4. On Swarm Earthquakes.

By Torahiko TERADA,

Earthquake Research Institute.

(Read July 7, 1931.—Rec. Deec. 19, 1931.)

Trom the middle of February 1930, remarkable trains of swarm
earthquakes began to be felt in the vicinity of Itd on the eastern coast
of Idu Peninsula which showed maxima of frequency in March and
lasted to the middle of April. The activity was resumed from the
beginning of May and lasted to the end of the same month. Towards
the middle of November another swarm was commenced in northern
parts of Idu and culminated in the destructive shock of 26th. Nov.
The activity lasted towards the beginning of January 1931. Though
somewhat similar phenomena occurred in 1899 at Arima, in 1917 and
1920 at Hakone and in 1922 at the Suwa ILake districts, they are
surpassed in frequency and duration as well as in intensity by the
recent case of Idu earthquake-
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phenomenon. If the time scale be magnified sufficiently people will
take no notice of these swarms as such. It is, therefore, of some
interest to inquire whether a similar swarm cannot be found with
different scales of time and space. TFor an example, we take the
-monthly numbers of conspicuous earthquakes in Kwanté Districts which
are plotted in Fig. 2. The data for 1920-1927 are taken.from Honpé-
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Fig. 2. Earthquakes in Kwantd District 1920-1927.

Kentyo-Disin-Iyé, compiled by the Authorities of the Central Meteoro-
logical Observatory. The earthquakes here chosen are those which are
classified as “kentyo (conspicuous)” and “yaya kentyo (rather conspi-
cuous) ” according to the usual terminology. Among these earthquakes
those were picked up of which the epicentres are located within Kwantd
Plain and its neighbouring districts such as Idu Peninsula, mountainous
regions of Kai and Sagami, Bosd Peninsula, river basins of Tonegawa,
etc., Utunomiya and Nasu districts, and Province of Iwaki. Only those
were taken which originated in the inland area, though the Tokyé Bay
and Uraga Channel were counted as within this area.

Comparing the epoch 1922-1926 of Fig. 2 with Idu Farthquake-
swarm of IFig. 1, we may remark a similarity in features of graphs in
spite of the remarkable difference in scales of the coordinates. If such a
comparison may have any physical sense, we are led to the inference
that the Kwant6 earthquake-swarm in question was already begun as
early as in the end of 1921, though the climax occurred in September
of 1923 which is known as the Great Kwanté Earthquake.

In the case of purely statistical occurrence in which the probability
of occurrence of a number » is determined by its mean value v alone,
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we usually resort to Poisson’s formula. In the case when the probability
p of each element turning out favourable is very small, while the
number of the elements, N, concerned is very large so that the mean
value »=pN is finite, the above assumes the form similar to Gauss’s
law. In the present case, we may tentatively compare the number, =,
of earthquakes in a given day with the number of elementary volumes
of a colloidal solution containing a given number of particles. In the
latter case the actual statistical distribution will also show some ir-
regularity when the total number of the volume elements taken is finite.
The distribution curve in such case cannot, however, be expected to
show such a remarkable quasiperiodic -fluctuation as shown in Fig. 1
or 2. Hence, we may suspect that there are some causes which give
rise to such a characteristic distribution curve. _

Among the natural phenomena there seems to be some class which
show a quite similar statistical distribution. One of the remarkable
examples is afforded by the daily number of falls of camelia flowers.
In the last spring, the present writer and Mr. T. Utigasaki of the
Institute of Physical and Chemical Research made some observations
regarding the fall of this flower. Fig. 3 and 4 show some examples of
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Fig. 3. Fall of camelia flower (Terada). Fig. 4. Fall of camelia flower (Utigasaki).

the results obtained. It will be seen that the time-distribution curves
resemble to those of earthquakes shown in Fig. 1 and 2 in many
essential points, i.e. the curve shows a quasi-periodic fluctuations of
remarkable amplitude and also a similar unsymmetry with regard to
the maximum point. »

In the case of the flower the meaning of the statistical distribution
observed is in some measure apparent. Thus, there are a number of
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elements for which the average life is assigned and the actual falls take
place scattered about this mean. There must, however, be present some
cause which gives rise to such a remarkable fluctuation of the distribu-
tion curve as is actually observed. Firstly, the weather conditions may
considerably affect the fall. It was, however, observed that the number
of fall is not necessarily large after a windy or rainy days as may be
commonly expected. A very remarkable fact is that the fall takes place
almost exclusively during the night hours. " Even in a very windy day
the fall during the day time is quite rare. Only towards the end of the
flower period some of the flowers are rotten before falling, in which
case the normal mode of fall is not followed but the pistil and calix
drop off attached to the petals. These rotten flowers are sensitive to
winds. The normal mode of fall of the petals seems, however, to be
~determined by some other intrinsic causes. As it is known that the
turgidily of plants shows a great difference in day and night, we may
suppose that the fall of flowers is somewhat connected with it. On the
other hand, the fall of a large number of flowers within a short time
cannot be without some influence upon the turgidity of the entire
organism and therefore affect the later fall in some or other way.

Returning to the case of earthquakes, we may venture a similar
conjecture. Thus, we may suppose a group consisting of a large num-
ber of “latent” origins of earthquake which are gradually “ ripening”
or approaching a critical state. The time of attaining such state is
distributed about the mean value according to some statistical law.
" Besides, we suppose that the occurrence of an earthquake has an
influence on the entire system of the latent sources such that the pro-
bability of occurrence of the next earthquake is thereby decreased in
some measure. In such a hypothetical case the occurrence of the earth-
quake may show a statistical distribution somewhat similar to the
actual swarm. ‘

It seems possible to. construct even a mechanical model of the
system above considered. Suppose, for an instance, a vertical cylindrical
vessel containing water, provided with a large number of horizontal
side-tubes attached to the wall at nearly constant heights. The end of
each tube is provided with a stop such that it is pushed off when the
pressure of water inside of it attains a certain value which is not quite
constant for all the tubes but varies within a range about the mean
value. The stop is connected to a ball or conical secondary stop which
lies in the inside of the mouth of the tube, and when the external
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primary stop drops out this second stop comes in action and completely
shut off the mouth after allowing a certain quantity of water to be
discharged, before the complete stoppage is effected. We may also
introduce in some part of the tube, between the vessel wall and the
stop, some kind of viscous resistance by which means the effect of
dropping of a stop upon the water content of the vessel may be made
to lag. Suppose now that the vessel is at first empty and water is
gradually poured in from above. When the pressure at the depth,
where the tubes are arranged, approaches the mean ecritical value the
stops will begin to drop out before the mean value is attained. Others
will remain after the mean critical pressure is reached and a few will
drop out only when the pressure has considerably surpassed the mean
critical value. On account of the discharge of water due to the drop-
ping of a stop the rate of increase of the water head in the main vessel .
will be retarded. When a large number of stops drop out nearly
simultaneously, it may happen that the water head falls down in spite
of the continuous supply. In this latter case the further dropping out
of the stops may be suspended for a certain time. As, however, the
stops which have dropped out are replaced by the inner stops after
discharging definite amount- of water, the water head soon resumes
rising and gives rise to the dropping of another group of stops and so
on. The viscous friction in the side-tube as above assumed will serve
as a factor which gives some time-lag to the effect of the side-discharge
upon the water head of the main vessel and also smoothes out the
effects of successive discharges.

In the above model, all the stops are finally put into action and
completely shut up by the second inner stops so that the water head
in the main vessel may rise indefinitely if the rate of supply is kept
constant. We may, however, easily modify the above model such that
the rate of supply is governed by the total number of dropped stops,
or simply conceive an over-flow of which the height are varying with
time in a statistical manner. We may also make the same model
resume a second period of activity, if the stop of each side-tube consists
of a chain of balls made of some substance such as pitch. Under the
constant pressure from the inside, the viscous stop will slowly flow out
of the mouth opening though in every instant it is a solid stop in the
ordinary sense of the words. After the lapse of a certain time average
strength of the stops will decrease to a critical amount which is given
by the water-head of the main vessel which is assumed here to be
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fluctuating as above supposed due to some other external causes. When
these second stops drop out the third ones will serve as the complete stop
in the next period of repose, and so on.

The above mechanical model could also be replaced by an electrical
model in which sparkings of numerous spark gaps replace the dropping
out of stops. The destruction of each spark gap after sparking may be
attained, for example, by choosing a soap bubble as one of the electrode.
A semi-conductor will then play the part of the viscous resistance in
the mechanical model.

The practicability of these models are, however, not at all essential
in the present discussion, which is aiming at the description of a
“ Gedankenexperiment ” carried out with the purpose of investigating
one of the possible mechanism of swarm earthquake.

In comparing the above models with the case of earthquakes the
correspondence of the working parts will be quite evident. Thus, fall-
ing of each stop represents an earthquake by which the probability of
occurence of the next earthquake at the same spot is reduced to zero
for a certain time. The water head represents the average state of
strain in the entire system including all the latent seismic origins.
Each single earthquake is then assumed to contribute to a certain
decrease of the average strain of the entire system. The viscous resist-
ance of the model will also correspond to the viscosity of the crustal
materials.

Thus, it will be seen that the above model may deserve notice at
least as one of the plausible alternatives. The quantitative formulation
of this kind of model seems not quite easy as far as the usual method
of statistics is resorted to, since the mutual influence of the elements
plays here the most essential role, while the usual statistics holds
mostly for the case of utterly independent elements. The effect of
after-effect as is taken into account in the theory of fluctuation such
as applied to the molecula phenomena is of a quite different nature
from that here in question.
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