38 10-33/3-87/1-45/0-85/0-61
1-8 [2:02| 5-38] 9-22(12:90/3-10/1-17/0-68|0-49
1-5 |3:02| 8-06(13-84[19-34/2-08|0-78|0-46/0-33
2:0 |4:04(10-76 18'44 25-80,1-56/0-59,0-34 0-24

Ze——05 fm

In this case the values of T, are
‘smaller than that of the Example 1.

T ) ! e =08y
o ~{“

pra10% |

b

I

¢ :
I !
1 1

-6—

-8

Fig. 9. Relation between [ﬂ;)] and 2%
z=0

—0 - oM
(hx,—oskm, hy=1km, P =1, 7 ..2.)

Example 3. Let ,=02km, h,=12km, o' =1-1p, ¢/ =2-2p. As
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before, we have
4, =165v, ¢,.(2)=125cos112z, $,1(2) =1-188in79'5(1'2—2),
Ay=54bv, ¢, ,(2) =—1T0c0s312'52, ¢,.(2) =1"18sin221-8(1'2—2),
4,=859v, ¢, ;(z)=150c08492°5z, $..5(?) =1228in3496 (1'2—2),
4y =1204v, ¢, ,(2)=—132c0s690z, ¢,,(2)=128sin633'6(1'2—=2),
As=155Tv, @,5(z) =130c0s892'52, ¢, ;(2) =1-30sin784:2(1-2—2z).
The curves showing the free oscillations of the layer for n= 1, 2,

3, and 4 are plotted in Fig.10 and those of forced oscillations in Fig.
11. 1In this case the periods of the free oscillations are as follows:

v . : Tl Tg Tg T4
(km/s) A %o A ,A ! (s) [} (s) ()
0-8 1-32 4-36 687 9:62 475 1-44 0-92 0:65
1-0 1-65 5:45 8:59 12:04 3:80 1-15 073 0-52
15 2:47 8-17 12:88 18:06 2:55 0-77 0-49 0-35
2:0 3-30 10:90° 17-15 24-08 1:90 0-62 0-37 0:25

4. Inour present study,
we regard the plusations as
stationary waves caused
by the force due to wind.
In order to find the relation
between the periods of

]

' RISNNMANMN SRR AN POTEN NN N .
—X

2

g Iy, f]
«\%&\ \\\\ N\ \\\\ \&\f\\@o @

) ig. 10. = 2=1 LA S
analysed the records of Fig. 20 hy=1km, hy=1-2km, p Tl TR

pulsations observed at the A, n=1; B, n=2; C, n=3; D, n=4.
Earthquake Research Insti-
tute, Tokyo Imperial Uni-
versity, and determined the
periods of the pulsations ~

the pulsation and ¢—(10,—) , we

&
and the ratio ¢—(,0—), ¢(0) be- © ] I .
1 fo 20 Koy aa——
ing the amplitudes of the I —2f- "v"fc’f’w
pulsations, and T the squa- . oRE r=tomy

-4

re of the wind velocity, the
values of which were taken
from the weather-charts of
the Central Meteorological
Observatory. The instru- o' -
ment used was designed (h1=0.2km’ he = 1-2km, \P_=1'1 ;1—_2 2)
and constructed by Prof. M. Ishimoto, the magnification and the proper

-6/~

Fig. 11. Relation between [¢:§E)] and A%
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period of which are 400 and 1'0 sec respectively,

We used the most pro-
nounced records obtained the in-
strument during the eight
months, from August, 1934 to
March, 1935. An example is
shown in Fig.12. Since the re-
cords represent the acceleration
of the pulsatory oscillations of
the earth’s crust, we compute
the displacements from the re-
cords by taking the constants
of the instrument into consider-
ation and assuming the actual
displacement to be of the form

Fig. 12. Portion of actual record obtain-
ed by the Ishimoto seismograph.

of a simple harmonic motion. Jan. 1, 1935.

We take the periods of the pul-

sations as abscissa and the ratio ¢(T— as ordinate, an example of which

is shown in Fig.13. We drew this curve by tracing the maximum

values of ﬂj‘?l that corre-

spond to a certain value of Lo AR

period by means of such %

consideration that all the &

points were included in the X

space between the curve and % T

the abscissa. From this 2 G i- '."- g

it will be seen that the AN e " ;

Period in second

d(0)

maximum values of Wg)
Fig. 13. Relation between . and period

correspond to the periods :
03, 08, about 2'5 and 5 sec of $he pulsation,

(or about 4-28 sec and about 5-20 sec). Of these periods, the value of qﬂ(’gl
for about 5 sec period is the greatest. It is believed that the state that
the value of ﬂq@ is the greatest is in that of resonance, where reso-

nance means that the amplitude of pulsation becomes very great when
the proper period of the layer agrees with the period of the applied
forces. The pulsations of about 25 and 5 sec here seem to correspond
to Omori’s ¢- and Q-type.
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When we compare the relation between the periods of the pulsa-
tions and the corresponding value &19) with that in the case of the

examples just mentioned, we shall be able to calculate the constant
that is proportional to the square of the wind velocity, and the thick-
ness of the layers besides. As will be seen from the foregoing
examples, the larger the thickness of the layers, or the smaller the

transverse velocity / ” in the layer, the longer is the proper period

of their oscillations. Therefore if the surface layers of the earth’s
crust were to consist of two layers, the pulsatory oscillations of the
earth’s crust may be explained by assuming that the thickness of
the upper and lower layer are some hundreds of meters and about

1 km respectively, but if the values of / £ and i, in the layers were

smaller than those of the examples, the th1ckness of these two layers
may become smaller than the said values.

In conclusion, the writer desires to express his cordial thanks to
Professor Mishio Ishimoto and Dr. R. Takahasi for their kmd advices
and guidance in the course of this study.
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