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For the study of the propagation of elastic surface waves the integration

of the equations of motion is made to accord with prescribed boundary con-
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ditions of stresses or displacements. Lord Rayleigh” gave the integration of
differential equations for the elastic surface waves propagating in oné¢ direc-
tion, and Lamb® extended the solution to the case in two dimensions. Lord
Rayleigh obtained the solution by superposing two types of waves, one of
them being dilational and the other distorsional. Lamb’s method is based
upon the application of stress functions. Regarding the elastic vibrations of
a sphere, some problems in Cartesian coordinates were solved by Lamb?,
whose method is suited for one or two nodal vibrations. The same subject
was attacked also by Jeans® by taking the effect of gravity into considera-
tions ; the results obtained by him, however, are approximate even when the
effect of gravity is neglected.

This investigation, which aims to obtain simple and correct methods«of find-
ing solutions of Rayleigch-waves in general, falls into two.sections. First, a solu-
tion of the problem of the propagation of Rayleigh-waves in two dimensions has
been found following Lord Rayleigh’s method. Second, exact solutions concern-
ing the propagation of surface waves having any wave length over an isotropic

elastic sphere have been obtained by using spherical coordinates.

I. The Propagation of Rayleigh-Waves in
‘ Two Dimensions.

The equations of motion of elastic bodies in eylindrical coordinates, when
the circumferential component of the motion is omitted, are expressed by
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u, v=radial and vertical components of displacement respectively at

instant, {,
p=density of isotrophic solid,
A, p=Lame’s elastic constants,
Writing A=A, ¢™*"" and @=a ¢ " in (1) and (2) respectively and
solving the resulting equations, we have
Ay=AJy (kr)+ A" Yo (kr) ‘ (4)
&,=BJ, (kv)+B' ¥, (kr) v (5)

in which F=a®+_PP  — g +-LP_
At+2u I

Displacement (w1, wy) answering to A; in (4) and satisfying 0=0 is given
by the forms,

= E goeHin {AJ} (kr)+A'Y: (Zﬂ)l’ 6)
2wy =— a . gmosrint {AJo (k") 4+ A" Yo (L,)} (7)
F—a o

Displacement (us, w,) derived from the value of w; in (5) under the con-
dition, A=0, is expressed by

2 —Bz+ipt ’ ’ o
W= kf_kﬁz o~ Pavint {BJO (]”) + B Yn (M)} (9)

The surface z=0 being free from traction, the equations

AA 42 20— (10)
Oz
Qu , Sw
=0 [1
oz + oy (1)

in whichiuw=w+us and w=w +w: must hold on that surface.
These equations give
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The equations (13) is of the same form as the equation derived by Lord
Rayleigh to determine the velocity of propagation of plane surface waves.

The velocity of propagation at infinity is given by
2mlk _ ¢ \jl
2 |[p P

where C'=0.9553 for incompressible materials and 0.9194 for materials whose

Poisson’s ratio is %.

Near the origin the velocity is greater than that at infinity because of the
large distances between zero points (or wave lengths) of Bessel’s function for

small arguments. Thus the velocity near the origin should be written.

2l (l—e) _ C e
2m[p I—e ¥ p

The ratio of -A]z— being determined from (5), we get B[A=—0.543 for in-

compressible case and—0.682 for materials which fulfils Poisson’s condition.
The moduli of decay (@, 8) in semi-infinite solid body are the same as those
for ordinary Rayleigh-waves. TFor examples, a*=1°, B°=0.087371%" for in-
compressible body and «*=0.7182 I, B°=0.1546 I for a body whose Poisson’s
ratio is 3. ’
The general expressions for displacement (tdking A=p) are
A

-.54Tkz
u=ul+uz=7{ 0.847 —.682¢ } {J1 (k) sin pt— Y7 (kr) cos JJt}

ES
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The displacement at infinity is of the forms,
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II. The Propagation of Rayleigh-Waves on a
Spherical Surface.

The equations of motion of elastic bodies in spherical coordinates, when

the azimuthal component of the motion is omitted, are expressed by
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u, v.=radial and co-latitudinal components of displacement respective-
ly at instant, ¢,

Writing A=A;¢™ and a=a;¢? in (1) and (2) respectively and solving
the resulting equations, we obtain,

A=A J%)—{P (cos 8)+ A Qu (cos o>} @)
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in which lﬁz——L, kz=&, m=n+—1— and n is a constant to denote
A+2p s 2
the number of waves on the whole spherical surface.
Displacement (w1, v;) answering to A; in (4) and satisfying @=0 is given
by

1 d J'.m (71/)’
w=-2 4 V—TL{P,, (003 0)+ 4 Qu (03 0)}
e A Inlhr) (dPu(cos8) , 4 dQa(cos )
V1 -y /)-%} { 10 +4 70 ]’

Displacement (uz, v;) derived from the value of @ in (5) under the con-
dition, A=0, is expressed by

u=—2B 2 (77’:'1) I (1) {P,. (cos 8)+ B’ Q,(cos 9)}
k rZ

_ 1 1 d |y — d P, (ocs 8) dQ.(cos 0) ) :
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The surface 7=a being free from traction, the equations

u Sy v, Ou _ .

in which u=wi+uz and v=v,+2: must hold on that surface.
Eliminating 4 and B in applying the above boundary conditions. at
=a, we obtain the following equation to determine the velocity of propaga- ¥

tion of surface waves.
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This equation is too complicated to study the nature of the motion, so

that we must be contented with the following simplified form :—

(Egon(-if-s) @

' ha L _ ke
where —=— and —=-—.

fon f 7
In this equation the largeness of n is taken into consideration ; even
when =100, the wave length on the surface of the Karth is so large as 360
kilometers. Also, for simplicitie’s sake, Jor the values of Bessel’s functions

in (7), the first term of the asymptotic expansion due to P. Debye, namely

1 - "Z‘” r (q + %)
'];l (/L — e —z (recoshr—sinh 7) Bq (’T) ~ ,
ko q=l T '1+%
(—5— sinh 7

. . n .
in which coshr=—>1, is taken.
x

The equation (7') is of the same form as that derived by Lord TRayleigh
to determine the velocity of propagation of plane surface waves.
The velocity of propagation excepting necar the origin, when n is large,

is given by

O

2wlf _¢ \fL
Ip P

where 0=0.9553 for incompressible materials and 0.9194 for .materials whose
Poisson’s ratio is 1.

The value of B|A is obtained from one of the relations in 6). If the
sccond relation is used,

[l d Ju () _ 1 I (lm')]

B { 2 rodr Vg ” Ve

W (_ P 2<n”+n—1>) Jo () _ 2 d Ju (k)
g Vo rdr Vo, T

(8)

Under a similar process by which we deduced (7°) from (7), we obtain,
from (8)
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The value of B[A being thus found, we can arrive at the general expres-

sions for displacement, which can be written as follows : —

wmd [t o B ) nltl) (k0 ],

? ]5 P

[Pn (cos @) sin pt+ D, Q. (cos 8) cos pt]

o= A[l J(ﬁk))_,_?(l})l d{ 7(71)‘“7)}]

IS e FNAJy dr

9)

[ dly (COS cos ) sin pt+ D, MCOS Pt]

where D, is a positive number, whose value is constant, for a given n and
which is to be so adjusted that P.(cos ) and D, Q,(cos 8) may have envelop-
ing curves in common, excepting near the origin and the antipode within
a zenith distance corresponding to, say, % wave-length. Evidently motions in
these regions must be excluded from the consideration.

The expressions (9) clearly tell the fact that, while the displacements
gradually decrease as the waves approach the equatorial circle, the displace-

ments again increase as they proceed towards the antipode.
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