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1. In 1921, E. Meissner® found that a kind of surface waves
resembling Love wave can be propagated along a semi-infinite elastic
body, in which rigidity and density vary with depth. This is perhaps
the first paper concerning the wave propagated in an isotropic hetero-
geneous medium. But the equation of motion, on which his treatments
are based, lacks a term depending on the gradient of rigidity, and, because
of being based on this equation, even the detailed calculations executed
in the next year by K. Aiti” left something to be added. The correction
of the equation was made by E. Meissner® himself in 1926, and the
problem was reduced to a boundary value problem and numbers of
dispersion-curves were obtained, though full discussion of this equation
was not executed. '

The investigations by these two authors were confined to a one-
dimensional problem, but, in 1931, K. Sezawa® obtained a rigorous
solution in cylindrical co-ordinates of the surface wave of the kind first
mentioned, which diverges from a point, has no components of displace-
ment perpendicular to the surface and involves no dilatation. The
effect of heterogenuity in the lower medium was also discussed by I.
Jeffreys” and T. Matuzawa.” Rayleigh-wave propagated in a heterogenous
medium was also discussed by H. Honda”. As to the bodily wave
through a heterogeneous medium, the solution has been obtained by T.
Matuzawa only for a plane wave propagated in the direction in which
the elastic constants vary.
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It is hoped by the author to obtain general solutions of waves
divergeing from a point in an isotropic heterogeneous sphere in which
elastic constants and density are certain functions of a radial distance
only from the centre of the sphere. And one of the special cases is
solved in this paper.

2. K. Uller® investigated the velocity of propagation of wave-front
in an isotropic heterogeneous medium, and gave an expression, essentially
equall to the following, as an equation of motion,

D

o =(A+2p) grad A —2p rot W4 A-grad

P

—2[ W, grad pl+2(grad p V) D, e )
A=div D, W=_12— rot D,

where D and 7T stand for a vector of displacement and time-co-ordinate
respectively, and the density and two Lame’s constants in the medium
are respectively denoted by p, A and w. The vector (grad p v)Dj can
be considered as an inner product of grads and an asymmetrical tensor
T, Where
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in Cartesian co-ordinate, in which wu, v and w denote respectively 2-, y-
and z-component of displacement D). This tensor () can be decomposed
into two parts, the one symmetrical and the other skew symmetrical,
and the former is so-called strain-tensor and the latter consists of compo-
nents equal to those of rotation.

A system of orthogonal curvilinear co-ordinates &, 8 and v being now
considered, three components of displacement I are expressed with wa,
ug and uy; three components of rotation W with m., =g and =y; six
componenents of strain With e, €gs, €yy, sy, €ya and e,5. Then the two
tensors, into which the asymmetrical tensor, mentioned above, can be
decomposed, are expressed in the following form,

8) K. ULLERr, Beitr. 2. Geophys., 15 (1926), 219-238.
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and, in what follows, the former, symmetrical tensor, shall be denoted
by €.
Thus the equation of motion (1) is transformed as follows” :

2

PgTD2 =grad {(A+2p)A} —2rot w W+ 2[grad p, W]
—2Agrad p+2(Cgradp). ... (2)

In order to discuss a wave propagated from a pomt in a heterogeneous
medium which has a spherical symmetry, we first take an auxiliary
co-ordinates system r, 6, @ taking its origin at the centre (Q) of the
spherical symmetry, and let us introduce a new system of curvilinear -
co-ordinates ¢, 8, ¢; ¢t and 8 being defined by the following relations,
and ¢ remaining the same in both systems. The origin of the new
co-ordinates is at r=~h, §=¢=0, denoted by O’.

= [ _gdr

[ e, .. ®

N rdi

qu&(r)_ (@)
g@)=r-v(r), w=g(h)sinB,  .............. (5)

where v(r), consequently g(r) also, is a given function of  only.
Then we have,

%:ﬂ;&? L@
a; —k*cot B W_;G(__)ﬂ“—"_‘ Xg%()?)d:—i (D)
§=g2?")’ - @)
gZ—x . cot B q(?)(:)x f ”;Z;:)f:?}i’ i 9)

9) This equation of motion was independently derived by the author without
knowing the investigations by K. Uller.
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or 90 _09 99 _o 9P_1 . .. .. .. .. .(10)

and, since Cartesian co-ordinates,

r=rsinfcosp, y=rsinfsing, z=rcosf, ........(11)
we obtain the following quantities necessary to the transformation of
co-ordinates,

b (o) iy o 0
Ao+ - o)

=t cott g L= [ (7SN } (13)

3

Y0 ) -t

%z(ﬁ’%@(ﬂ)#(a—z)':hinfe, (19
I; \ogp o op

and, since we have nine formulae for direction cosines as follows:

~

ox oy oz
cos (t,x)=T 2%, cos(t,y)=M L, ‘cos(tz)=N2%,
(:Q) lat ( ?/) lat’ ( z) lat

cos (B,z) = It ZZ,, cos (B,y):hgg%, cos (B, z):hzj_g, .. (15)

cos (9, 2) =T 2%, cos (,y) =1L, cos (gp, ) =Ps 22,
op op op

7

we can easily prove that the families of surfaces (t=const.,, S=const.
and @=const.) cut one another at right angles everywhere. Thus ¢, 8
"and ¢ form a system of orthogonal curvilinear co-ordinates.

The curve, determined by

. B=const., g=const.,.................... (16)
has notable characteristics, that
pov(r)sini=h+v(h) -sinB=x, ............ (17)

where ¢ is an angle considered at any point between radius vector 7
and tangent at the point to the curve, and 8 is equal to the value of
4 at the origin of the co-ordinates system. (See Fig. 1).

Though nothing has been assumed to the physical meaning of the
above quantities, we can easily prove by the Fermat’s Principle that
¢t and @ become equal to travel time and epicentral distance of an
earthquake originating at the origin O’ of co-ordinates, provided v(r)
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represents reciprocal of velocity of wave. There-

fore the surface, {=const., respresents wave-front /—
and the curve given by (16) gives a path of the
wave, which is one of orthogonal trajectories to

the wave-front. From such a point of view, it v ,

seems quite natural that ¢, 8 and ¢ form a system A

of orthogonal curvilinaer co-ordinates, and we

can easily see that one set of values of ¢, 8 and 0

¢ corresponds to a point in space, provided Fie. 1.
t>0, 0=8=nw O=s¢p=2mr. .. R ¢ £5))

The strain components refered to such a co-ordinate system are
expressed as follows:

e A(1Y.,
ot r dr P

v
1 dug 1 { k? d/1
op = AL 1— —<—)
R cotB-rcosi-f 4B rcost g(r)dr\v

1
+-———}u
Feg(r)cosi)
o= 1 Qu_¢+s1n(.9+z)u+cos(t'9+¢)u
psinf oo rsin @ rsin g
_ 1 duqy cos(0+1) 1 oug
6By = . 2 . Ug . )
kcotB-rcost-f o rsin 6 rsing o
- 1 ow v%_sm(.e-l—z)u
rsinf dp ot rsin 8

bl

L]

Jug 1 ©® d(l) 1
—p2ue_ -2 2(L +——~—}
=" ot o'cosi{ g(r) dr\v /)  feg(r)cosq e
1 e ii(l)
+fccot/8-'rcos'£-f 8B+9' dr\ v o
where f= 1M——

3
r{gi(r) = ® ‘
3. Now in this paper, the discussion shall be confined to a special
case, where the density (p) and the rigidity (g) in the medium are
constant, and A alone is a function of r only,

[/7\—_‘"2_"=a—b72, e (19)
P

in which ¢ and b are constants. The author hopes to treat the more

general cases in future occasions.
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Then the equation of motion (1) or (2) reduces to

p 2D _rad {(vt20)A} — 20 ot W, }
oT*
........ (20)
A=div D, W:% rot D, j
and evidently from this equation it follows,
' AN p), e
aT'-'*V o S e (21)
FwW .
and 7 =%V W, e (22)

Thus we see that dilatational wave and distortional wave can be
propagated independently each other, never exciting the other on the
way of propagation. And it is remarkable that the distortional wave
given by (22) is not affected by the heterogenuity in this case. Since
the distortional wave given by (22) has been fully discussed by many
senior authorities, the author confines himself in this paper to the study
of the dilatational wave.

From (19) and (21) we have

2°A

8,1,2=V2{(a~b7‘2)2A§. P 2]
Putting now ‘ '
1
e L 24
() a—Dbr? (24)

in the equations of co-ordinates transformation (3) and (4), we get

1 (. .- 2Vab *  cos 4 .11 2Yab-hcosfB
t=——_Jsinh™ ' =192 —— —sginh 25
2V(Lb{ " Y1+ 4abe? - (a—br¥) = V1+4abfc2-(a—~bh2)}’ (25)
=gin 208 ¢ — —gin™* cos 8 =y een.... (26)
V1+4dabk- 4 V14 4abe®

1 B2 ’ 7
ﬁ:-_a b7, e (27
1 _ sinh 2yabt , o '
W 9y (a—br), .. (28)
1 _ sinh 2Vabt /5 2 9
2 (a—br*) sin B. (9)

Then by the relation,

o (i 0 ih_ea_cb_> i(ﬂa&) 30
Vi=alsha | at<hzha at>+aﬁ 708 " oy \uhs 2y fro @0
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and the substitution,
A— 2!0,_[) c A 6ipT,
' (a—b1*)Zsinh 2V bt
the following equation for A’ is obtained from (23),
PN, dab PN dab FA’
ot" ~ sinh’2Yabt 9B°  sinh*2yadt - sin’8 ogp°

4ab cot 8 2A" ,
= ab)A’=0. ........ (32
sinh®2yabt 98 +(p'—ab) (32)

This equation can be satisfied by a function of the form

AN=XOYB)Z(@), evereerrneani.. (83)
if

0L L Z=0, ... (34)

Y ) <~

——tcotBZ— 1)— =0

S Te B2 5 +{n(n+ ) n%,}} (35)
sinh2ygbt X | (sinh®2yabt, 2 .y -
b or + {_4ab (p*—ab)—n(n+ 1)})& =0 (36)

where m and n are positive integers.
Thus (84) is satistied by

_ sin me
_{ cos mp, T (37)
and (35) by
- w(cos B)
Y= . (88
{ m(COS B), ( )

where P){(cosB) and . @Qy(cos8) are the associated Legendre’s functions.
Since the function X depends not only on ¢, but also on =, the
letter n is hereafter suffixed to X in the equation (36),
Sillh-2‘/a,bt d”,A:n_‘_ {Slnh'QVabt (pz—a,b)—’n(n+l)} Xn=0 (861)
4dab dat 4ab .

Assuming

n=A siny p*—abt+ B cos Y p*—abt, .......... (39)
'substltute in (86'), and we obtain the following simultaneous dlﬁerentlal
equation to determine 4 and B.
d A dB __4abn (n+1)
"at sinh*2yq bt

=0, ..e..... (40)
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d*B d4  4dabn(n+1)
—ab—-—" L B=0, ........(41
at poab dt  sinh*2yabt (40

As the cquation (36") is of the second degree, two particular solutions
are necessary, one is analytic at {=0, and the other is convergent for
a large absolute value of ¢. The former shall be denoted by X% and

the latter by X.>.
When n=0, 1 and 2, the solutions of (40) and (41) are casily

obtained. _
X =sinyp*—alt,

n=0 )
X6 :cosxlp‘-’—abt,

X{l) —— sin ‘l/p —aht—cos Vp —abt,
ne1d Vp“-—ab
X{P=—sin {p’—abt — Y cos ypie bt
1 p Vp _ab Vp a .
XP— {3 v (pP—ab)+4ab) . (4
Vp*—ad p"—ab }smVp abt (. 2)
-3 cosV t—abt
"":21 Vp —ab Vs 3
$=3 sin ypi—abt + {8 v’
Vpi— ab Vp=ab p*—ab
p—ab J
Where w=2Yah coth 2yabt. ............. . .. (43)

If we introduce a function R{® defined by
I/ 2yabeosech 2yabt XP =R, (1=1,2), ........ (44)

following recurrence formulae are obtained by means of mathematical
induction from (86’), (42) and (44).

(p=ab)+dn’ab po \ poy _(_ 1y @n+1)2Vab coth 2Vabt (45)
p'_ab .Vp —ab tny v eee €
(p°*—ab)+4n’ab ,q 2 dR“) ‘
(2= ab)+2nad por - R, = (1) _
P—ab 1= Ridi=(=1)" eyl G B AR CLO

The solution are therefore,

RYP= ,/ 2 (2yab cosech 21/@15)_"—'-1’ _—2ab )n
Tp Vp*—ab
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( Cd ))"(21/&_bsin1/ﬁ7—-—abt)’ @

d(sinh® yabt sinh 2yabt
o n-1 n
R®=[/ 2 (2yal cosech 2yabt) (L)
™p Vp*—ab
(LY (e )
“\ d(sinh*Ygbt) sinh 2yaht '

It is remarkable that the R-functions depend not only on ¢ and #,
but also on p and ab. And, when b approaches zero, R-functions tend
to the Bessel’s functions of the first and the second kind. The differences
between R-functions and the Bessel’s functions increase with # and the
difference between ¢ and Sl—nhg_‘/—“u. Both of the functions are oscilla-

2Yab
tory, and their phase-difference depends on the ratio of p to ab.

Though the earth may be assumed to be isotropic sphere having a
spherical symmetry with respect to its centre, the agsumption that the
density and rigidity are uniform, as is adopted in this section, is evidently
different from what it is. But the author dared to use the values of a
and b, obtained by H. Kawasumi'” by means of analysis of time-distance
curves in earthquakes, and calculated the values of R-functions and
compared them with the Bessel’s functions by which the R-functions
are to be replaced when the earth is considered homogeneous.

According to the investigations by H. Kawasumi,

Vab=282107° 0=235107,
the radius of the earth being taken as unit.

Remark: A precise investigation of velocity of wave, especially, of
shocks, which is not executed by the author, is necessary to use the
value of ¢ and b obtained by H. Kawasumi. But, if the origin of
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Fig. 2. R{®, eP (p=i~) Fig.
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10) H. Kawasuy, Bull. Earthq. Res. Inst., 10 (1932), 94-129.
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Fig. 4 o RM(p=3)

— i (p=])

earthquake is considered as a point, we can deduce from the discussion
of the velocity of surface of discontinuity in “ Mathematical Theory
of Elasticity” by A. E. H. Love that ¢ and b can be calculated by means
of analysis of time-distance curves of earthquakes.

R{" and R{" as functions of ¢, when p:%, are shown in Fig. 2.
As functions of pt, J2 and R{", when p:i— and also p=3, are compared

in Fig. 3 and 4. The former is for smaller values of ¢ while the latter
is for larger ones and is given in larger scale than the former. So far
as pt is less than 15, the differences between these functions are negligible,
as we sce from Fig. 8, but when p¢ become greater than 50, as shown
in Tig. 4, (R{"),-1 is noticeably small than any of the other two, while
the differences be%ween Ja and (R{?),-; are still negligible. ‘

R® e as well as J,- "7, expresses a standing wave. For the
progressive waves, the following functions are introduced.

For a converging wave, . v
‘ UP=RP—(—=1)%R® .............. (49)

For a diverging wave,
UP=RP+(=1)NRY ..o ... (50)

The relation of the U-function to the R-function is just that of the
Hankel’s function to the Bessel’s function, and

Uﬁ}):l/ 2 (2_—a‘b_>" (2Vab cosech 2ygbt) " %

'n.—p v‘p.:_ab ( 2n+1 )
n sou— . 1 (ViT=an -2
( 4 ) (2‘/‘?“_ _ ) ...... (51)
d(sinh®yqbt) sinh 2Yadl
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L,‘f)_.l/ 20b (2v55 cosech 2yabt) "F
TP Vp —ab

1\ (2vape )
.(d(sinhg vam) ( sinh 2yabt ) o

Recurrence formulae are obtfl,ined for U-functions as follows :
(p —ﬂb) + 492/ ab [](z) LT(L) (2% + 1)2V(J,b coth 2Va,l)t U(i) B (53)

. (52)

p*—ab Vp'—ab
(ﬁ_';(lb_)i‘_‘ln—ab[](“ U®, = 2 auvy 54
—ab n+l _‘/m dt"- ............-.( )
(1=1, 2.)

From what has been stated, follows the solution of the equation
(21) for a diverging wave,

S A= VQ]/abCOSGOhZVabi [](’) Pr (coq B) sin e e . (55)
(@ —Dby ) ’ 08 mp

Roughly speaking, the surface given by t=const. is a wave-front,
and, in such case as adopted in this section, this surface is a sphere,
though the proof is omitted here. And it is worthy of note that the
solution of the equation of motion involves a factor P7(cos 8), asin the
similar case when the medium is homogeneous, quite concordantly with
the fact the surface expressed by t=const. is a sphere.

Thus we can discuss the distribution of “pull and push” of the
motion on any surface quite similarly to the case when the medium is
homogeneous.

The components of displacement derived from A under the condition
that rotation vanishes are,

1

U= —_1;4“ m(COS B) sin me * GW{ d (l/2]/ﬁcosech 2Yabt U;f))
p (a—br%)2 cos dt

+ by cos ’51/21/55 cosech 2yabt Uﬁf’} ,

_1 (2wbcosech2\/abt) Ue sin g - 7" { 1 dPcosB)
p' (a— b?‘)“ cos a—br* dB

_bhsin B P™cosB) }
“a—bh? 2y ab cosech 2yabt

/ m( .
__m (2yab cosech 21 abt) Ue. n{cosﬁ) cos mer™.
P’ (a—br ) sinf8 —sin
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Asymptotic expansions of U-functions being respectively,

o ~(p°—ab)+4(n—1)"ad
v pi—ab

1 i (Yean-"5r)

e l/_?" (2Yab cosech 2yabt)?e,
P

(](2)’__\3(292 — ab) + 4('7'& e 1)2(11)
" p*—ab

1 ~i(Vir=ave-"5% )

. 1('21,"% cosech 2yabt)e,
p

if amplitude of displacement be observed on any surface expressed by
r=const., the component parallel to the direction of propagation, or, to
the direction of the tangent at the point of observation to the path of
wave determined by the Fermat’s Principle of trajectory, is proportional
sinh 2Ya bt

2Vab
the same direction are to the square of the same factor.

And we have from the equations (3) and (4),

t—':f dS ')
a—br*

provided ds is elementary distance along the curve determined by (16).
For a large value of ¢, the phase-velocity V is determined by

to the reciprocal of , and the other components transversal to

%(pT—vF—W)t):o,
therefore
oS
V_ﬁ=(a—br)vp£_—7—b.
As the ratio of p to ab is a number of a order of 107° the dis-
persion may be negligible compared with that due to the effect of
gravity, which was investigated by Bromwich and others.

In conclusion, the author desires to express his sincere thanks to
Professor T. Matuzawa and Dr. H. Kawasumi for their kind Guidance.
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