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1. Nearly two years ago, using the Fourier’s double integral for-
mula IV studied the deformation of a semi-infinite elastic body due to
temperature distribution of different kinds. The temperature distribution
in question corresponded to the state at an instant of heat conduction in
the solid, but it did not contain the effect of time variation, and hence the
problem of diffusion of heat in the interior of solid was not treated in
that cage. In the present paper I have studied the deformation of the
solid due to the temperature distribution and variation satisfying all the
conditions of the theory of heat conduction. Recently Dr. II. Arakawa®
treated of a similar problem as my present one using rectangular coor-
dinates with some critisism on my preceding paper ; but, as he did not
seem to give the consideration concerning the boundary conditions of
stress at the free surface of elastic solid, his result is not theoretically
complete.

Using cylindrical coordinates I have treated the following two cascs,
4. ¢. the case where the inertia of solid is neglected, and the other where
the inertia effect is taken into account. Studying these two cases, we found
some interesting facts which we would not be able to get in the case of
the temperature distribution without time variation. I believe that the
present study on these two cases is also interesting from theoretical
point of view.

Part 1. Problem in the Case of Neglected Inertia Term.

2. Cylindrical coordinates (v, 6, z) are used. The plane z=0 is

1) G. NisHiMura, “The Effect of Temperature Distribution on the Deformation of
a Semi-infinite Elastic Body,” Bull. Eartl:q. Res. Inst., 8 (1930), 91—142.

2) H. Ararawa, “The Effect of Temperature on the Deformation of Infinite or
Semi-infinite Elastic Body,” Geophys. Mag., Tokyd, 64 (1931).
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the surface of elastic solid, and r is the distance from the origin o, 6

the azimuthal angle around z-axis. The axis 0

of z is taken vertically downwards. (Fig. 1.) -
The equations of motion of elastic body

when temperature variation is taken into con-
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sideration, and the inertia force is neglected, z

are expressed by the following three forms : Fig. 1.
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in which A, g are Lamé’s elastic constants of solid, 7' is the temperature
-ariation of the same solid, and

where ¢ is the cubical expansion coefficient of solid.
The dilatation 4, and the components of rotation 2@,, 2z, 2%, are
connected with the displacement in the following forms :
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where u, v, w are the radial, azimuthal, and axial components -of dis-
placement of solid.

For the purpose of finding w, », w from the equations (1) and (8),
we must first find the suitable form of 7" which satisfies the equation of
conduction of heat in elastic solid such that

3) In two-dimensional problems, c should be taken as _%(7\+ F)e. In the second

part of my preceding paper, loc. cit., pp. 95—I115, the meaning of notation o must be
o

taken to be —(X+pg)e. My thanks are due to Dr. H. Arakawa for his kind notice, in
9

his paper, loc. cit., on my inattention on this point in my preceding paper.
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where ¢ is time and « the diffusivity of solid such that
= (5)
TP

K is the thermal conductivity, v the specific heat and p the density of
solid.

There are many types of clementary solutions of equation (4), and
we take the following form of 7' for our purpose :

—x(k§+m?)f
[4

T= Ca (Icsr)sm }'mzsm} nl, .......... (6)

COs Cos

where m, n and /s are any constants to be determined by the initial
and boundary conditions of temperature, and C.(z) is the Cylindrical
function of any form of order m.

Now we know the following identical relation between =,, s and =, :

190w) 13m0
»  or r 00 o0z

Using this relation and the equations (1), we obtain the following
differential equations :

=0 ... )

?;[mzm—am 1 %[(RMM)A—MH
o

;’2 [(A+2)d—aT]=0, ..(8)
z

oy L Omy 10w, Om.
or- ¢ dr 98 o7

+~1n~~‘?'—.,[(x +2m)d—oT]+
7 06°

) (£))

Substituting the expression (6) for 7’ in the equation (8), we obtain
‘the following differential equation :

2 2 2 2 %) _e2+m) 11 11
8A+lid_+lad _z_a_d___wo (h2+ 2)'(},1(ksﬁ')sm}mzsm}')zﬂ.

o o oar 0t a0t ' (\+2p) cos| " cos
............ (10)
The particular solution of the equation (10) is written in the form:
—Kk(h2+m2)t 1 1
Al:*(i'f?-)-c s z)tCn(/cs'r)?OI;}mf}g;}nﬂ. coe (1)
1

The dilatation expressed by (11) is that due to the elementary tem-
perature distribution expressed by (6).
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The complementary solution of equation (10), which is useful for the
present study, is

—K(k§+n:2)r

42: Amc Ry On(/ < )qnl} 71/0 .......... (12)

Ccos

where 4,, is an arbitrary constant to be determined by the boundary
conditions of elastic solid.

The solution of (9), which is suitable for our problem, is of the
form of

—K(l.'§+ m2)t

e“"\"Cn(ksr)—gg_i}n@, ceee...(13)

2mz:Bme

where B,, is also an arbitrary coristant to be determined by the elasticity
conditions of solid.

Substituting the cxpressions (6), (11), (12), and (18) for 7T, 4 and

=, in equations (1), we obtain the following solutions of 2z, and 2m,:

e I'n(7\ + 2,“') A, On(]w") — B, 1 acn(k\? ) ] , ,S,,:o—x(l2+m2)r — COS} 9, - (14)
N r ks or sin

2 6N + 2#) o0, (Ld) n Cn(]c r ) p ~x0Z+m2ysin :

LTI [ L&y, Am or Bm Ls ” c COS} n6. e (15)

Now we can find the following differential equations concerning ru,
r, w, 4, 2m,, 2my and 2m, by means of the relations of (3):

Py 1ow 1Fw Fw_0d 2 om 2

5 > +~%—~ir , ....(16
o ar R of a7 o 6 r ool (16)
Frv) | 1 o(w) , 1 (o) *rv) 64 977,

v) Lo,y 1ot v) 04 9,57 imy), (17)
ot o e e e e ( ),
Flrw) 190 u) 1 &*(ru) +r32('ru.)_"2 o(rv)
or' r er fr" 00* 0z” 00

94 | 9,9m0__ 9P 18
=7 P + ,» BEF MRS (18)

Substituting (11), (12), (13), (14) and (15) for 4, 2=,, 2=, and 2=, in
the two differential equations (16), (17), we obtain the particular solutions
w, v in the following forms :

—K(Irg-(-m?)t

____moe . cos} sm}
(>»+2p)(k? ity O B) i ™o 70

w0+ 80+ (o ke O (), . (19)

_.‘)L
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and
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_ noe y sin S
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The complementary solution of (16), (17) are written easily in the
following forms :

—x (k24 m2)t

w=—kE e C, (L )COS nl, ........ (21)
— (k24 m?2
Y= ""I'LEane_kS:C e )rOu (Iug')) Z?r?}ng e e (22)

where E,, is also an arbitrary constant to be determined by the boundary
conditions.

Now substituting (11), (12), (13), (15), (20) and (22) for the expres-
sions of 4, 2my, 25, and v in the equation (18), we can find the parti-
cular solution of ru, which are favourable to the present study, in the
following forms :

~K(k§+m2)t
e .

_ A0 (Ler) sin} sin
MA2u) (ki +m®)  or  COS)cOs

(N4 1) el 3C,(ksr) sin
25 TP " or cos}n@

—x(lx'§+ m2)t

}n@
+

n - . \sin)|
+ 777;7;-8»% e O"(A 57 )COS[ne

e e dCh(kr) sin}
+-E'”Lc 6 7"7‘31:'7*COS ne- .. o--.-.'o...'(28)

There is also the complementary solution ru of the equation (18),
but it ‘does not satisfy the equation of motion (1).
As the components of stress rr, 06, zz, 79 7z and 6z are expressed by

97—7\_/1-{— ‘);Lﬂ—ocT 00 =24 + 9p( +l—§%—> —afl,
or 7 r 08
- ow ; 5 v 0] 1 Afu
zz=Ad+2p — —aT, 0= <___+___) Lo(94
oz = o r v 08)’ i (24)
- ou . dw ~ 1 0w , ov
re= + s Oz = (,” __.+___._>
M( oz 6z) # v o8 )’
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we can find the components of stress which are necessary for the present
study, by using (6), (11), (12), (19), (20), (21), (22) and (23).
Now the surface (z=0) of elastic solid is a free surface, so that we
hmc the following conditions on this surface:
2=0; zz—O frz_O 0r=0. ............ (25)
From these relations we can find the following forms of constants

Am: Bm and Em:

Quormks
Am - > o ) Bm = 07
(ot @O+ 20) (- 7) | ‘
RN 6
Boe — met _ [
(N ) (B + 7Y e )

Substituting these relations (26) for A, B. and E,, in the components
of displacement expressed by (19), (20), (21), (22) and (23), we obtain the
components of displacement «, v, w in the following forms :

-x(kg»i-m?)t
p=—2 (k) g, m““}ne
A 2u) (ks +m)  or
__x(kf+mz)t .
moe 4o -ke0Cn(kr)sin] g
N+ 20) (ki +m7) ar COs
o —x(l'3+71l2)f ao (] ) .
meie ke OC (ke sm} —
— — ¢S e nl, ........(27
N ) (B4 mP)s or  Cos @0
—x(lc2,+m?)t
SE L Cu(ksr) sin mz —Cf)ﬂg} no
T+ 2u)(EAm)  r sin
P I Cullesr) —cos} 0
1
(7\+‘>u)(/w+m ) 7 sin
qznzue-m“mbin6_;.820'71(/;&7) cos}q 0, (29)
vt )T . sin e
—k(k2+m2)t
mece
W= ——— - Culsr)cosmz no
(A +2p)(Ei4m ) (k) COJ
) L e —x(7\2+1u")t 1
MK —kg S Il
— 2T O (b 919
(n +2p)(I5 +m) o
o -K(h‘2+m")l R
muce -"SOn(ks”')Zgélﬁw' ...(29)

(7\ + )N A 2p) (IS m )’

4) To obtain these results, we used the upper part of zgé} mz of T expressed by (6).
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The displacement thus obtained is of elementary type which cor-
responds to the temperature variation expressed by (6) and satisfies the
boundary conditions at the free surface z=0 expressed by (25).

3. When the temperature varies as any function of time ¢, coordi-
nates # and  on the free surface (z=0) of elastic solid and the initial
temperature is zero at every point in the solid, the problem is more
complicated ; and I shall show the method of treatment as follows.

Now the conditions with regards to temperature 7" are as follows (in
mathematical notations) :

P05 =0, e (30),
e=05  T=f(r, 6,0), e (30)s
2=00; T=0, ... ..., (30)s
p=00; T=0. ... ... (30),

Substituting the Bessel function of first kind Ju(ksr) for C,(ksr), and
taking sinmz and cosnf in the elementary equation (8), we obtain the
following expression of 7' which satisfies the equation of heat conduction
(4) and the initial and boundary conditions expressed by (30);, (30).,
(30); and (30)4-

= s LT[ e g o091 o

Jla8)sinEzabldndpdldadt,. ... . ... (31)
where §,=1, §,=8:=8=....=8,=2
Now we have to obta.m the displacement corresponding to the
temperature variation expressed by (81) and satisfying the boundary
conditions (25) in Section 2. Using the elementary solutions expressed
by (27), (28) and (29), we obtain the final solutions, which satisfy all

conditions, in the following forms:
[smfz + <§z ——;i)e"”J
ag

= (X+"#)% Tt e

cosn(8—)f(&, @, M2 "("’)I (c8)otdndpdtdodt, . ...(32)

i 2
Ko ZS f fmfmf'f ”c ko ED (=)
= L On :
W~(7\+ 2,11') 7e0 0 Jo Jo Jodo

Q .
2 [Sil’lfz —Eze7 (A 2p) ‘éc—q']
, NAp) o ]

(")
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J, _(o'g)

sinn(0—)f (¢, 9, )" Ju(ol)okldndpdtdadt, ... .(33)

oo 0 oo poo p2m b [008524‘#6"“—!—0%’"’]
Ko i - 24 £2)(t -
T e o S ®(o2+£2)(t-m) ‘ I
o o S e
cosn(@—)f(, @, I (on) T ot )ot TdndpdLdadt. ....(34)

We can easily’ formulate the components of thermal stress frf'r\', ()’3,
;:;, 'fé, 7";, 8z at any point in the solid due to the temperature variation
expressed by (31), but in the present study we omit this procedure.

In this section, we have obtained the general expressions of dis-
placement u,v,w due to temperature 7’ in the semi-infinite elastic body
satisfying the conditions expressed by (80).

4. When the distribution of temperature has no a7unuth‘11 varia-
tion, and is given by the form :

2=0; T=¢rt), covvi . (385)

we have the following form of temperature distribution in solid :

t
= f [ T (o)) sin Ezatbdndidads.
’71" Jo Jo ‘
The equation (36), of cource, satisfies the conditions (30);, (30)., (30)..
The components of displacement (u, w) corresponding to the tem-
perature variation (86) are easily formulated as in the follow :

e " 024 82)(t -7 [Sinfz+ (Z-I-l)e_‘”f] oJs (0'7‘)
ﬂxm@ffff TS E ) (*+E) or
J(aé’)ofé’dé‘dqda‘df, ...(87)

KoL e rere f)_,(ae_,.z t-7m
'w:—w——-—v(x_i_u)(h_)_ﬁfoﬁj;ﬁo (P& )¢(§,’7) |
[(7\ +u)cos Ez+Le™ 7+ (N4 p) aze'”]

(o + €
Tl (o)L dEdndodE. ... ... (39)

The surface deformation due to the temperature variation may be
studied by the following two components of displacement :

— e~ o2+ ED (1 =-7) [ 0(0'§> U;Tn (o"i)
Uzeo= — 77‘(7\.-:-2}1/).[ f f f (@5 4)( S )( +£ ) or
ELdldndodt,. ... . ... (39)
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—__ Ko Sl Sl (S }]7-0(0"")
et 71'()\.4-/‘)]; fo fo f.,p ¢ (o*+£)
J(c8)oE¢dndEdadE. . (40)

Part II. Problems When the Inertia Effect is Considered.

5. Using the same coordinates as that in Part I, the equations of
motion of an elastic body of temperature variation 7' are expressed by
the following forms :

2u 0w, Jw1e daT \

U\ 2 A——-—+2 9m_ O

3t‘ (A +20) » 99 # 2z or

B'U 1 24 A bins 1 3.[’ |
=(\42 ____2 192,77 _ o ..(41

R e R R T e Tk (L)

Fw 94 2 2 2udm _ 0T

— =\+2u)——== .

ot ( #) oz v 8/ o)+ r 08 az

Tor solving the equations (41), we must first find the suitable form
of the expression of temperature 7. We take the following form of 7'
as that in the preceding part:

g xGEemnyr o gin) sin!. ,
T=e Cu(ka )cosfmzcos nd. .......... (6")

Now, using the identical relations expressed by (7) and the relations
of (8) in Part I, we find the following equations

&4 3‘ m p
P = [O\ +2u)d — a1]+~—[(7\+2,u)d ol']
+J§ T (2w d—aT ]+ [ 2u)d—al, ... (42)
r° 90 0z
O, (OPm. 1 A, 1 O m, 0w, o
N A S Rk i B 48
ot #_ ot ¢ or 1t o0 ‘J (43
o (0w, 30w, = , 1 2w, 2 0w
L LACLER L r + 2, ... . (44
Por ™o T e T * T o + r oz ] s
- we [&%as . 1 Oma __ e 1 d%m, 827;;9 2 0w,
> e P + - 7TA ’_., P '"_z N 7 e 45
P ot 'u_ ot roar ot ot 9z ¢t a0 ] (45)

Substituting (6") for 7' in equation (42), we obtain the differential
equation of the form:

5) The reductions of these equations when 7'=0 have been made by Prof. K. Sezawn.
K. Sezawa, Bull. Larthq. Res. Inst., 6 (1929).
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o*4 4, 1 64 104 &4
AW 2p) e ST —T]
Pap A+ [ at r o ee o

—K(l'g-}-?)l?)l

=a(li+m’)e C, (l;xo')zg;!-mzzgg nf. ..(46)

We have the particular solution of equation (46) of the form :

—k(k2+m2)t . .
e sin]  sin
4= PV > On Lesy l’ﬂlz }71/9. .. (47
U e (E 4+ m®) + (n+20) ] Ucos] os “n
The dilatation expressed by (47) is due to the elementary temperature
variation expressed by (6). 7
The complementary solution of equation (46), which is necessary
for the present study, is

- .2 o112
Pe2(kZ4m2)2 !

Cn(k,w')e_[' (v H’ : 22;]»719, ....(48)

.2
—k(RE+m2)t

AZ - Ame

where A, is an arbitrary constant to be determined by the boundary
conditions of clastic solid.

The solution of (43), which is favourable for the present study, is
of the form:

L1z
Px2(R24-m2)2
—K(k:f+m2)r s J z

oy [

sin|
—cos/
B, being also an arbitrary constant to be determined by the boundary
conditions.
Substituting (49) for 2z, in equation (44), we obtain the following
solution of (44):

2m.=Bne nf, ..(49)

Pr2(hZ4m2)2 112
' (k) —x@2em2y — [;+ﬂ.J : —COS|
26, = Cm——c" (k) )c ! e ! e Lno
> s1n )

2 22

p* (ki +m?) 72 . e

- fvs Px2(ks+m2)2 2
. +

e
_B, w + ] aOn(lsﬂ')c—[» fr— k;] z -—cos} nh. (5

- 5
ik o sin

Using the expression (50), we can find the solution of 2w shown
below :

0)

Pr2(k2+n2)2 iz

o) —K(kZem2)t —[ L Siil'l
2m9: Cmi ?_Q"_(_Ll)c 3 e " 4 ] }??,0

— cos
2/7.2 2y2 2
n Miﬂ)+} Culler) = "5 ] < sin
" w(lr) = | 5
+B, I P * cos}ne' (1)
vs
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In the expressions (50), (51), ¢, is also an arbitrary constant.

Substituting (47), (48), (49), (50) and (51) for 4, 2m,, 2=, and 2,
in the equations (16), (17) and (18), we obtain the following solutions
of the components of displacement (v, v, w) after some reductions :

—k(kZ+m2)t

ole oC, (lm)sm} sm)_ne

U =

mz
el md) 42w (Em?] er cosl " cos]
—xik2eme)t p(-(z‘z.,_,,p)o 1z
(7\ + 2“)1‘1 mC ’ ;)Cn (]U\? ) [‘"(:\:m f] 7 Sln } 7'2.0
pe*(l3+m*)? or cos
PIC (1~<+m ) + 12 } = o
s . Pr2(k2em2y2 M2
- - G c—x(k'girmz)r,a,,(f’!':,(!{sﬂc [ '—7;1!“2] : Sln}n@
npi’ (i +m?y " ar cos
pK2(12+»::2)2 1z
- (,_.2 2)t Y oer AR =
— ”. B, Mc W ] gm“‘n@, ........ (52)
JH T cos

—k(EZ+m2)t

o nee G, (lev)sm} ms ©OSLog

(P m?) + (20} (K4 m?} o cosl 7 —sin
2 Y PK2(k§+ mH2 lf
(A +2u) lmc“"('”-ﬁ* 20 Gy (ks )c [ Fer 3] 005}7,(9
P (ki + )’ 7 —sin
12
{Plc (]ve+m) —I-L\]» w2ann 1, (1 ) [Pu?(k3+m2)2 L2]”2 .
M v okt G (L) - ————+tf) 2 cos
- R o\o («m() ® . }ile
PRI+ ) g —sin
1 . —rx? +m2);,’)0 (l ) _[F"‘”E‘ +m.)2+l ])iz ‘
—*“Bmc osT ) e ) (:'OS}' 72‘9, PP (53)
J o or —sin
S cos sin|
mote 1
W= — Coy(lsr) 7. ;~m~ 10
{PIC (lw +m )+ (7\—{-2;1.)} {]w ; n( —sin cos/

— (2 )» 4[pmu(ks+m Yy 733] Gy
pr (ks +m L (A +2p)

PR2(R24m2)2 1z

-~ _ +).-?] z Q1T
X e [ ez TR sm}"(_)
Cos

Pr2(kZ+m2)2

]u,/.b -, —K(L 242yt [
ey mC On La)e -
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HI sin| =
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, In each expression of the component of displacement, v, », and w, the
first term having the trigonometrical functions of mz corresponds to the
temperature variation (6") only, and the other terms having e-functions
of z correspond to the displacement which may be used for the purpose
of fulfilment of the boundary conditions of elastic solid.

Using these components of displacement, (52), (53), (54) and dilata-
tions (47), (48), and temperature variation (6'), we can obtain the
components of traction 7;, 6’5, 2z, 18, 0z, rz.

Now the surface (z=0) of elastic solid is free from traction as in
the case of Part I. Therefore we have

2=0: 22=0, 12=0, €2=0. ... ... ... (55)

These conditions give us the values of constants 4,, B: and C, in
the following forms:

DBm=0,
Am=
o 272 2)2 o) 1/2
-4 W;Emc&mc?(k?+m"’) [ (L +m?) + L
H l p
pEAEE4+m?)? Y2 (pi?(1i - m?)
A +2p){pk’ (I3 +m?+ (0 +2p)} [4/1 I {M(‘———A+2;4) +L.\~} { u +l\l —{,o:c (13 +m?) +2pli ) 2 ]
Cn=— 2mnupr L?+m’){p:c’(l.?+mf)’+2,ULZ}
piMEE+m?Y o) W2 (p¥ i)
(o vty gy} [ 4] s 1 PR FE ot meyeaopiiy ]

................... (56)
Then, substituting these expressions (56) for the constants 4,, B,
and €, in the components of displacement expressed by (52), (563) and
(54), we have the components of displacement u, », w of the forms:

—K(l'f-{—m?)t

8C, (k) sin }mz sin| 06

/lb: —_— .;_ s e . 5 e
{2+ m*) + N+ 2u)} Y 4+m?)  &r  ©OS cos/|

2 —k(FZm
4:“‘ I‘ anux{p,c (,w +’)77 ) Ls} i “ aC (A ) [PK?(l 2+m2}2 2]11’2
» a\KI) — |- —+h 11
- 5/ 19 5 5 ST = (A+2p) Sin
{pt (I mP) =N+ 2m) M B+ m* I (key m) O Cos]'” 6

(I3 +m?) 1z
2 k2 2plki {M e
Wloa‘u{plc ( +,'n ) + K } ® + } GOn (7\4\)) _K(}'2+"‘2)[

T+ mP) {3 +m) + (N 4 2u) § F(Fm) or

12

Pxﬁ(l\ +m2)2

X e [ e ‘] : 22;}'“9’ (BT
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—k(kZ+m2;t

_ nete C, (k) sin} . C.Os}nﬁ
Pt (Rd ™) 4+ (N 2p)5 {4 m®) o €OSTO T —SIn

(k3 )2 12 e dem
4/-021337010104{[" (ki 1) kﬁf} o0 Y oneoss 18
- = ER Cn (k) o [ (A+-’B’"”"] ¢ C,OS}%B
{pr* (ks +m?) + (N4 2w) LR+ P F (ke m) _sinl
2712 22 112
Domncup e+t + 2} (AR g Co (k)
n\WsT
+ 2 0799 >
(B2 4+m2) {pe*(kE+m*) + (A + 2u) } F (b, m) -

2(k24m?2)2 1/2
gf"fm,i x2
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2072 2y2 RRE 2(7.2 22)2 AU 2y
4M2kgma{efs (Es +m >_+k;} {P"f&ﬂi_"]},)m +k;} Pl
(A +2u) ©

(4 m*) p (B3 +m7) + (N + 2p)§ F (ks m)

PKZ(I.‘.E—O-m?ﬂ 172

I RN >4 117
X(,?n(]n"s'r)c [ (A+21) +l$] ZSI“]'/RH

cos

) -x(kf':,-ﬁ— m2)t

_ 2limpof e’ (ki mt) + 2ukile
(k5 +m%) § pr*(T 4 m®) + (N +2p) § F (L, m)

P2k I 41m2)2 12

ST 2| 2 gl .
X Culkir)e | " l"] Zf)r;‘lazé). (59)

In the above expressions (57), (58) and (59), I"(k., m) represents the
relation :

Pk m)= [4,Le 2 {&fﬂvﬁffr ) ;}’{ pr(ks+m’)* L}”
o Toze "

— o )+ 2k ] (60)

The displacement thus obtained is the elementary solution which
corresponds to the temperature variation of the type (6") and satisfies
the boundary conditions at the free surface (z=0).

6. In this section we shall study the case where the temperature
of the semi-infinite solid is subjected to the following conditions :
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i=0; T=0, ... . ... (61)
T ) N (62)
p=o0; T'=0, ... ... . ... ... ... (63
z=00;  T=0. ... ... (64)

These conditions are the same one as that in Section 3, and therefore
the form of 7' is

© 200 A A2 At 20t .
=0 Zsf f [ [ [ @i, g, ) cosn(e—)ion)
Ju(e8)sinézabdndpdidadf. .. . (65)

Using the elementary solutions (57), (58), and (59), we obtain the
following form of displacement which corresponds to this temperature
variation (65) and satisfies the boundary conditions (55) :

u———~f

™" =0

X f f f‘” f’ eTHTUTIRE, @, ) cos n(0— @) A (o)
o 1P HE) 2 1P 1B ar

Ju(ef)sin &z ofdndpdtdadE

o {p/c G + £ 0_2}113.@,’ 9, e
2
u«ouannsf f f f f (¢* +§2) { prc (‘72+§‘)§:I-()»+2y);p(_0._,'§3‘

Px2(02+ £2)2 1/2, Pr2(024-£2)2 1/2 -1
aJ’l(m)[Qp,azc— K(Aa.,.zy.) "“’9] - 20 2 22 2) "~ “KL':"—)+02] ! ZJ

+ {pe’(o” + E) + 2uc’ e

or

cos (0 —@)Ju(al)alldndpdtdadé, (66)

NN T

Ju(a8)sinézabCdndpdtdadE

ne KON o n){PK (a® +f ) AP }snm(ﬂ )

H“‘mg S"me:f:fo f fo*+ £} (o™ + &) Ot 200 1o,

; 6__ [ﬂx2(a:+22)2+02]1 [zz]

_[Pr2(024+£2)2  q1]2.
[ (AFZ) +o2]

[.,,uo' ¢ + {p*(o* + E) 4+ 2uat

Juler)Ju(af)oE EdndpdEdadE,  (67)
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- P 00 A2m At —'K(Cl 24 £2)(t — n)f(t @, n)coq n (0 (p
w= — Bn n
* Z J f f o 4"+ E o’ (0" + E) + (N4 2p) hln)

Jolal)cosEza Bt dndpdldadf

,Jufcozgsnj‘ f f fy 0 TIENCAE @, mEatcos n(6 — )

fo* + £ pi(c’ +E) + (A + 2u)t F(o, &)

o) 2P B BT PSS

(e B o 2uotle R ”’]”2’]Jn(ac)ascdndwcdadg. 68)

[PK7(¢72+E")2

In the above expressions (66), (67) and (68), F(s, &) is written in place
of '

~W%@ﬁuwﬂ1.nww

7. When the surface distribution of temperature has no azimuthal
variation and is given by the form:
z=0; T=¢(rt), ..o (70)
the expression of 7' satisfying (70), (61), (63) and (64) can be written
ag follows:

n :L i ” '__x(u'2+g2)((-1]) . A ]01112"” A / —
1 - f f f f € d(&, m)Jor)JaleinEzabldndtdadE, (71)

and the expressions of the components of displacement in the solid are
written in the forms:

o tpK (<r +£‘) +(+2w)t (48 or

J(e)oEEdndtdadE
p’cg(o_z_*_fi’)‘-’ ol 1z P )
jwﬁffj {————+}¢mmmm —_
T Jo Jo 0 { {pi’(c? +f)+(7\+2/-")311(0'sf) or

. PK2(172+82)2+ 2]”23
e-x(o-+§2)(!—n)[2#aﬁc" (A+21) -
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[PK2(02+£2)2 2]1/2

+ (ot + ) 2u0 el W z]af”@‘dnd_(cladf, e (T2)

o L e o

Jo(at)cosEzoE* e dndldodE

{4+ £ (0 + E) + (AN +2u) | F (o, £)

[0 PR | o o B |
(A +24) p

‘)/.bmxj‘ f [ ](-)r —K(ugs")rr v)d)(é" 77)50 Jo(o"r) ]0(0{)

LPK2102+£2)2+02‘]1/2

P B "]agcdndgdadg, . (T3)

where F(o, £) has the same meaning as that of (69) in Section 6.
The surface deformation due to the temperature distribution (71)
may be written by the following equations :

B‘,i(gli__g_')‘i 2 " =~ Kk(02+£2)(¢-7)
14_0:_?/'°_°"‘ffff'{ ° +"'} (¢, n)e
R A A ey e e e N T

[pe(o® + £ + dpuor ]"’*"‘"")JO( ot dndtdadt, .. ... (7T4)

%erp tem ot (62 4 £2) 1P 4 £ o+ Qo
f f f f 1P’ (a® +E) 4+ (N +2u)} F (o, &) #E

Jlor)T(cl)odedndodE. .. .. .. (75)

8. Using the cylindrical coordinates, we have obtained the expres-
sions of the displacement of a semi-infinite elastic solid due to the
temperature variation which satisfies completely the equations of heat
conduction and the initial and boundary conditions of the solid. 'We have
studied the problem separating into two cases: one of them is the case
where the inertia of solid is neglected, and the other the case where the
inertia effect is taken into account. In both cases the resulting equa-
tions contain the term of density in spite of the fact that the inertia
term is neglected in one case and not in the other.

In concluding this paper, my cordial thanks are due to Professor
K. Sezawa for his kind advices during the course of this study.
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