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Propagation of Elastic Waves from an Elliptic
or a Spheroidal Origin.

By
Katsutada SEZAWA.

Earthquake Research Institute.
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The propagation of elastic waves, started from an origin of an elliptical
or a spheroidal form, under prescribed periodic tractions, is an interesting
problem, because the propagation of the waves is affected by the shape of the
origin. Yet such a problem has not been much studied for the reason that

it involves mathematical difficulty and more probably has escaped the notice
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of investigators. So far as the author is aware, successful attempts hitherto
made are for statical problems by Wangerin and a few others. Although the
existing formulae in mathematics are not sufficient for solving the present
subject, yet the author has succeeded to carry out a mathematical investiga-
tion more or less satisfactorily.

The present investigation consists of three sections : the first is on two-
dimensional propagation of waves from an elliptical origin, the second on the
transmission of waves from an origin of prolate spheroid and the third on
that from an origin of a oblate spheroid. In the followingi analysis, special
attention should be given to the vibratory motion at the origin, wave fronts

at infinity and the d1str1but10n of energy of waves in all directions.

I Elliptic Origin.

The equations of motion of elastic bodies in cllipidic coordinates are ex-

pressed by
2A 2] 'y
2 —2ph———=p——-
A +2p) Iy 3 iehs 5 P 3
(1)
oA &
A2 2 —p 22
A +2p) s 5 + ;Llu 85 =p T |
where 2;
£, 7=curvilinear coordinates related 7
. . 2 413
to Cartesian coordinates (v, ) \__, af ;’2
in the form, ) ::" 7
%] /

or .
x+iy=c cosh (£ +i7) ) X

o ,yz _

— et — =1
¢*cosh’ €~ ¢*sinh®& \

9

2 2
2 m 2 - 92 :ll/ Z =1 2C
ccos’np  ¢*sin’g |
u, v=components of displacement roferred to curvilinear coordinates,

& and 7, respectively at instant, ¢,

A= ]”h‘[ oF (71:2 )4"8%(72—)]

)
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[3]
2 (v 9 ([ wu
soctan [ (1) 2 () o
o=lale | e\ /" o\ | ®)
= (o) +( ) = ot —eos
=(—=) +{ —L )} =c" (cosh® £ —cos
i o ot (cosh®§ )
4)
L \2 2
R RN
p=density of isotropic solid,
A, p=Lame’s elastic constants.
TFrom (1), (2), (8) and (4), we get
A _ A+ 2p o°A | A )
ot ¢ (cosh®*E—cos’y) \ O  On'
, , . (5)
I& _ © ( ek} n (o4} )
P 988 c*(cosh*E—cos’y) \ 08  Onf

2 2
Writing A=A ¢, a=a ¢, _ PP 32 and PP_=}? we obtain

A+2p 7
v4 2
88?; + aa?’-’l‘_i- 17 ¢’ (cosh? £ —cos™p) A=0
, (6)
* o . 2 ”
_8?_2L + 8:21 + 1% ¢* (cosh® £ —cos’ ) &, =0

From the symmetrical nature of the equations, it will be sufficient to
study only one of the above equations.

Putting A,=E (§) H (), the first of the equations in (6) will be trans-
formed into Mathieu’s differential equations, namely

% +(* ¢* cosh* £ — 4,) E=0
J*H
dng’

+ (1 ¢® cos*n—A,) H=0

in which 4, is an arbitrary constant.
As the lower equation of (7) satisfies the integral equation of the type,
w

H (1’)=ag G'L'hccosvlcose H (0) de ‘.i . (8)

-
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in which @ is any arbitrary constant, we can derive the value of H (5) in an
expanded form, by substituting some series in (8) and adjusting the accom-
panying constants.

When 4,=n*=0, a convenient form for H (7) is expressed by

+1 qr _ 2r+3o, (37,+4) re2
!

H (9)=ccs (5, 27):1'*'2{ F+1)! (r+ 1! 1

r
2
P21 7

axa
+0 (g™ }COS 2ry 9)

2

e

where g=- 3

The domains of convergence of the series have not yet been determined
The series converge for sufficiently small value of q.

For a preseribed distribution of H (), we may put,

H (7))=Za,lcc,, ("’7 Q) +Eﬁn SCn (715 q) (10)

n=0 n=0
in which

=4,

an—S H (1) cea(n, q) dy Sﬂ cea(n, Q) dy

/
/
Bn~jH(n) sea(n, q) dy /S” sea(n, O d

Another way of solving the lower equation of (7) is the application of the

expanded form of H (5), namely,

H@®p)= ——ao+a1 cos 2n+az cosdg+ .. . (11

where ag, a1, @s.... are given, be means of (7), in the forms,

_ 16 ( n  REet )
a, = 2 a - %
e\ 4 8

16 (=, ¢
e’ 4 8

az= — )al—ao
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- 2 2.2
ay=—10_ (4_,7L+-h_0_)a2_a1
et 4 8

~

(12)

_ 16 : w o, B
An1= =55 m ——-+ Ay~ Am =1
h'c

The important part of this investigation is to make clear the distributicn
of B for all points of £. The difficulties in solving the upper.equation of
(7), oblige us to be contented with the solutions only at the origin and at
infinity. Needless to say, the upper equations of (7) can be integrated by the
same method as that characterised by the expansion in (11); but in this case,
the series diverge. The infinity above described, however, may not be very
far from the origin ; even a distance of say 2¢ or 3¢ from the centre of the
origin may be regarded as infinity.

The upper equation of (7) for a small value of £ can be written in the

form,

e -*-l:(h2 =)+ 02( §2+——Ei+ e )]E:O (13)
dg* : 3 '
Putting & in the expanded form,

B=atau §+a1 Ez-l- N

and neglecting the small quantities of the second order, we obtain,

m

— gkt N/ IToTonT £ 14
Thus the solution for A is

A=Z 'yn et (Ilt—N/hZCZ—n?. 3} Hn (7’) (15) »

The velocity at O is given by

drn _ _ dsinhE . dE _ 1 / A+2p
=C == ¢ = — \
dt dt dt \jl__ n? p
e

=\fliili for =0
P
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The velocity at 4 is given by

drs —c d cosh &
dat dt

_ d€ .
sinh =0
=osinh &7~

Proceeding to the solution of & for distant points, the upper equation of
(7) can be transformed into,

a5 2y Amy
+ = M?) E=0 16
(° fl) dfz Er— dE, (E+2%) (16)
in which
he sinh £=§, h~262 —n'=q
-2
M=q4-1 he=j

151
Putting E=C"1 i (16), we get,

£,
Gﬂ%g+@&ﬂ%—& %
[%j+jfﬁrii—@a-€§]u=o (17)
Substitute
u=1+4-2 g: + . ..+g1;.+....

in (17) ; we then find that

= (P M)

==Lt Loty ne-reary

and we have the recurrence formula for a, s as follows :—
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+(2n+1) ana= l:—j2 +MF—14+n (n+ 2)] =210 @t n(n—1) 7 an_2

Thus the general solution for A is written in the form,

l/& [cos (E;—pt)( f glj +.. )

+sin (E:—Pt)( : gzl +)] (18)

A=CH, (77)

where a¢,'=-2" and H, () is the modified form of H (7) at infinity.
%

When £, is sufficiently large, A is given by
A':OHl(’I]) Cos El_zjt)
VE
The velocities of propagation are given by
dri _ d(csinh§) '
dt dt C

=1 d& \/X-*—Qp S

h

e

A
d?’z — Sinh§ d§1 — X+2}L B

dt cosh dt

at 4

both of which are of constant magnitude and independent of the value of n.
Proportions of energy in A-and w-waves can be determined uniquely from
the conditions of stress at the origin as follows :—
Displacement (u:, v1) answering to A in (6) and (2) and satisfying w=0
is given by ’ ‘

U= —- __1___ o8 H

1*cV cosh?E—cos’y OF

(19)
1 = OH

1% ¢V cosh? E —cos® g on

= —

Displacement (uz, v;) derived from the value of  in (6) and (3) with the
condition A=0 is expressed by
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U= — 2 g OH
) 12 ¢V cosh? £ —cos® g on
(20)
2 o5
P2— — S —— = H'
12V cosh?E—cos’y  OF
On the surface £=§&,, two equations
a U ¢
AA+2p il BE <—> =normal stress. (21)
: J Jo2

e] 2 .
p hihe [—EE(%> + g(%)_l =tangential stress. (22)

in which v=1w+u, and v=w+v. must hold.
Putting the values of A, wi+wu and v+, from (15), (19) and (20) in (21)
and (22), we get the absolute magnitudes of the enegy of both kinds of waves.

ITI. Origin of Prolate Spheroid.

The equations of motion of elastic bodies in spheroidal coordinates are
expressed by

A +2p) Iy —%—2—‘2/1 Do hgi( @ )Zp O

on \'hs ot
1)~
2A ) ( & ) )
AN+2u) he —+2u by hy — | — )=
( ,u)zzan+,uwsa§ ARG
where
£, p=curvilinear coordinates related with Cartesian coordinates (z,
9, 2) in the form,
z+i‘/ac2+y2=c cosh (E+i7)
or

w4 2 £ 4y

= = J =1
9 03 b .~y CH)
¢*sinh®€  ¢*cosh’*& ¢ cos’y  cfsin*qg

u, v=components of displaccment referred to curvilinear coordinates,

£ and 7, respectively at instant, ¢,

_ 0 Y ) ¢ ( v )
A=lyhyh: 2
a ”[ OF (hzhs o0 \ T b ] @
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20w=y s [8‘8&‘ (-;;-)——%—(%)] (3)

=)+ () ()

=¢* (cosh® £ —cos’7)

) (25
hzz 87] + 87] +< 37] (4)

=¢* (cosh® £ —cos®7)

lif :< gg )2+( o ) +\ o )2

=¢*sinh? & sin’y

From (1), (2), (3) and (4), we get,

A A+ 2p ( A
T e 2 2 +coth
P ot ¢*(cosh®E—cos’n) \ OF° E ’g’
A 2A
+ P +coty o
o > ©)
vk (T
ott  ¢*(cosh’E—cos’n) \ O § g
@& G0} OB @ )
g ooty o m
sinh® £ oL 99  sintg

Writing A=A,6"", &=a1c", S _’; 13; =12 and PL_=7* in (5), we ol

24 p
A, A, |, A OA;
+cot1 £ + S~ +cot g
I3y ot o S
+1% ¢ (cosh® E—cos’ i) A==
o @ a @ Q@ (6)
th 4-cot
oE* Feo E 85 T einl? g on' CQ K On
+ 172 ¢* (cosh® £ —cos® 97) & =0

sin’ g

Putting A,=E (&) H(n) and e;=E'(E) H' (n), the equations (8) are de-

-composed into,
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(il; +coth £ —3? + (I ¢*cosh®* £E—A4,) BE=

( ©)
B yeotn 2B g ¢t costy—4,) H=0
dy® dn
=i

+ coth E (k2 ¢t cosh? &
d&* f

1
- "‘-A,n) E,:-O
sinh* &
2 (®)
dH +coly (L ¢’ cos’ g
dn’

PR -A',,) H/=0

sin® g

in which 4, and A’, are arbitrary constants.

The author found that the solution of H was obtainable by using the

integral equation of the following form with an arbitrary constant a :—

H(ﬂ)'— g i he cos nco»GsnleH(e) d9

(9)
which satisfies the differential equation,
dsz o d 2 2
dn’

(10)

The solution of H', however, has not yet been found.

The solutions of & and &' are derived in the subsequent manners.

Taking the special case, ¢=0, the equations relating to H and H’ become

d-% +cdt71 dH + 4, H=0
dn 7
d°H/ dH’ 1
+ceotyg ——+| 4", — . H'=0
dr* ° dn [ sin"v;]

so that, by putting A,=A"w=n (n+1), we can write

= '
‘25 +coth £-92 +[h"c cosh® € —n (n+1)]'5 ‘
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+ oth E——S——l-[h ¢*cosh®*E—n (n+1)

dE‘ (11)

L_Tar=0
sinh? &

The motion at the origin is obtained by solving the equations

dr”_' 1 dﬁ—d [ 2 2 . (=]
—+ =4 c—n (n+1)] 5=0
d d
g £ d§ (12)
LI=1i 2=/ .
(flg % Lfig +[7L‘02—n (n+1)— ;‘9] 5'=0
the integrals of which are
= <7LC\/1 n(n-i—l) E)
+A'Y, (hc.\/ 1— _7“—111 g)
) (13)
=BA(ke J1-atn 2ltl) ¢)
+3/ T (ko 12011 ¢),
\! i )
The general expressions for A and & are
A=A {Jo(h(:\/l n (]nf,l) E) sin pt
- Yo(hC\}l n (n+ 1) «E) cos pt }H ()
;o (1)

=B {Jl(kc\)l —71(%_'_& E) sin pt

—Yl(Lch n(n-)—l) ’g‘)qosz)t}H”(q).

The velocities at the middle and the end of a line-origin are
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dri - | A+2u /\j n(n+1)
e 11— 4"
dt N P n* e’
d’)'z
dt

for A-waves

Going to the state of B at infinity, the upper equation of (7) can be
transformed into

(Fren 0B 2EAT AB | ery aryE=0

- (15)
d&’ & d&
v in which
lesinh E=§, %—n (n+1)=a
he=j Wi=q+-L
ic=J bl —a+—§—
. — 't .
Putting B= g v in (15), we get,
1
2y AR copa o T du
24t LY g o (g2 —-L
R R S
- par L Ju=0 (16)
[ & J 51']

Substitute

& & €
in (16); we then find that

w=14+-% 4 @ L 4 In g,
1

a1=£25— (= M)

==t Loy @+ 2 -
4 8
and we have the recurrence formula for a. s as follows :—

2% n+1) gpr=[—=F+I+n n+1)] aa

—(2n—1) i anar +F (=15 ap-se
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Thus the general solution for A is written by

A= Oﬂl(n)—[cm (El—pt)(1+ g; + g“ +)

+s1n(§1—pt)( 3 Ex =5+ )] amn

wher a/=-22 and H; () is the modified form of H (7) at infinity.
)
In this case too the velocity of propagation at infinity becomes constant,
namely \/ A2 , in spite of various velocities at the origin.
P

The asymptotic expansion for &/ is obtained by the same process. IRe-

writing the upper equation of (8),

2; +coth E dE {(k——n (n+ 1))

7ch2 1 pt V
— 928 — = —
2 cosh 28 } =] (18)

sinh* &

and, Ly like manner as in =, we have,

EL+) dg“ |20 € +- &] (‘;g+[ T 4+ 20| u=0

. _ ket _
Ecsinh E=§, - 22 pm+l)=0

p

ko=j = at-L
o

&

al:'—; (F*—DI%

o= =Lt (P2 @+ 2)

and
2t (n+1) apm=[—F+ M +nn+1]an
—(2n—1) i an1tn (n—2) F an-s

The general solution for @ is written in the form,

a=DH/ (ﬂ)—;—[cos E—pt) (14 -2 St SOy

+sin (E;—pt)( gl +. )] ~ 19)
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where @,/ =-22 and H/ () is the modified form of H' (5) at infinity.
i .

The velocity of propagation at a great distance is constant being \/—”—
P

Proportions ‘of energy in A- and @-waves can be determined uniquely from
the conditions of stress at the origin as follows :—
Displacement (u1, ) answering to A in (2) and (6) and satisfying &=0

is given by

U= 1 GE!
(== — —_—
IeVicosh*E—costy 9F
(20)
_ 1 — OH
M= =,

1%V cosh? £ —cos® L

Displacement (us, v.) derived from the value of & in (3) and (8) with the

condition A=0 is expressed by

- 2 =1 a (H, Sin 77)
Ug = P ———
I’ sin 7 V cosh? € —cos® g oy i
o e
JP¢ sinh £V cosh® £ —cos? el
On the surface £=§&,, two equations
AA 20 Iy hgh3i < L )=no1‘mal stress (22)
OFy \ Iz ls
2 ) ) o ( i )] . o
o — | — )+ —— =t tial stress 25
;thh,[ BE, ( E + B \ T angential stress (238)

in which v=w1+u. and v=v,+; must hold.
Putting the values of A, wy+wu. and w+e: from (14), (20) and (21) in (22).
and (23), we obtain the ratio of the energy in dilatational and distorsional

waves, together with the absolute magnitudes of these waves.

III. Origin of Oblate Spheroid.

The equations of motion of elastic bodies in spheroidal coordinates are,

as before, expressed by
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( @ )=p Fu
]l:; dtz
v

+2u Tl ( “): ‘
plndits 08 \ Is P dat

£, p=curvilinear coordinates related with Cartesian coordinates in

A+2u) In 882 —2p sl

(1)

A
A+2u) s
(+;L)La

the form, i z

z+o}1/a;"+gf =c¢sinh (E+4n) .70 7,

or ?3
A Y g | 5 '-_W

¢sinh*& . c¢*cosh® & N :7 .
¥
A2 3
= oc b
¢*sin’ g ¢ cos’ p o~ !
1., = 1_ = £—sin’7)
I b @

%zcz cosh®* £ sin’g
13

Trom (1), (2) and expressions of A and & in terms of w, and v, we get,

A A+ 2 ( PA ., .. OA
= 4+tanh & —
P or ~ FleosliE—siig) \ 0g ' ¢
+ S'Az +coty oA )
o  on
] (3)
i © i} 9;
= —-++tanh
P~ 7 (cosh® E—sin®#) \ O £ of
@ 0oy 95 o )
——+ +cot —_—
cosh* & O K 95  sin'y /

Writing A=A ¢, a=a1¢", _ PP —737 and PP =] in (3), we obtain,
A+2pu 2

oA 9A 8A 94,
agz‘ +1lanh & 51 ——+coty o

+12¢ (cosh2 £ —sin®9) A=0
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T ——=+tanh £ oy O 8 om

o8t % oo oy T, (4)

+1*¢* (cosh? E—sin® ) @, =0

sin® g

Putting A1=E (§) H(y) and o,=F'(£) H' (y), the above equations are
decomposed into

(fig £ dz; +(I* ¢ cosh’ £—4,)E=0 .
(&)
d'H +cot'r/ili+(lu ¢ sin®p—4,) H=0
dn* dn
=1 dg’ ( 22 7
+tanh +{ k7¢” cosh®
d&* £ d& §
+—L —A'n) B'=0
cosh® &
d*H' dH' (6>
+ cot ———(/v“c‘ sin®
dn’ 7 dn e
+ .1’ —A’n) H =0
sin® 9

in which 4, and A’, are arbitrary constants.
H and H' can be treated of in the same manner as described in the pre-

vious chapter for the integral equation (9); we shall here leave them out' fo1
simplicity’s sake.

The solutions of & and E' are obtained also by similar processes as that
given in II.

Thus the motion at the origin is given by

A= ig;(pt—hc'\}l n(n+1) §)H(7]) I
[ (7
o=B 2 (pe-te1-2CED=L Y |

The velocities at the centre and the rim of a plate-origin are
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dh\/)»+‘)u / 1_71,(9z,+1) l
Ie” for A-waves

d’)'g =0 }

dt

dr l / / nn+1)—1
— =N /NI———

di le for @-waves
d?’z :O

dt

Going to the state of & at infinity, the upper equation of (6) can be

transformed into

&-P LB+ (26— L) B (arer-L)m=0

£/ d& 2
where
IAc?
Jic cosh E=§, —‘é—-—-n(n-i—l):a
he=j ar=am i
. — c"'fl .
Putting E= w in (8), we get,
TR
du L a 7 du
€= L+ |20 =)+
R 1 g g
+[ i FHDMP— jz_, ]u=0 ©))
& &’
Substitute
u=14-2p ®gp o Gy

§1 fx £
in (9); we then find that '
7./ *2 12
Ch:—T)‘(_] + 1 )

3]

o=t -2 G+ 34D G A7)
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and for the recurrence formula for a, s, we have
26 (n+1) unn=[F+M"*+n (n+1)] an+(2n—1) i’ tn1— (0 —1)"F @ues

The general expression for A is given by

A=¢H, (ﬂ)‘é[cos(fx—pt)( +§—l + E‘“ +. )

+sin (€, —pt) ( E g“” .. ) (10) ’

where ——a_i and H; () is the modified from of H () at infinity.
7

The velocitv at infinity is constant, namely \/ At2p , In spite of the
P

variable velocities at the origin.

The asymptotic expansion for E' is obtained similarly. In the equation

d._.

anh & dHE {(k; —-w(n+1)) cosh 28
1 (=14
coshzf} (1)
where
2
kccosh E=§, ke
{)
Le=j M’Z———’a—i
Operate as in (9); we then find that )
s o AP coga_ay g J ] du
- s+ (24 4=
el R EE S P
12 J—
[)E1 P Ju ‘ (12)
w=1+-9L e
51 5

m=— 77 (20
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]

al:%-——é— (73+]'[IZ) (2+j2+ﬂ[!2)

and for the recurrence formula for «, s, we have
2 (n+1) Guar=[*+ M *+n (n+1)] ¢+ @2n—1) if° @n-1—n (n—2) 7 an-2

The general expression for & is given by

o= DH'1<n)_§_[cos(gl—pt)(1+§ gt )
+<1n(§1—pt)( 3 (g +. )]

The velocity at infinity is constant, namely \!—“-, in spite of variable
P

velocities near the origin.

Proportions of energy in A-and @-waves can be determined uniquely from
the conditions of stress at the origin as follows :—

Displacement (s, #1) answering to A in (4) and (2) of II and satisfying

@=0 is given by

1 o5
U= — H
12c*V cosh® E—sin’y ok
(13)
1 = OH

V1=

1%V cosh E—sintyg N
Displacement (uz, v:) derived from the value of @ in (4) and (3) of Il
with the condition A=0 is expressed by

w = — 2 = O (H'sin7)
. 1%c? sin gV cosl® € —sin’ g on (

: 14)

o — 2 9 (8! cosh &) '

J%¢* cosh EV cosh? E—sin® g 23
On the surface £=§,, two equations
AA A2 hylilis —— 0 ( v )———normal stress. (15)
8&0 ]lg ]lg

(5] % 9 [ u .
I/ 72[—— (——)+———<——) =tangential siress. 16
gl 5 \ T 37 \ T ] ngenti (16)
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in which w=wu1+wu: and v=v;%v. must hold.
Putting the values of A, w+w. and v+v: from (7), (13) and (14) in (15)
and (16), we obtain the ratio of the energy in dilatational and distorsional

waves, together with the absolute magnitudes of these waves.

Concluding Remarks.

The proceeding results obtained by mathematical investigations shows an
important fact, that the fronts of waves generated from an elliptical or spher-
oidal origin tend to become eircular or spherical in progressing towards infini-
ty, in spite of its polar unsymmetry in the neighbourhood of the origin. It
also worths noticing that the velocity of propagation at infinity is uniform,
notwithstanding of its various velocities at the origin. The fact that the cnergy
of waves is transmitted along the systems of hyperbolas or hyperboloids of
revolution, and thereby the amplitudes of wave fronts are modified, may be
remarkable. Not less important is the fact that the decay of amplitudes
progressing towards distant points is of the same nature as that of waves
started from a single point. :

In conclusion the author wishes to express his indebtness to Professor
Nagaoka and Professor Suyehiro for valuable advices and suggestions.

December, 1926.



