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1. Very recently Professor Terada and Dr. Miyabe® pointed out that
the deformation of the earth crust ean be composed of the dilatation, the rota-
tion and the shear. As they dealt with the actual problem of the earth crust
and they seem to have given no definite specification on the nature of the
solid body, whether the body is elastie or plastic, we cannot give any authen-
tic discussion on the above problem. Xven though the body may be assumed
to be plastic in the sense of St. Venant® and Th. v. KArman,» yet the natures
of the dilatation, the rotation and others, we think, are not essentially
different from those in the case of the elastic deformation. Leaving the
problem of the difference between the elasticity and the plasticity, besides
the diseussion on the plastic deformation, for the present, we shall first
consider the deformation of the elastic body. .

Tt is of recent time® that the dilatation, rotation,»and other components
in elastic solid bodies are theoretically analysed with the view of arriving at
the complete solutions of the mathematical equations of the equilibrium of
the bodies. This problem has attracted very little attention of the inves-
tigators probably because of the existence of the other methods of solving
the equations without such an analytical consideration.

According to our analytical investigation, the idea of expressing the
deformation of a solid body‘ by means of the dilatation, the rotation and the
shear is not completely theoretical. The idea of expressing the displacement
by means of the components of the dilatation, the rotation and the shear is
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due to Stokes and others. This idea seems to represent the method of ex-
pressing the infinitesimal ‘displacement of a material point, but not involve
any view on the essential nature of the deformable body, such as the
consideration of the total dilatation.” Thus the thought of taking the dilata-

tion, the rotation and the shear in the analysis of a body seems to be violent. -

Our investication shews that the deformation of ‘a solid body should be
composed of the dilatation, the rotation and another component which is
neither dilatational nor rotational. The last of these is not such a meaning-
less component as to give the bodily movement to the solid; but it plays its
important role in giving the strain or the stress to the solid both in normal
and tangential directions. Tt has also been cleared that the dilatation and
the rotation are by no means of different types.. The component of the dis-
placement which gives the dilatation is of the same form as that which gives
the rotation; the ratio of the magnitudes of both components is invariable
when the elasticities of the material and the type of the solution are specified.
These will be seen presently at th part of th mathmatical investigation.
The proposed fact™ that the deformation of the land surface involves the
rotational component is also self-evident.

I. The Problems of a Spherical Heterogeneity
in a Stressed Body.®

2. The equations of motion of elastic bodies in spherieal ecoordinates,
where the azimuthal component of the motion is omitted, are expressed by

o4 2;1, o2& 2;1,
A+2u meot =0, ..... . ... ... 1
( T i (1)
2
m84+ 9w+o Z=0 ....... e (2)
o0 r
where u, v are radial and colatitudinal components of displacement, and
‘ ou,2u 1 ov
d== -————+—cot6 .............. 3
or + r 90 (3)
2n=0Vy v _Low (4)
or r r of

Eliminating » and » in (1), (2) by means of (3) and (4), we get

8"4 28A 18~A+184
97‘~ 78¢ r: 90% r? 08

COt G=0, .ooviiinn (5)

5) S. PustwmarA & T. TARAYAMA, Bull. Barthg. Res. Inst., 6 (1929), 174,
6) X. SEzawA & MrIvAzaKy, loc. cit., 389.
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Part 3.1 Displacement independent of Dilatation and Rotation. 391

azm+28+ [oaR: laﬂ

ST Bt gt e gyt Om S (Lo f)=0. ... (6)
Solving (5) and (6), we obtain
A:(Ano~"+~€’:—%)P;,(cos 0, ... (D)
(n=0,1,2,....]
2m:(A g )dl’ (cos 6) ..(8)
i ag

Displacement (1w, v1) answering to 4 in (7) and satisfying w=0 in
(8) 1s denoted by

— [*ln(n +2\’ n+1+ B”(/n—l) }
2(2n+3) 22n—1)"

P, (cos9), ]

.......... (9
vl_;[ A, el B, :| dP,(cos 0)’
2(2n+3) 2 (2n—1)" dg
in which n=0,1,2,.... for A,and »n=1,2,3,.... for B,.

Displacement (us, v2) derived from the value of = in (8) under the
condition, 4=0, is expressed by

!
U= IV%WLOD el B 9”9(”%} P, (cos ),
C2(2n+3) 2(2n— ?a =19 ]...(10)
Do [An’ (n+2) ey B, (n—2) :} aP, (cos @)
Tl2@n+3) 2(2n—1) " a

Displacement (us, v3) which satisfies 4=0, w=0 is expressed by

Uy = [An” npt —]L“z:y] P, (cos8),.
, " . n=0,1,2,....7..... (11)
—_ 1 oan—-1 Bn” dpn(COS 0) ) .
V3= [A" A /-””_“:I -—dg——
Now A4, and A, or B, and B,/ are not independent. When we refer to
the equation (1) or (2), we find that there is a fixed relation between A,
and A,/ or between B, and B,/, the relation being expressed by
Ag= = AF2u g AZup (12)
wn+1) 7
From the above treatment, it will be seen that there are two kinds
of eonstants, one of which corresponds to (4,, 4,/) or (B,, B,') and the other
to 4,/"or B,. The praetical examples can be solved definitely by these two
kinds of the arbitrary constants. It will also be remarked that the form of
the displacement (u;, vy) and that of (us, vs2) are completely of the same
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types, while that of (ug, v3) is of a different type. We may thus conclude
that the first of two kinds of displacements gives the dilatation: as well as
the rotation, the proportion of the dilatational displacement to the rotational
one being determined by the elastic constants and the order of the harmonies
of the straining; while the second kind gives only the displacement which is
neither dilatational nor rotational. Thus the decomposition of the actual
deformation into the dilatation and the rotation is only significant in the
sense that we may determine what order of the harmonics of the stréining
is prevalent in this deformation. The straining, however, corresponding to
(us, v3) is to be let behind in this case. It will not be useless to tabulate
the principal natures thus obtained in the forms:

Kind of ! : Physical .
displacement Types of solqtmns meaning Arbitrary constants
. o —(A+2

1 dilatation |.ln, DBn An' = LI’BA%

1st kind it : v ({44(-1;-'—) )
! rotation |.Ax', Bu' | By’ =—np-an

. n—1 indil. and ’
2nd kind mlx ,,.n+2x . irrot. An'", Ba'’

3. We will now shew an example applied to a practical problem of the
equilibrium of a solid body. Let us suppose that an elastic solid body
has a spherical cavity of the radius @ and the body is subjected to an uniform
tension 7' or compression 7, then the boundary conditions are expressed by

rr=0, 0=0  on Y P (13)
rr=T cos? é, 00="T sin® ¢ at r=00.......... (14)

By applying the general solutions in (9), (10), (11), we get the dis-
tribution of the stress components in all the point of the body as in the
following forms:

12~=1’[l(1—£)+ {3—10 (O +104) —aj+ 2400 + 1) i5}132 (cos H)J,
)18 BON+1dp) 1 (On+ 1dg) 1

é‘ngﬁ2 L OA+34) @ 200+m) )

3 6ON+14p) 75 (In+1dp) 1o

_{%_'1%, @ 14\ +p) dof
3 3ON+14p) 1 (On+14pu) o5

}Pz (eoé 0)] )

(15)

>
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2

2 (ON+14p) 15 (IN+14p) 5
10p  @® 10 (A+p) ,,r.l_
e — Pr,\ .
{(97\..}.14“) 7 (ON41dp) 1o s (cos 9):’
rp=r|t 4 AN +100) 42 S(h+p) ao} dP(cos 6) - :
B BN+ 14) B N+ 1dp) ) df .

&P:TH 2w @ 200+ i} I

At the point r=a, §=n/2, we have

T —;"’”"4“ T )
T Iag
and, if K:M,.this becomes |
00=2.02T: ... ... (17)

while, if A=oc0, 08 takes the value ‘ : ‘ ‘ ._ e

09=2.17T. e ... (18)

Th’_i\s shews that, when there is a spherical cavity in a solid body, the
stress §0 at the boundary of the cavity is about twice the magnitude of the
applied traction. As to the maximum shear streés, the induection. of, such
high stress at some portion of the solid due to the cavity is also casily
caleulated. Though this solutions have been obtained by one of ué, the
similar results obtained by other methods are frequently used in thé dis-
cussion of the failure of bodies due to the statical loads and al’relnatmw
stresses. S
4. We may take another e‘iample for the confirmation of the apphca—
bility of the present problem. Suppose that the elastic body, “which is
stressed in one direction, has an imbedded spherical grain in itself. Then,
aluno the external and internal solutions, we get finally, when » <a

O+20)  GNH2) D }
w! —=2 Ps(cos6) |, .
[(07\+ 2u) N+ 2+ ) D 2(cos6) 1

N T
00 ="T ( +2u 2 —4u' 22 Py COSO},
[(37\ +2p) (BN 4 2p' 4 4p) D D (. ‘ )

-~,
rr!

.(19)

" JO+20) (BN +2p) D, ]
’— 1 + 2/1/ =11,
a4 [(37\ +2p) (BN +2p" 4 dp) D
1 Dy dP3(cos 6)]
D de ’

R)':T{:QFJ

and when r>a,
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o[l 4 3NN+ -p) @ |
‘ 3 M+2  IN46p+12p 3
IN+10u D2 a® Dy«
+(%+ 5 D w+ S 5>P (GOSG)}
00=T 3_( 2p :0(7\"—*)‘4-2(# _M)_’_fi_li’%)ﬁ
3 O\BA+2. 9N+ 6+12n B3 D/

] 4’;¢=T‘[( wDs 2 BON=M+2( _'u))j—z

r=

. T[(_I«_SK"‘QF* D, a®_ &E}dl’-’g(eosf))}

Dy 0,5__ 2 m Dn(l Dy a
+2#3? SHE= 7&+M 3_)13 (cosH):I L(20)

\3 D 3n+2u ON4+6p +12

Ds a® Dy u® a?
—9 _3__( 2 4 10, )p
D T ”D rd I) r? 2(c0s ) |,

\3 6 D B D 5 do

where N\, p are elastic constants of the external medium and A/, p' are those
of the internal grain, while

i OA+iop 0y 2
ph L ’ - SE) ~ ’ Z 9
7 » 4/" y 3 » 4F 7 ’ 4}1 ) 3 3 4’1
8\ +7p' . 3t+2p S’ +Tp! 1
P A M
= ) i o= ,
W ’ w , 2 BT
=\ o N -7 ‘ .
e S L
7 -
. - ]
Y L9 . ’ 2
. 7:7’ %,‘ _ ;10;1’” —oap %’ ap, _97\;10/4’ 2
CBMHTE 1 BAdep » SN T op SA+ep 1
21 ' 3’ 6’ o1 7 N 6 3]
D= Dy=
L 1 Mg . T , o  BAtsp 1
' 3’ ('/t T Gy 3u
BN 1 1 1 BT 1 1
2y 6 6’ ) a2 7 6’ 6pl°
...................................... (21)

The' distribution of stres‘ses,‘é‘@’ and 0’6), in the section 9:127—.f0r the.

' . 7 : . !
two cases; (1) A=y, N'=4/, ﬁf:é— and (2) A=p, A=y, K _9 are
p 2

illus

trated in Fig. 1 and Fig. 2
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a6-5

2T 1 @(G~§>
— !
T - ;/f n
0 2 2@ el

1t is to be noticed that the stresses in the imbedded sphere are in-
dependent of the radial distance from the centre of th sphere.. It is equally
important fact that, when the internal grain is soft compaled with the -
external medium, the stresses are accumulated at the. nemhbourhood of the
external solid and the stresses in the erain is diminished more than the
uniform stless while in the case of a rigid grain imbedded in a soft medmm
the stresses are accumulated in the imbedded “ldlll and the stresses at the
boundaly region of the external solid is the more lessened than the uniform
mean stress. The mean of the stresses in the pldne surface 9= n/2 1s of
course, equal to the uniform traetion.

The recent problem of block movements in’ the earth erust of our
country will probably be nothing but the effect of such heterogeneity of
physical constants on the stresses or the displacements.
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II. The Equilibrium of a Spherical Body
under Normal Pressures.”

[Vol. VII,

5. The problem of the solid earth which is subjected to the normal
boundary pressure of any distribution, when the curvature of the surface

is taken into consideration, can be solved in the following manner.

Let r, 6, ¢ be spherical polar coordinates, and let us denote u, v, w as
the components of the displacement in the direction of the radius, colatitude
and azimuth, then the equations of equilibrium of the body can be expressed

by
aA 2M a(‘!ﬂd) Sin H) 2[1: amg ]
A2 ——— —8=(),
O +2u) or rsing  0f +r sin g o¢
1 24 2u  On, 2#9(‘5} )
A42 e iy, L =0, -.......
) 58 rsng o T or *
(n2) —— 94 _2uD(mon) y 2udm_,
7 s1n6 29 r or r o9
where
= 1 [8 (ur? sin (-)) O (vrsin 6‘)+8(w7)] N
r2 sin or 29 o¢
O, = ;in 5 [aag (wr sin 9)—%(07 ):’
_ 1 9w O (wrsin 0)] [
I, B e —
rsme[aqS or :
o(vr) 2u
Q= | L,
md’ 7 [ 87' . aﬁ:’ J

The elimination of u, v, w among (22) and (23) gives us that

1a<r2@>+ 1 a(sin ad>+ 1 24

b

r20r or/  r2sing o 99/  r2sin26 Bcp”

2w, 4 Om, 1 a< an) 1 D2,
+— 5 +2 & sin 0977 4- r—0,

o ror 2 Esmoaa\ 28/ rZsinto oge

l 82 (’&79 ‘7') + 1 a"‘ 7;79_ 1 82 ('ad, sin 9) _ 1 22 [

—_— = O’
r or? r*sin% g 992 r2gin2g o¢ 20 r Orof
_1_8 (g 1) _];2 1 O (mgsin 0)_}-2 1 Om
r ort r* 900 sin @ o8 200 sin § 2¢
1 224, -0

T sin § Orog

7) K. Sezawa & G. NISHIMURA, loc. ci%., 389.

L. (24)
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These gives us

A= (s LY P (c05 0) 0%,
Sin

L\.'

<B'mn S mn)Pm (LOS 6) Eln}m‘ﬁ,
—COs

- [(1),,ma~"+ o "‘"”L)P x (€03 6)

r7l+l Slll 9

Lo
9

.(25)

+ (é_ i Bl )dP:i? (cos mJ sin
n (n41) 2 do —cos
‘ o mn YL (cos @
B 2w¢, = [(Dmn + n+1> —6([9 )
/ m g
4 (an g1 B mn Z)Pn (COS G)J COS}md)

n (n+1) pm* sin@ | sin )

}m¢,

in whieh A, <\ Buns B s Cmny Ol are arbitrary constants.
~ Displacement (w1, v1, w;) answering to J in (25) and satisfying =,=
wo =, =0 is expressed by

mn (H +2) ERt mn (n 1) m } .
prrt pm 9 A
[ 2(2n+3) 2 (272 Dy ] (cos ) md ]
I 21,,,,, LSS B A,mn dPT (GOS 0) COs
1= e mo, Cee
[ 2@n+3) 2(2n—1) rn] de sin} ne (26)
oy = — [ T ) R Al ] P (cos 6) Sinl'm(p.
2(2n43) 2@n—1)r*] sinf —cos

Displacement (s, vy, w2) answering to =, together with the second
terms in the expression of 7, =y, all given in (25) under the condition
that =0, is expressed by -

=0,
. ~mB, g B, ]Pﬁ (cos 0) eqs}m é )
n (n+1) n(n+1) ] sing sin ’ .(27)
! m 1
o= — { Dmn PR B mn 4] dPn (COS 9) Sln})7z¢'
n(n+1) n(n+1) r*+? de —cos

Displacement (uy, vy, ws) derived from the values of the first terms of
e wg, M (25) fulfilling the conditions, 4==,=0 is written by
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N

Dy n(n+ ]) 74+1 D'nmn (" + 1)] m }
py=| Al P (cos 9 m
! [ s@nts) | T B@at) ) b
) y a2 ! m [ 4 N :
vy = mn (n‘i‘!)) 7,,11,4-1 + -D mn ('”/‘_2):, _1_ dPn (COS 9) (“f)s}nuﬁ, L (28)
2(2n+3) 2@2n—1)r"] m ag sin
w;; Dy (n+3) s +D mn M (M—2 ]P"‘(cos 0) Sl_n}md).
: 2 (2n+3) 2 2n—1) sing —cos

Dlspldcemeut (a3, v3, wy) which satlbﬁes d=m=my=me=0, is ex-
pressed by

n4+2

Uy = [Cmn -m”’l L’MJ P} (cos 9) €0 S} e, }

i 7 4 sin
! vf m . ) i . s .
¢os 9) eo ;

va=1] Cpp "+ ¢ ”’”f" CM——Q) c. s}m(jy, B (29)
, rE do sin
j S ¢ P (cos sin)
b= —a [C,,m e B ( s 6) me.

phre sin @ —cos

In the above solutions, the displacement (us, Vo, wa) in (27) is without
significance for 'the problem of normal pressure, so that this displacement
may be excluded from the present study. It is the only propéf term when
the sphere is subjected to the distortional stress at the surface.

Now d,,, and D,;, or-Aly, and D', are not independent of each other.
When we!refer to the equation (22), we find that there is a fixed relation
lzgts)veen A and D, or A’;,,,,jan(l D', the relations being expressed by

i

} Do A42 . Dl A2 By (30)
’ . . /imn‘ /"("‘*‘1) “J-,mn #’" ’

Proceeding in the same manner as in the preceding part we may write
down the principal items in the following table:

 Kind of Types of solutions Ph‘ysy:al Arbitray constants N
displacement meaning
. . : A+2u -
; dilatation | Amn, A'mn| Dmn=— A ol Amn-

1st kind Pl *17‘* XL, bt : a+f,”;rl)

. ! ' 7 Crotation | Dmu, D'mnl D'mn= d./‘ A’
0 T, o . L pw

- 1 ‘indil,

o2nd kind . | pi-? X precibi llliil?l,o,?:llfi Cmn, C'mn

Examples-of application have been. omitted in this paper, as théy have

already appeared in the ;Bulletin V1.,

L
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III. Spheroidal Problems of Elasticity solved in
Curvilinear Coordinates.

6. The equations of motion of elastic bodies in spheroidal coordinates,
when the azimuthal component of the motion is omitted, are expressed by

94 3w\ _
(X-I-QM)]Ll—g——uy.h)lb an( )_0,1

h".
oo [ (31)
A+2 ho +2 hy T —(F—):O, '
. ( ®) ity 385 e
in which
A=hyha] ( ( )] |
a L“[ iz g T is
............ (32)
2m =l Do [_a.(_v_ —9_<_i>] :
: E he (] I
and ,
L:- 1 202(011;“'5—005"“ 7) A e Esin®n, ........ (33)
hl‘z! h22 h32

in the case of a prolate-spheroidal eoordinates (&, ) connected with Cartesian
coordinates in the form:

etiVairyi=ceosh (E4+4m), - covueeenn ... (34)
or in real forms, ,
ayt, 2 g 2 TV g L. (35)
c2sh2 & ¢*ch*& c2cosyn c¢*sin?y

|
i i
! l
;"—— ZC——)}
! '

In equations (32) u, v are the displacement in the direction of & and 7
and 2c is the length of the major axis of the spheroid.
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Eliminating u, v between (31) and (32), we obtain

o A+cth§ a_t o4 ~+cot n 94:0
85 8 80 (36)
am+el 81 +a ﬂ+’0t aZD 9] :0
oF* OF sh*E  On* 817 sin2 5
Solving (36), we find
4= {4, P,(ch &)+ B, Q,(ch £){ P, (cos 7), [n=0,1,2..] ....(37)
25)-:{447;/ dP,,,(Ch §)+Bﬂ! dQn(ch E)ldpn ((COS 77) . [’I’LZ]., 2’ 3. ] e (38)
s ag ) dn :

‘ * Displacement (w4, v;) answering to 4 in (387) and flilﬁlling the condi-
tion that =0 is expressed by

2y = ¢ _[ (n+1) (n+2) (1 dP,.»(ch &) -
Veh® £—cos® 9|2 (2n+1)(2n +3)* dE

+B, M) P, (cos ,7)

(n+1) (n+2) (1 aP, (ché)

L[n=0,1, 2. .]

2(2n+1)(2n + 3)* dE
; 49, (eh £)\ p
B, ¥r %) 4 (oS 7
+ 5, lf ) N+ (COS ]) ]
_ n (n—1) (4 dP,_,(ch &) N
2@n—1P@n+\ " dg |
+ Bn (__—__lQn.;éCh é}) Pn (COS 77)
n(n—1) (| AP.(ch®) L [n=2,3,..]
2(2n—1)22n+1) k Y de
g 3Qu(chE) ‘
+ bn df )P,l_z (COS ’)7)] ,)
- c (n+1) (n+2) 1 N
e E e |3 1 P )

‘dP, (cos n)

+ByQpa (ch 5))
. [ 'n

(41 (n+2) L [n=0,1,2,..]

2 (2n.-l|- 1)(2n 4+ 3)*

(;1,, P, (ch )

: +B Q /Ch g)) dPn,,n (005 77)
dn J
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n(n—1)
T2 @2n—-1)22n+1)

7 (n—1)

T 2@n—1)2(2n+1)

(fin Pa(ch £)

dP, (cos n)

+ Bn Qn-z (Ch E))
dn
(An P, (ch §)

+B, Q, (ch g)) df_d;w_svﬂ} .

Displacement independent of Dilatation and Rotation.

n

-

J

(=2, 3,.

-]

401

Displacement (ug, va) corresponding to w in (38) under the condition

that 4=0 is expressed by

) en (n+1) [ n (n+1) (A y APy, (ch &)
S YehE E—cos? 5| 2(2n+1)(2n+3)2\ " dg
+B ! ———dQ?H';QOh E)) Pn (COS 77)
(n+2)(n+3) AP, (ch &)

2@2n+1)(2n+3)

(;17,

ag
+B, 40 (Ch £ )) Pas (c057) |

_ n(n41) (A y APz (ch E) w
2@n—=12@n+1D\ " dE
, (ch
4B, dQn_déC 5)) P, (cos n)
_ (ﬂ‘—'l) (71—2) (A /dPn(ehg)
2@n—122n+1)\""  dE
+B, 0, Elc; E)) s (cOS ,,)] |
o enntl) [ m+2)043) (41p (4
T E—cos? 7| 2(2n + 1)@n+8)* ( ! P €0
+B.! Qrua(ch £)) L2 (057)
n(n+1) 4, P, (ch §)
2(2n+1)(2n +3)2
+B) Qu(ch ®)) d—P’”},(gc =)

£

N

L[n=2,3,.

]

L [n=0,1, 2,.

-]

L[n=0,1,2,.

-1

-
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(n—1) (n—2)

2(2n—172n+1)

_ n(n+1)
22n—1) @2n+1)

Displacement (us, v3)
forms:

A dapP, (ch &

(mmm@a

+ Bnl Qn-z (Ch E)) dI)n (ICOS 7))
(42
7 v [n=2, 3,..]

Qupuma

+ B 0o ) e

which satisfies 4=0, =0 can be written in the

o T
]

(B

C
Yeh® £—cos? y [ "

C
. —— WL
Yeh? € —cos? [

dg
" dQn (ch &

P, (ch E)

] P, (cos n),
r[n=0,1,2,..]

+B, 0, (ch 5)} dl_(cos_’?)
dn

Now 4, and 4,/ or B, and B,/ are not independent and there is a fixed

relation between A, and 4,

"or B, and B,/, the relations, which are obtained

from (31), being expressed by

A= M2 7 X+2M

pn(n41)

A, Bl=_ Mt2 p o 49
B (42)

The tabulated elements of the nature of the solutions are as follows:

[Vol. VII,

dis%f:iglfent Types of solutions gléiill(jf ; Arbitrary constants
Pn+2, Pn, Pn-z.... ilatati 4
1st kind Trh T o dilatation | dn, Bn Aal’}— A-+op {An
¢ 1] - —‘“——rﬂ
Qn+2, Qn Qn-2.... | rotation An's B’ Bn pa(n+1) Bn.
2nd kind Pn, On indil-and | g1, por

&
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7. Tn the case of the oblate spheroid, we should write

Al (nE—sin®n); —cPehEsinta,........ (43)
i he Ius® -
where 2¢ is the magnitude of the major axis.

From (31) and (43), we obtain

184

o J th g @A 24 BA
2 o6 on? "on 1
o £ o - 7 5 Lo (44)
Cat ) o+ S eoty =0,
R he 22 ag hZg " o2 Bn sz
the solutions of which are
— [y Py (G ShE)+ By @ (i S EV} P (008 7)o (45)
9, — {A y AP, (" sh é:)_'_Bn, dQ.,(ish E)}(ZP,, (essn) (46)
df dE dn

The corresponding dlhplécements are of the similar forms except the
negative signs of (w4, v1), (s, v2) and also the argument of the function of
the type P,(ishg). The other explanations have been omitted for the sake
of simplicity. '

IV. The Problem of an Elastic Cylinder.®

8. The equations of motion of an elastic body in eylindrical coordinates
are expressed by _

A+2, )
O+ ) ‘r 20 o
(42 )9" 9,97y 0,97:0 L. (47)
0z or
o4 2;;, 9 24 O,
A+2 o)+ = ——=0,
O+ e T 5
where
192 .. 1 ov, 2w \
d=—=(uj+ ——=+—>
» or (rw)+ r o8 02
9 12w 9w
7-31'_—'_—&,
r 90 . (48)
o _Ou_ow
A — — >
oz or
9. . 1020v)_ 10u
Ty or r e, /

8) G. NIsmIMuRra, Journ. Soc. Ord. and Expl., 23 (1929).
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in which u, v, w are the components of displacement in #-, g-,

Eliminating u, v, w in (47) and (48), we get

o024 1 o4, 1 8A+§74<_()
ot r oor 00° 022 ’
Py 8 Omyy ey 10wy Oy 2 Dy
or: v oOr r®2 r?2 00 02 r Oz
Pmy, 1 0wy me, 1 0%z, O*ms, 2 Oum,
T —+ = —I=0,
ot r O r r?2 96> 022 12 08
P, 1 om, 132w, , O%m,
24 + -=
o o o o
The solutions of these can be expressed by
= T 20 am}zz:;r e
2@,'= {Bmk i 8Im (IM\) I”l (7&:1')
A -
+B,, 1 2K, (kr) £, ]Lm(lm)}—cos}k
k or or cos
2379:{37% m Ly (kr)+0 1 oL (kr)
k 7 mn or
LB kﬂK (k’)—{-C',,, 1 2K, (kr)}—c?s
k r m or sin
sin — 0S8
2ZU { mn m (lﬂ)’{'B mk ILm (RT)}COS} 177 Sinl"nlﬂ.
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z-diveetions.

eos} mb,

sin

}lcz Sm}m(),

cos

.............................. (50)
Displacement (w4, v1, wi) which gives 4 in (50) and satisfies m,=m,=
=, =0 are expressed by
1 o ( oI, (kr) 7
Ut 2]52{ mk ar 7 ar
LA 3(7 oK, (kr))}sin}kz Sin}mﬁ,
or or oS c0s (51)
o om L, (k1) oK, (kr)| sin] , —cos -
vi=—— 14, Al k2 0,
' 2k{ Ty AT, }cos} ¢ sin}m
1 - o
W= —— {Amk alm lt” ) + A,m a}i-____m (hr)} €os }kz glu} ”19-
2k or or sin cos 7

Displacement which satisfies w. and Ist and 3rd terms of s, and =,



Part 3.1 Displacement independent of Dilatation and Rotation. 405

in (50), with the condition that 4=0 is written by

S {BM (k; +B.. K, (]“')}Sin}kz sin }9)19’

k2 P cos cos
: — 52
vg:i {Bmk oI, (lu ) B o, (kr )} sin }k C?S}m(;, ..... (52)
k or or qo sin
Wor= 0. 7

Displacement (u, vs, ws) satisfying the 2nd and 4th terms of 4, @p
in (50) and fulfilling the condition 4=w,=0 is expressed by

g = — i‘[cml\. _( aIm UM )) + C,mk 82‘ (7. M)} Sill}kz sin}me’
>

mk or or or oS COS
— i{cmk a m (757 ) Cl alfm (7!/’ )} Eln}k - C?S}nzg’
or r cos sin

Wa= — 1 { i 7 oL, (kr) +O 7 a_hﬂi@} - cf)s} ke S }m@.
or or sin cos

Displacement (w4, vy, ;) which answers to d=m=wmy=w,=0 is ex-
pressed by ’

Vo= _% {Emk 9Im (ki) + E E! allm (L7 )}Sln} k2 S1n l»m@;

or or ccs cos
LR § AFELLIAN ) (7”)}8111}hz ‘Cf’s}me, S (54)
k 7 r [ sin

wi= {L‘k Ly (k) + By X, (kr)} ooSlhe zgf}me.

In the above equations, the disblacement (12, v2, wa) in (52) has no

significance for the extensional and flexural problems, but they are useful

for the torsion problem. Now, taking the case of the extensional or flexural

problem, it will be ‘easily seen that A4, and (', or A, and (', are not in-
dependent. There are the following connections:

%: _ (7\+2,u) n Glnn\:: _ (7\.+2l'l') m (55)
Amk Mk ’ A'mk /Lk

Thus, in this case, we have only two types of solutions, one of which
corresponds to (w1, v1, w1) and (us, vy, ws), W hlle the other to (uy, vy, wy).
The tabulated summary is as follo“s
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»

Kind of Types of Physical

. . . R hity -
displacement solutions nmeaning Arbitrary constants

dilatation

. e ke o), - o
1st kind 1‘317;—(‘77‘),” o Cme (M 2}11)m’ C,.,,,k: _M.
' rotation Amk: HE A pl:

. indilatational
2nd kind Im (kr),.. . Emry, Imx
. irrotational :

The similar process can be applied to Boussinesq’s problem on the
equilibrium of a semi-infinite solid body under the normal traetion or
shearing stress on the free surface and we may find that the displacements
consist of two kinds as already ecited in the forgoing parts. The problem
itself is too well-known-to study here in any analytical manner.

V. Résumé on the Elastic Deformation.

9. We have now ascertained that the deformation of a solid body
should be composed of thie dilatation, the rotation and another component
which is neither dilatational nor distortional and also that the dilatational
component and the distortional component are not independent but they
are connected both in types and in magnitudes. Thus, to get an analytical
result from the data of the land survey, the mere consideration, of the
dilatation, the rotation and the shear is not sufficient and also the classifica-
tion of the deformations into the dilatation and the rotation has not so
much meaning. Sueh classification would be equivalent to seek the order
of the harmonics of the deformation of the first kind. It is also theoretically
useless to take up only the resulting rotation (or only the resulting dilata-
tion) of the movement of the eartherust, excepting the case where the
rotation or the dilatation is thought to be a type of the nuclei of the strain.
In general, it would be reasonable to take the stress components or the
ordinary strain components in the analysis of the observed data of the
deformation of the land surface. It would be rather better at least to
consider the displacements only relative to some assigned axes.

VI. The Components of Displacement in
Inelastic Deformation.

10. The most theoretical definition of the plastic deformation is such
that, i) the stresses of all kinds acting at any element of the material sheuld
be in equilibrium, ii) the stresses are connected with the displacement of

k)
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the material in certain laws of stress-strain relations and of compatibility,
1ii) the maximum shear stress at any point should not exceed a given limit,?
iv) the time variation fo the deformation due to the stresses, the duration
of the acting force and etc. obey definite rules, v) the material in a plastic
state sometimes flows as if it were an imcompressible matter.

Among these, the criterions 1), iii) and v) are generally taken up by
the recent students in applied mechanies. We think that the cviterion v) is
not so important as to consider it to be a mnecessary condition. Such a
criterion is probably based upon the faet that the behaviour of the plastie
material resembles that of the incompressible fluid. We believe that the
plastic material may be compressible or incompressible. Even the elastic
solid can be treated as compressible or incompressible. Thus, in this part,
the material is considered to be compressible in general and to be incom-
pressible in some particular cases.

Again, the condition iv) would be the most important nature in the
plastic deformation. In spite of its importance in geophysical problems,
this nature is in many cases diregarded by the students due to no importance
in the problems of the engineering and also due to the complicated behaviour
which is yet unknown. A special case of this, however, attracted the keen
attention of the thecreticians'® of some classical manner, though they do not
seem to care for the other conditions. In the present ease we will not take
this criterion iv) under the assumption that the behaviour of the plastie
materials during relatively short intervals of time is only considered.

‘We have taken into account of the condition ii) which seems to be often
disregarded by the recent investigators.

11. Now, we take a particular case of a plane polar coordinates, which
will shew the nature of the displacement in a somewhat simple manner.

For the sake of simplicity, take the equaﬁon of the equilibrium of an
inelastic body in polar coordinates in the forms:

—~

Q’;’"+laL9+”_93=o
or r 28 7

2o, 1200, %0 -
—t 4+ —=0, . 57
or 7 89+ ¥ (57)

where rr, 6, r@ are normal and tangential stresses in r-, §- and r#-directions.

9) 0. Momg, V. D. I. (1900), (1901).

TH. v. KARMAN, V. D. 1., (1911), 1749.

10) I. BonLzMANN, Ann. d. Phys., Erg.-Bd., 7 (1876), 625.

H. Su6J1, Sci. Rep. Tohoku Imp. Univ., 18 (1929), No. 1, 1-10.
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The condition of the maximum shear stress is expressed in the manner of
St. Venant!® as-in the forms:

i) g +( - 99) <K (58)

in which XU is a constant.
The stress-displacement relation is of the form:

ii) rd rr—06 e (59)
o0 v, Tou p(on_Tov_uy
or r 20 o r o8 r

where w, v'¥ are the displacement of a material point in 7- and @-directions,

though it may be better to take u, v as velocity components in the sense of

Tresea.l®
The condition v) may temporarily be expressed by

12 1 9w
V) =+ =L=0. ... T 60
=2 ()= (60),

From ﬁve equatlons (56), (57), (58), (59), (60), we can determine the
values of rr g, )0 @ and ». The equations actually used by the plasticians
are only three of them, i.e. (56), (57) and (58).

‘As the equation (60) is not important and the equation (59)
ambiguous, we can write in place of (59) and (60) the equivalent equations
of the following forms, which involve more or less the idea of v. Mises'®
and which are more improved than those of v. Mises.

N . -
v) » — A =4 or equivalent formulae.'® . ... (61)
| 2(ntpr)
g ~_ ou
ii) Srr=n1844+2u18 =, . (62)
or
i) 500 =" 5.4+ 21 5 (ig—;+ ) R (63)

11) ST1. VENANT, loc. cit., 389.

12) (w, v) may be taken to be the displacement in the present ease, but not to he
the velocity of the point. Though the students in Europe seem to take u, v as the velocity
components, yet we think that they should be taken as the displacements, as far as the
statical case is taken up and Boltmann’s idea is neglected.

13) TrEsca, C. R. (1867).

14) R. v. Misgs, Nachr. Ges. Wiss., Gottingen (1913).

15) The meaning of the equivalent formulae is that M and #: arve known functions
of the strain.

e
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.. > ov 1 Ou '
m 570=pu1 & (~ L ) .................. (64)
) RO T
where A; (or 1) is a given function of a certain typical strain; and
1 v -
J——— wUr) === .. RN R (65)
P or (wr) r o0

Here we shall understand that, in place of (59) and (60), four equa-
tions (61), (62), (63), (64) having two quantities \; and wy ave intreduced.
A; and gy should not be invariables like Lame’s constants; they may take
various values for different magnitudes of the strains or the stresses. This
nature will perhaps be suited to the deformation in which the stresses and
the strains are not related linearly. The equation (61) expresses the degree
of the compressibility and it will not he mueh erroneous that we take o1 is
constant for the ordinary plastic state of a given material. It is not, how-
ever, constant in a large range!® of plasticity where the hydrostatis pressure
changes to many thousand atmosphere. If the material is practically in-
compressible at the plastic region, we may take Ay=o00 or ¢,=3. If the
material fulfills Poisson’s condition at the plastic state, we have \;=p; or
o1=21. Thus the condition of the incompressibility is satisfied if we take
g1=%in (61).  This nature can be easily comprehended if we know the fact
that A 4 has a finite value even in an incompressible material.

Again, the introduction of (62), (63), (64) will enable us to consider
the equation of eompatibility even for a complex case of stress-strain relation.

Now we have found seven equations (56), (57), (58), (61), (62), l(63),
(64) to determine seven unknown values ;;', ¢9T9, 1?9, u, v, limiting value of
A: and that of 4.1 The problem is, thus, reduced to be determinate and
soluble in an easy manner.

To solve the equations of the example, we put first (62),.(63), (64) in
(56), (57). Then we obtain

L 2d 2 o

A 2 _C__—ﬂ ::(), .................... 66)
D) S 5 (66
(x1+2#1)__a§+9 aa’: 0 oo (67)

16) P. W. BripGMAN, Proc. dmer. Acad., 58 (1923), 166.

17) The meaning of the limiting value of M or s is such that at sueh value of
A or pi (both are funetions of the strain) the plastic deformation takes place owing to
Mohr’s condition of the maximum shearing stress.
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where

In these equations, Ay and yu; are constants to express the tangent of

the neighbourhood of a certain point of a properly described stress-strain

curve.
From (66), (67) we obtain
9, 124,12 _,
or: ¢ Or 1?96
92m+1 8m+1 =

T

The solutions of these can be expressed by

A-(% 4 B, ) Sm}we,
7'

cos
237:(A,l' 4+ B,/ 17 ) c?s} nd, J
r®/ —sin

and
d=4dqlog v, }

26]:‘—- 410, ]Og 1.
The displacements satisfying 4 in (70) and fulfilling the condition

= =0 are expressed by

[(7z+2) A, e {(n—2) IiLJ sin}ne,
4(n+1) 4('n~1) ™ cos

[n >1 for 4,

n>2 for Bn] - (T1)

— LN e :l eos
4(n+1) " 4(11—1)1’” —sm

w (10 7—|—1) } ’WL
. Slli
Hn=1 for Bi]............ (7117
log # cos
v1= ~ Bl . }05 J
2 —sin
" 1
=2 7—(100' ‘—-—),
=ty N T ) =0y (717)
’1)020.

The displacements corresponding to = in (70) with the condition, 4=0,

are writted by

L A
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“(_:[ n AT i,/:l sin][,ng
T lAm+1) " A(n+1)mcos) [n>1 for Aq (72)
X : Pleees
er:[(n-*—?) A gty (P2 (n—2) B, cf)s}nﬁ,J n>2 for B,/
4(n+1) 4(n—1) 1) —sin
/ 1(.1/:@:); Ij‘lr S]n }9,
2 oo =1 for By'] (727)
([n=1 for B/]..........
oy =dogr+1) p C_OS}(;_ |
24 —S1n
wo' =0, l '.
Mm=0] ... i, (72)

vy =By — (log r——)

The displacements satisfying J===0 are denoted by
BN sin
1L3=(A"” -t + =2 no,
W COS

n
"

4 LL, cos [

vs__(A,, 7 u+1>__- né.

r S111 -

Tt is worth noticing that the displacements belonging to the system of
(71) and those attached to the system of (72) are not independent; they
are eonnected by the formulae of the types:

IR T O B N bt (74)
. M1 a8
while the solutions in (73) give quite independent displacements which are
free from the dilatation and the rotation.
Now suppose that Ay is the funection of 4 such that

M=T(d), i (75)
then, by means of (61), we find '

so that, from (62), (63), (64), we get
4 1-2 9%
:S ‘f(g){1+,*_-5'_1__’}¢14,
o o1
(12)
~ (4 1—2¢ OO )y, P, (77}
oo=("rai1 1 }dA,
g I« ){ + o1 o4 l
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8(81; v 1 8u>

: A1 A, T

-~ 1—92¢ or - 08

71(9:5‘ —‘—} d A}

0 oe j0)) 7

Where@ 1 81)+ av %+}~ 9% ave the known funetions of Jhaving
or’ r 08 o r | # 20

the paramater f( A) ‘When we apply the boundary conditions of stresses to
represent A4, or B,/ in terms of A,L or B, the parameter f(J) will necessarily
be induced.

Now, the limit of the integration .f; at various positions can be deter-
mined for the plastic state by means of the equation (58). i.e.

F02+(i"'_;@>2:152. ................... (58')
When the left-hand side of this equation beecomes independent of r» and @,
the derived relation has its applicability to all the positions; but, if it were
not so, the problem becomes somewhat complicated and we must need some
special eonsideration from the start.

Again, we have seen in this section that the dlsplacements in an inelastie
deformation are composed of two kinds, one of which is dilatational-dis-
tortional and the other is free from the dilatation and the rotation. This
nature is quite similar to the case of an elastic deformation. ’

The application of the present theory to actnal examples has been left
to the future occasion, as our present intention is not to find the solutions
of a plastic problem, but is to find a component of the displacement which
is neither dilatational nor distortional.

12.  Although we have treated in the preceding section some special
case of the equations of the inelastic deformation, we can generalise the
problem to more extended cases without any difficulty. Thus, in the case of
the plane Cartesian coordinates, we get

24X, 8X oxX, _

=0,
ax oy %
0, 0¥, [ (83)
or 2y . |
T \2 :
(L)—I-) FXPERL® (84)

18) . The extended expressions of this equation of the limitation may be obtained in
the manner of HENCKY, Zeits. f. A. M. M. 4 (1924), 323 & V. D. 1. 69 (1925) 695.

™
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M (85)
2 (7\1 + 1)
58X, =N ad+2maa”
o
ov
Y y=x1 84421 e (86)
oy’
av ou
5= 8 (204 20),
e ox 2y J
where A_%ﬁ+? and wu, v are the components of displacement in z- and
. N Ne J

y-directions.
In a similar manner we can arrive at the equations in the cases of
spherical, eylindrical and other coordinates.

VIIL. Some Votés on the Prevailing Theory of the Plasticity,
w1th a Reference to the Study on the Distribution
of the Cracks in a Body.

13. The present paper has aimed at the discovery of a component of
the displacement which is neither dilatational nor distortional. The pro-
blem, however, is concerned with the deformation of the earthérust,‘so that
it will not be without significance to give some discussions on the theory of
plasticity.

The theory of pldstlmtv now prevailing among the students in applied
mechanies should be discussed. In the first place, the equatlonsm) actually
used in the caleulations are limited only to those of the stress-equilibrium
and that of the limiting value of the maximum shear stress. A little con-
sideration will enable us to know that the conditions of the compatibility
through the displacements of ‘the material points are most important®
excepting very simple cases as the deformation of simple bars. In our
present idea these conditions have been taken into consideration. In the
second place, the theory of plasticity developed by the european students in

the engineering side does not involve the nature of the time effect on the

behaviour of the plastiec deformation, which shall not be left in- the
geophysical problems. As this effect will perhaps act during such a long

19) . Cakartropory & E. ScmipT, Zeits. f. A. M. and M., 3 (1923), 468.
L. PraxorL, Proc, 1. Int. Nat. Congr. Appl. Mech. (1924), 43.

Ti. v. Kirarsx, Ferh. 2. Int. Kong. f. Tech.-Mech. (1927), 23.

20)  W. JENNNE, Z. A. M. M., 8-(1928), 18-44.
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time as many thousand years, we have neglected such behaviour in the
present paper. .

14. Next, we have to draw the attention of those who apply the
plastic theory on the problem of the earth pressure or the movement of the
eartherust. The students seem to explain frequently the figures and the
positions of the cracks only by the theory of the plasticity and they always
assert that the theory of the elasticity can never explain the figures and
the positions of the cracks or slip surface. We can not think that their
idea would be true. Though the equation of the limiting value of the
maximum shear stress gives us the extent of the proportionality of stress
and the region of the plastic part, we can not yet determine the figure
and the position of the sharp cracks as observed in a finite scale. Such
indeterminateness can be clearly known from the mathematical equations of
the plasticity. The observed figures and the position of the cracks are
often produced by the boundary conditions either in plastic or in elastic
state of the materials.

‘We think that these cracks are not formed by the general movements
of the plastic body, but these are produced in an early stage of the deforma-
tion, which is principally of the elastic nature, at some heavy stressed por-
tion®™ of the material. Thus the creation of the cracks or the slip surfaces
may rather take place in an elastic body. Indeed, the theoretical plasticians
in England seem to consider the deformed plastic body as an elactic body
having an aceumulation of cracks as well as the dead spaces of elastic regions.

The problem of so-called block movements, which are advocated by
Japanese seismologists of the recent time in the manner of the physio-
graphists, involves yet many doubtful points from the true sense of the
plastic theory as well as from some other theoretical considerations.

VIII. Concluding Remarks.

- 15. We have now found some facts which may be important on the
geophysical problem as well as on the applied mechanics. Although the
general theory was considered by means of somewhat restricted examples,
vet we may say that the theory would never lose its applicability to all
cases of the problem. This can be clearly known in the light of other

21) K. SuyEeHIR0, Engincering, (Sept. 1, 1911).

C. E. Ixguis, Trans. Inst. Nav. Arch., London, 60 (1913), 219.
A. A, GrivriTH, Phil. Trans. Ray, Soc., 221 (1921), 163-198.

R. V. SourewELL & H. J. Gough, Phil. Mag., [7] 1 (1926), 71-96.
I. NaravaMa, Journ. Soc. Mech. Eng., Tolyo, 29 (1926).
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problems of mechanies in which the similar examples contribute very often
to the determination of the general nature. To our dissatisfaction the
various eases of the inelastic deformation could not be solved owing to the
lack of time. These will be shortly published in conclusive forms.

The prinecipal results of the 1;1'esent investigation are as follows:

1. The deformation of an elastic solid body in equilibrium is composed
of the dilatation, the rotation and another component which is neither dilata-
tional nor rotational and which is an important component in affording the
stresses or the strains. .

9. The dilatational and the rotational components of displacement are
not independent; the ratio of the constant factors belonging to these is
determined only by the elastic constants of the material and the order of
the harmonics of the straining. The component which is not dilatational
nor rotational has an independent arbitrary constant factor.

3. The types of the solutions of the dilatational and the rotational
components resemble one another, while that of the third component takes
a different form.

4. By applying the present method of calculation to various cases of
examples, we find easily the solutions of the various problems. Espeeially
the solution of the heterogeneous distributions of the material in the displace-
ments and stresses gives us the fact that the so-called block-movement may
be nothing else the effect of such a heterogeneity of physical constants
on the movements of the material points.

5. In an inelestie solid body, the similar nature as in the elastic body
manifests itself. The method of the addition of all components to obtain a
complete solution in this case is somewhat eomplicated.

6. A new idea of investigating the problem of the plasticity is obtained.
The defect of the prevailing theory of plasticity, in which the condition of
the compatibility is neglected, can be replaced by some improved theory.

7. The unnecessary condition of the incompressibility of the plastie
material may be replaced by another controllable equation indicating the
state of the material. ‘ '

8. It is pointed out that the position and the number of the cracks
in a strained material cannot be explained by the prevailing plastic theory
to the same degree as the ordinary application of the elastic theory and
that the above question can be solved even in the theory of elasticity by
considering the effect of all the boundary conditions as in the manner of the
students in England.

9. Tt is also added that the so-ealled block-movement advocated by the
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seismologists ecannot be explained by the plastic theory; rather it involves a
great deal of doubtful points when it is considered from the true theory of
inelasticity as well as from some other theoretical points.
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