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Abstract 

Silica nanoparticles with diameter around 100 nm were dispersed into a 

nematic liquid crystal 5CB with different volume fractions θ. Differential 

scanning calorimetry (DSC) was performed to study the nematic to isotropic 

transition temperature of these nematic liquid crystal colloids. Small angle x-ray 

scattering (SAXS) was performed to study the structure of silica nanoparticles 

dispersed in 5CB. Microbeam wide angle x-ray scattering (microbeam WAXS) 

was performed to study the structure of 5CB in which silica nanoparticles were 

dispersed. X-ray photon correlation spectroscopy (XPCS) experiment was 

performed to study the dynamics of silica nanoparticles dispersed in 5CB. DSC 

reveals that the nematic to isotropic transition temperature of 5CB decreases 

linearly with increasing θ. SAXS shows that silica nanoparticles contact with 

each other in these nematic liquid crystal colloids. Microbeam WAXS indicates 

that 5CB molecules become less oriented with increasing θ, and the peak of 

scattering profile becomes broader with increasing θ. XPCS shows that 

relaxation time of these samples increases with increasing θ, and a transition 

from a stretched exponential behavior for θ equal to 0.3 % to a compressed 

exponential behavior for θ equal to 5.0 % has been observed. A detailed 

discussion on experimental results will be given in this thesis. 

 

Keywords：nematic liquid crystal colloid，anisotropic structure, dynamics, 

SAXS, Microbeam WAXS, XPCS. 
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1 Introduction 

Nematic liquid crystal is anisotropic at its nematic phase and can serve as an 

anisotropic matrix for colloidal dispersions. This can generate distinct physical 

phenomenon compared to isotropic surrounding matrices. 

Topological defects will occur when colloidal particles are dispersed into 

nematic liquid crystal. Some typical topological defects have already been 

theoretically estimated and experimentally observed [5, 6, 19-22]. Short range 

repulsive and long range attractive forces exist among topological defects. Under 

these forces, self-assemble anisotropic structures can be formed. The typical 

anisotropic structures include linear structure [21, 23, 24], hexagonal structure 

[25, 26], multiple structure [9] and cellular structure [14, 27-30]. Properties of 

nematic liquid crystal colloids have also been investigated such as dielectric 

property [31], optical property [32], thermal property [30, 33] and mechanical 

property [14, 30].   

So far, the structures of nematic liquid crystal colloids were mainly 

investigated under optical microscope. Because of the resolution limitation of 

optical microscope, the samples were fabricated to be very thin in the range of 

several tens of microns.  

To conquer this limitation, here in this study, much thicker samples with 

thickness around 1 mm were studied with synchrotron x-ray radiation.  

In detail, small angle x-ray scattering has been performed to study the 

structures of silica nanoparticles dispersed in a nematic liquid crystal 5CB. 

Microbeam wide angle x-ray scattering has been performed to investigate the 

structure and orientation change of 5CB molecules. X-ray photon correlation 

spectroscopy has been performed to study the dynamics of dispersed silica 

nanoparticles.   

In this master thesis, chapter 2 gives an introduction of the background of 

this study, that is colloidal dispersions in nematic liquid crystal. Chapter 3 

summarizes the basics of x-rays and x-ray scattering. Chapter 4 introduces the 

experimental study of structure and dynamics of silica nanoparticles dispersed in 

5CB. Chapter 5 gives a summary of this thesis. 
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2 Colloidal dispersions in nematic liquid crystal 

Colloidal dispersions are particles with sizes from 10 nm to 10 μm dispersed in a 

surrounding matrix. It can be commonly found in nature, in daily life, in 

industrial products and is also of remarkable academic and technological 

importance. Academically, colloidal dispersions are ideal systems to investigate 

Brownian motion and hydrodynamic interactions of suspended particles [1, 2]. 

Technologically, colloidal dispersions are indispensable in manufacturing drugs, 

cosmetics etc.  

In most cases, colloidal particles are dispersed in isotropic matrices, thus the 

consequent optical, electric, mechanical properties of the colloidal dispersion are 

usually isotropic.   

Here in the section, we will focus on a different question of how the 

colloidal particles behave when dispersed in an anisotropic matrix. For simplicity, 

we will introduce the nematic liquid crystal as the anisotropic matrix. 

2.1 Phenomenological description of nematic liquid crystal 

Nematic liquid crystals are usually rodlike organic molecules aligning on 

average along a unit vector n, called the Frank director [3], at their nematic 

phase. The directors form a uniform director field throughout space. When 

temperature is increased above certain critical temperature defined as nematic to 

isotropic transition temperature, the nematic liquid crystal will turn to isotropic 

phase with director n orienting randomly without any long range positional and 

orientational order. The phase transition can be illustrated by figure 2.1. 

 

Fig.2.1 Phase transition between nematic and isotropic for nematic liquid crystal. 
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When particles are dispersed into nematic liquid crystal, liquid crystal 

molecules surrounding the particles will anchor to particles. Correspondingly the 

surrounding director field will be elastically distorted, which will result in 

topological defects. Among these topological defects, there will be short range 

repulsive and long range attractive interactions. These interactions will finally 

generate distinctive structures and dynamics of the colloidal particles, compared 

to the cases when the matrices are isotropic. 

2.1.1 Frank free energy and surface anchoring energy 

From thermodynamics we know that a system on a macroscopic level has the 

tendency to minimize its thermodynamic potential. Before describing energy of 

nematic liquid crystal, we want to mention that the Frank director n(r), which 

specifies the direction of local alignment of anisotropic liquid crystal molecules 

at the point r, is invariant under the inversion operation n(r)→n(-r). 

 

 

Splay: K1 

 

 

Twist: K2 
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   Bend: K3 

Fig. 2.2 Illustration of deformation of nematic liquid crystals [4]. 

 

Let’s consider the free energy of nematic liquid crystal, no matter it is pure 

or it has been dispersed with colloidal particles. The energetic ground state of a 

nematic liquid crystal is a spatially uniform director field and any deviation from 

it costs elastic energy. The elastic distortions in a nematic liquid crystal are 

known as splay, twist and bend deformations [4] as figure 2.2 shows. The 

resultant Frank free energy density f is [5, 6] 
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where K1, K2 and K3 are the splay, twist and bend moduli, respectively. 

Theoretically, the Frank free energy F can be determined by integrating 

over the volume and the minimum of F can be obtained under appropriate 

boundary conditions. An exact calculation is very difficult and is beyond 

introduction of this section. For simplicity, based on an analog to the 

electrostatics [7, 8], a one-constant approximation can be applied. That is to set 

K1=K2=K3=K. Under this approximation, Frank free energy density f can be 

written as [10] 
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The free energy F can be reduced to [6, 9] 
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where the integral is over the volume of the nematic liquid crystal; i, j=x, y, z; ni 

is the i
th

 component of the director, ji n
 
is the gradient of nj, and ii x / . 

Dispersing colloidal particles into nematic liquid crystal will generate 

interface between particles and liquid crystal molecules, and the resultant surface 

free energy density at the surface element S of the particle is given by [11-13] 

])(1[
2

)( 2
νn 

W
Sfs ,                  (2.4) 

where W is the coupling constant or the surface anchoring constant, v is the unit 

vector normal to the colloid surface. 

For a given particle configuration, the total free energy including both Frank 

free energy F and surface free energy Fs can be expressed as   

  )()())(( SdSffdFFF ss rrrn .           (2.5) 

The increase of Frank free energy intends to expel colloidal particles away 

from nematic liquid crystal matrix while the increase of surface free energy has 

the inclination to stable the particles. The director field around such a particle is 

controlled by the competition between the surface free energy or surface 

anchoring energy at the interface and the Frank free energy or Frank elastic 

energy in the bulk. 

A scaling argument tells us KRF  and 2WRFs  . W is typically of the 

order W~10
-6

 J/m2 and K~10
-11

 J/m [3, 17]. 

A critical radius of colloidal particles can be obtained by setting F equal to 

Fs, that is ξc given by 

W

K
c  .                         (2.6) 

Suppose a particle of radius R in a nematic environment with a uniform 

director field at infinity, the Frank free energy of this system is proportional to 

KR while the surface energy is proportional to WR
2
. Taking normal boundary 

condition for example, for strong anchoring, that is WR
2
 >> KR, or equivalently 

R>>ξc, the energy to turn the director to v at the whole surface would be much 

larger than the bulk energy. Under this condition, it is preferable for the system 

that the director points along v nearby the interface. On the contrary, for weak 

anchoring, that is WR
2
 << KR, or equivalently R<<ξc, the influence of the 

surface is minor, that the director may have a divergence from the original 

director field but will not be along the direction of v. 
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2.1.2 Miesowics viscosities 

In the previous subsections, we mainly described the static properties of director 

field by considering Frank elastic energy and surface anchoring energy. Here the 

viscosity of nematic liquid crystal will be briefly introduced.  

Liquid crystal hydrodynamics has been studied for a long time. The detailed 

hydrodynamic equations can be found in several references such as [3, 15]. Here 

we will not focus on hydrodynamic equations but on viscosity of nematic liquid 

crystal. For isotropic matrices, the viscosity is usually isotropic. Nematic liquid 

crystal is anisotropic at its nematic phase, resulting in anisotropic viscosities 

called Miesowics viscosities [16-18] as figure 2.3 shows [6]. 

The direct field between the upper and lower plates is spatially uniform, and 

the upper plate is moved with a velocity v0 relative to the lower one, creating a 

constant velocity gradient along the vertical z direction. The director n can be 

aligned in one direction by applying a magnetic field strong enough to exceed 

the viscous torques. During measurement, n is controlled either parallel to 

velocity v or perpendicular to v and its gradient, or perpendicular to v but 

parallel to its gradient. 

 

 

 

Fig. 2.3 Definition of three Miesowics viscosities in shear experiments [6]. 

 

 

 

z 



 

16 

 

2.2 Topological defects 

2.2.1 Expected topological defects 

Topological defects are necessary consequence of broken continuous systems. 

For pure nematic liquid crystal, the director field is continuous within the liquid 

crystal, but it will be influenced more or less after being dispersed by colloidal 

particles. As a result, the topological defects are to be formed. Topological 

conservation law tells us that the director field of nematic liquid crystal should 

be continuous, which determines the possible configuration of topological 

defects around the dispersed colloidal particles. 

Particles are pretreated with surfactants before being dispersed into nematic 

liquid crystal to decrease surface energy in order to make it easier to disperse the 

particles. Here we just consider two typical cases: one with normal boundary 

condition, the other with planer boundary condition. 

Planer boundary condition means that nematic liquid crystal molecules 

should array parallel to the colloidal particle surface under the effect of 

surfactants. For example, polymers such as polyvinyl alcohol (PVA) provide 

planar anchoring of thermotropic liquid crystals at water interfaces [19]. 

Under planer boundary condition, a topological defect is expected as 

depicted by figure 2.4 [5, 20]. 

 

 

Fig. 2.4 Topological defect under planer boundary condition [5]. 
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For topological defects under normal boundary conditions, things become 

more complicated, because as illustrated in the previous subsection, the 

configuration is under the competition between Frank elastic energy and surface 

anchoring energy. A sphere particle with normal boundary condition can be 

depicted as figure 2.5, nematic liquid crystal molecules should array normal to 

the colloidal particle surface under the effect of surfactants [5]. 

 

Fig. 2.5 A sphere particle with normal boundary condition [5]. 

 

For weak anchoring, that is WR
2
 << KR, or equivalently R<<ξc, the 

influence of the surface is minor. The director may have a divergence from the 

original director field but will not be along the direction of v. In this case, the 

director adjacent to the particle can be expected as figure 2.6 shows [6]. 

 

 

Fig. 2.6 Topological defect under weak normal boundary condition [6]. 
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For strong anchoring, that is WR
2
 >> KR, or equivalently R>>ξc, the energy 

to turn the director to v at the whole surface would be much larger than the bulk 

energy. Under this condition, it is preferable for the director to point along v 

nearby the interface. Two types of topological defects, called hyperbolic 

hedgehog defect and Saturn ring defect, respectively, as illustrated by figure 2.7 

and 2.8, can be expected [6]. 

 

Fig. 2.7 Hyperbolic hedgehog defect [6]. 

 

 

Fig. 2.8 Saturn ring defect [6]. 
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2.2.2 Experimental observation 

Experimentally the mentioned topological defects have been investigated 

successfully. In most of those experiments, the surface of the glass substrates was 

treated with polyimide and was unidirectionally rubbed to induce good planer 

anchoring at the surface and parallel alignment of nematic liquid crystal [21]. 

The nematic liquid crystal colloids were injected into the thin cells made of 

pretreated glass substrates. The nematic emulsions were observed with polarized 

optical microscope. Between crossed polarizers, an isotropic region will appear 

black, whereas nematic regions will be colored thus can be seen [9]. 

Topological defect under planer boundary condition is shown in figure 2.9 

[5]. In this experiment, water was dispersed into ZLI, a nematic liquid crystal, 

under the surfactant PVA. The thickness of the sample was about 30 μm. The 

nematic liquid crystal matrix was horizontally aligned. The two bright regions 

located on the surface of the droplet indicate the presence of surface defects. 

 

    

Fig. 2.9 Left: Topological defect under planer boundary condition observed 

under polarized optical microscope [5]. Right: Expected topological defect. 

 

For normal boundary conditions, water was dispersed into 5CB and K15 

under the surfactant Tween 60. The experiment condition was the same as 

mentioned in the previous subsection on topological defect under planer 

boundary condition. A hyperbolic hedgehog defect under strong normal 

boundary condition was observed [5] as figure 2.10 shows. 
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Fig. 2.10 Left: Experimental hyperbolic hedgehog defect under strong normal 

boundary condition [5]. Right: Expected topological defect. 

 

Saturn ring defect was predicted by topological conservation law, but in 

actual experiments, hyperbolic hedgehog defect is commonly observed, which 

confirms that under most experimental conditions, the hyperbolic hedgehog, 

rather than the Saturn ring defect, is the lowest-energy defect of an isolated 

particle in homogeneously aligned liquid crystal. 

To obtain Saturn ring defect, a thin glass cell with thickness varying along 

the direction of rubbing. The cells were prepared using mylar spacers on one 

edge and no spacer on the other edge with thickness varying between 1-6 μm 

along the direction of rubbing. Silica colloids with diameter 2.32±0.02 μm were 

coated with a monolayer of DMOAP that ensures very strong perpendicular 

surface anchoring of the nematic liquid crystal 5CB. At the position within thick 

5CB layer, hyperbolic hedgehog defect was observed, whereas at a thin 5CB 

layer (2.5 μm), Saturn ring defect was successfully detected [21] as figure 2.11 

shows. Note that rubbing direction is vertical in this figure. The two black spots 

on the right and left side of the colloid represent the Saturn ring. 
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Fig. 2.11 Left: Experimental Saturn ring defect under strong normal boundary 

condition [21]. Right: Expected topological defect. 

 

Colloidal particles with other shapes but not sphere have also been 

investigated. C. P. Lapointe et al. [22] fabricated triangular, square and 

pentagonal colloids using photolithography. All the colloids have a thickness of 

1μm while the cells have thickness 10-60 μm. The lateral edge lengths of 

triangles, squares and pentagons are 3.0 μm, 4.5 μm and 1.5 μm, respectively. 

The square-shaped particles contain a square hole with 2μm sides. Observed 

patterns as well as schematics of expected topological defects are shown by 

figure 2.12, 2.13 and 2.14. Colloidal polygons with an odd number of sides form 

elastic dipoles, whereas even-sided particles form elastic quadrupoles. 

 

Fig. 2.12 Topological defect of triangular colloids [22]. 
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Fig. 2.13 Topological defect of square colloids [22]. 

 

 

Fig. 2.14 Topological defect of pentagonal colloids [22]. 
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2.3 Self-assembled anisotropic structures 

Long range attractive and short range repulsive forces exist among the 

topological defects, resulting in various anisotropic structures of the colloidal 

particles. Linear structures are the commonly observed one. Saturn ring defects 

are analogous to quadrupoles, whereas hyperbolic hedgehog defects are similar 

to dipoles. The resultant linear structures are different. Hyperbolic hedgehog 

defects formed linear structures parallel to the rubbing direction, while Saturn 

ring defects formed jagged lines along the direction perpendicular to the rubbing 

direction [21] as shown in figure 2.15 and 2.16, respectively. In these two cases, 

rubbing direction is along the vertical direction from the bottom up. 

 

Fig. 2.15 Linear structure along rubbing direction formed by hyperbolic 

hedgehog effects [21]. 

 

 

Fig. 2.16 Jagged lines along the direction perpendicular to rubbing direction 

formed by Saturn ring effects [21]. 



 

24 

 

Linear structures were also observed in other systems. Figure 2.17 shows 

silicone oil (poly-(dimethylsiloxane-co-methylphenylsiloxane)) dispersed in a 

eutectic mixture of cyanobiphenyl and cyanoterphenyl molecules with the trade 

name “E7”. Weight fraction of silicone oil is 2.0 % [23, 24]. 

 

 

Fig. 2.17 Linear structure of silicone oil dispersed in E7. Black arrow: rubbing 

direction. Scale bar: 50 μm [23]. 

 

Hexagonal structures were also observed by dispersing glycerol into 5CB 

[25, 26]. Figure 2.18 shows the formed hexagonal structure and figure 2.19 

shows a schematic representation. 

 

 

Fig. 2.18 Glycerol forms hexagonal structure in 5CB [25]. 
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Fig. 2.19 Schematic representation of glycerol structures [25]. 

 

A combination of linear structure and cellular structure was observed by 

dispersing water into 5CB with a normal boundary condition under the surfactant 

sodium dodecyl sulfate [9]. The water droplets form linear structure within the 

5CB, and 5CB was confined in cellular structures formed by water, resulting in a 

multiple nematic emulsion as figure 2.20 shows. 

 

 

Fig. 2.20 A multiple nematic emulsion formed by dispersing water into 5CB [9]. 
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When the weight fraction or volume fraction of colloidal particles became 

comparatively large to several percent, cellular structures were reported [14, 

27-30]. Figure 2.21 shows a cellular structure by dispersing PMMA 

nanoparticles (5.0 wt %) into 5CB with the surfactant poly-12-hydroxystearic 

acid (PHSA) [14]. 

 

Fig. 2.21 Cellular structure formed by dispersing PMMA nanoparticles into 5CB 

[14]. 

 

The average size of the formed cellular structures has a dependence on 

concentration on colloidal particles. As shown in figure 2.22, reflection-mode 

confocal images of cellular structures of PMMA (d=150 nm, coated with PHSA) 

dispersed in 5CB at different concentrations are presented. The average size 

decreases with increasing concentration as illustrated in figure 2.23 [30]. 
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Fig. 2.22 Cellular structures of PMMA dispersed in 5CB at concentrations 3 % 

(a), 7 % (b), 10 % (c) and 15 % (d) [30]. 

 

 

Fig. 2.23 Dependence of average size on PMMA particle concentration [30]. 
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2.4 Properties of nematic liquid crystal colloids 

Dielectric properties can be changed by dispersing colloidal particles into 

nematic liquid crystal. Table 2.1 shows the comparison of permittivity for 5CB 

containing silica nanoparticles at different weight fractions [31]. The primary 

particle size is 30-80 nm and the alternating current frequency is 10
5
 Hz. Both 

nematic (T=295 K) and isotropic (T=328 K) phased were measured. At nematic 

phase, permittivity decreased after silica nanoparticles were added, and the 

authors explained this phenomenon by mentioning that this behavior is attributed 

to the influence of the filler particles on the orientation order of the domains in 

the nematic phase and that the molecules at the surface of the filler are not free to 

rotate. 

 

Table 2.1 Permittivity of 5CB containing silica nanoparticles [31] 

 

 

Optical properties were measured by S. B. Lee et al [32]. The nematic liquid 

crystal mixtures BL011 and BL035 were used. The silica nanoparticles (d=40 nm) 

were dispersed at a concentration of 10-18 wt %. The sample transmittance 

(T=Iout/Iin) was measured using He-Ne laser as a light source and a photodiode 

for detection of transmitted light. Transmittance-voltage (T-V) dependence of 

filled nematic cell was measured as figure 2.24 shows. The memory parameter M 

was calculated from the ratio M=(Tr-T0)/(Ts-T0), where T0 is the initial 

transmittance, Tr is the remained transmittance and Ts is the saturated 

transmittance. The strong memory effect (M≈95 %) was observed and there is a 

threshold voltage for memory effect, which is about 50-100 V depending on 

concentration of particles. 
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Fig. 2.24 Transmittance-Voltage dependence of nematic liquid crystal filled with 

silica nanoparticles [32]. 

 

Thermal properties of nematic liquid crystal colloids can be measured by 

differential scanning calorimetry (DSC). PMMA (d=150 nm, coated with PHSA) 

were dispersed into 5CB and MBBA, both of which are nematic liquid crystal, 

respectively [30]. Nematic to isotropic transition temperature decreases with 

increasing concentration of PMMA nanoparticles as figure 2.25 shows. The shift 

in the transition temperature Tc is due to the elastic energy around the particles 

given by 

)1(~)(
2

2

0 



R

TTc  ,                  (2.7) 

where T0 is the transition temperature of pure nematic liquid crystal, R is radius 

of the particles, and ξ is the nematic correlation length depending on anchoring 

strength and nematic interaction of liquid crystal [33]. 
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Fig. 2.25 Dependence of nematic to isotropic transition temperature on particle 

concentration. Solid line is a linear fit for 5CB (hollow circle), and dashed line is 

linear fit for MBBA (dark circle) [30]. 

 

Investigations of mechanical properties were also performed [14, 30]. 

Figure 2.26 shows storage modules of 5CB dispersed with PMMA (d=150 nm, 

coated with PHSA) nanoparticles, as a function of particle concentration. In this 

experiment, a Dynamic Stress Rheometer with parallel plate set-up was utilized. 

A sinusoidal shear stress of low frequency 1 Hz was applied to the sample and 

the resulting shear strain is measured. The storage modulus is given by  





cos'

0

0G ,                      (2.8) 

where ζ0 is stress, ε0 is consequent strain and δ is the phase lag between stress 

and strain. 

Yield stress, the stress at which the colloids began to deform plastically, was 

also measured in the same experiment. Dependence of yield stress on particle 

concentration is shown by figure 2.27. 
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Fig. 2.26 Dependence of storage modulus on the particle concentration at 

constant frequency 1 Hz at 15 °C [30]. 

 

 

Fig. 2.27 Dependence of yield stress on the particle concentration at constant 

frequency 1 Hz at 15 °C [30]. 
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3 Basics of x-rays and x-ray scattering 

X-rays were first discovered by W. Roentgen in 1895. Since their discovery, 

x-rays have been widely researched and utilized in many aspects, the typical and 

common ones of which are x-ray crystallography, medical uses and airport 

security etc. 

3.1 Properties and generation of x-rays 

3.1.1 Properties of x-rays and x-ray tube 

X-rays are electromagnetic waves with wavelength in the range of 0.01 to 10 nm 

as figure 3.1 shows, corresponding to frequencies in the range of 3×10
16

 to 

3×10
19

 Hz. In synchrotron radiation, commonly x-rays with energy lower than 4 

keV are classified as soft x-rays while those higher than 4 keV are classified as 

hard x-rays, due to their penetrating properties. 

 

Fig. 3.1 X-rays within the electromagnetic spectrum. 

 

Physically x-rays exhibit a wave-particle duality just like other lights. In the 

aspect of wave, x-rays are characterized by wavelength λ, frequency ν and wave 

velocity c (the speed of light) as  




c
 .                               (3.1) 

When regarded as particles, that is, photons, x-rays are characterized by 

energy E and momentum p as 





h
p

hE





,                             (3.2) 
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where h is Planck’s constant (6.626×10
-34

 Js). 

A numerical relationship between photon energy E in the unit keV and 

wavelength λ in Å can be given as 

E

.412
 .                       (3.3) 

X-rays are generated mainly by two methods, x-ray tube and synchrotron 

radiation. Synchrotron radiation will be introduced later in this chapter. Spectrum 

from synchrotron radiation covers x-ray range. By applying monochromator or 

mirrors, we can select x-rays with specific wavelength or energy. 

The other way to generate x-rays, which is also the traditional way, is using 

an x-ray tube, which is a vacuum tube with a high voltage to accelerate the 

electrons released by a hot cathode to a high velocity. The electrons with high 

velocity collide with the anode, usually a metal target, and create x-rays 

simultaneously. This process can be interpreted by figure 3.2 [34]. 

 

Fig. 3.2 Schematic illustration of a sealed x-ray tube [34]. 
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The maximum energy of the produced x-ray photon is limited by the energy 

of the incident electrons. K-series spectral lines of target metals are commonly 

utilized. Typical K-series spectral line wavelengths of some common target 

metals are shown in table 3.1. 

 

Table 3.1 K-series spectral line wavelengths of typical target metals 

Element Atomic number Kα / Å Kβ / Å 

Cr 24 2.2909 2.08479 

Fe 26 1.9373 1.75654 

Co 27 1.7902 1.62073 

Ni 28 1.6591 1.50008 

Cu 29 1.5418 1.39217 

Mo 42 0.7107 0.63225 

 

3.1.2 Physics of synchrotron radiation (SR) 

Synchrotron radiation is an electromagnetic radiation generated by the 

acceleration of relativistic charged particles through magnetic fields in a 

synchrotron. It was first announced in 1947 by Frank Elder [35]. It covers a 

whole spectrum from radio waves to visible rays, x-rays and gamma rays.  

3.1.2.1 Electromagnetic fields from a moving charged particle 

The theory of synchrotron radiation is initially related to the electromagnetic 

fields generated by moving charged particles. It can be derived from Maxwell’s 

equations that any charged particles under the influence of external forces can 

emit radiation. For example, as illustrated in figure 3.3 [37], for a moving point 

charge e, the electric and magnetic fields are given by equation (3.4). For the 

detailed theoretic derivation, we can refer to references [36, 37]. 
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,            (3.4) 

where E(t) is electric field, B(t) is magnetic field, ε0 is permittivity of free space, 

β=v/c is normalized velocity, n=r/r is a unit vector, r is the distance between 

observation point and charge e, c=3.0×10
8
 m/s is the speed of light at free space. 
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Fig. 3.3 The particle trajectory and radiation geometry [37]. 

 

In (3.4), E(t) has two terms, the first one is inverse proportional to the 

square of r. The second one is inverse proportional to r, which means the second 

term decays much slower than the first term as r increases. In actual synchrotron 

facilities, r is quite large that only the second term is taken into account. 

In this case, E(t) can be expressed as equation (3.5), from which we can see 

E(t) depends on the velocity v as well as on the acceleration of the charge e.  
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.               (3.5) 

For synchrotron radiation, the electrons are moving at a speed near c. The 

resultant β=v/c is approximately equal to 1. From (3.5), it can be seen that along 

the direction of v, the term 1-n·v is approximately equal to 0, resulting in a very 

large E(t). 

3.1.2.2 Synchrotron radiation facility 

From theoretical description it can be seen that synchrotron radiation can be 

produced by accelerating moving charged particles, and actually, synchrotron 

radiation is produced from accelerators which are called storage rings. 

A typical synchrotron radiation facility is composed of electron gun which 

generates electrons, linear accelerator which accelerates electrons preliminarily, 

booster ring which further accelerates the electrons to a speed near the speed of 

light, storage ring which accepts electrons from booster ring and circulate the 
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electrons to generate radiation and finally experimental station which uses 

generated synchrotron radiation to perform experiments. The main storage ring 

components are illustrated by figure 3.4 [36]. 

 

Fig. 3.4 General storage ring components [36]. 

 

In order to generate radiation from storage rings, the charged particles must 

be accelerated to circulate. This is usually achieved by introducing magnetic 

field, including bending magnets and insertion devices. Insertion devices are 

periodical magnetic devices such as wiggler or undulator. 

3.1.2.3 Properties of SR 

Synchrotron radiation has some distinct properties as will be briefly summarized 

here. All the properties introduced here can be theoretically calculated by 

applying classical electrodynamics to moving relativistic charged particles. For 

detailed illustration, we can refer to references [34, 36-37]. 

 

High brilliance: 

Brilliance is defined as 

bandwidth)%.(area)source(mm(mrad)

ondPhotons/
Brilliance

10

sec
22

  , 

where mrad is the unit for solid angle.  

The maximum brilliance from the third generation synchrotron radiation 

facility, which introduces insertion devices, is more than 10 orders of magnitude 

higher than that from a rotating anode. This dramatic improvement has in many 
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ways led to a remarkable shift in experimental x-ray science. 

 

Continuous broad spectrum: 

Spectrum of synchrotron radiation is very broad and continuous, ranging from 

the infrared (λ~ 10
-2

 cm) to the hard x-rays (λ~ 10
-2

 nm). The spectrum depends 

on the energy E of the electron beam circulating in the storage ring and the 

radius of curvature R of its trajectory. For radiation from bending magnets, λ is 

proportional to R/E
3
. 

 

High degree polarization: 

For x-rays emitted in the plane of the electron orbit, the radiation is completely 

linearly polarized, with the electric vector of the radiation parallel to the plane of 

orbit. For the x-rays emerging in the direction not exactly on the orbital plane, 

the radiation is elliptically polarized, with a small vertically polarized component 

present. 

 

Small angular divergence: 

At relativistic speed, the electrons forced in the storage ring emit radiation which 

is sharply concentrated along the same direction of their motion. Angular 

divergence of the radiation in the direction perpendicular to the plane of the 

electron orbit is very small as figure 3.5 shows. The vertical divergence Δψ is of 

the order mc
2
/E which can be estimated to be only a fraction of a milliradian 

when the electron energy is in the order of GeV. 

 

Fig. 3.5 Angular distribution of synchrotron radiation [34]. 
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Based on those properties and advantages compared to conventional x-rays 

generated by x-ray tubes, synchrotron radiation has been put into wide use in a 

variety of disciplines such as surface science, material science, environmental 

science and biological science etc. 

3.2 Scattering of x-rays 

In classical description of the scattering event, the electric field of the incident 

x-ray exerts a force on the electronic charge, which then accelerates and radiates 

the scattered wave. Here in this section, the theory concerning x-ray scattering 

will be introduced. 

3.2.1 Electromagnetic field radiated from a charged distribution 

Maxwell’s equations can be compiled into [38]  

t




A
E  ,                     (3.6) 

AB  ,                        (3.7) 

where E is the electric field, B is the magnetic field, θ is the electric potential 

(scalar potential). A is the magnetic vector potential defined by equation (3.7). 

By solving the wave equations, it can be shown that 

                            BE c .                       (3.8) 

Based on these three equations, if we know A, then B and E can be deduced 

consequently. 

A is described by the equation 

r'
r'r

r'rr'J
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,           (3.9) 

where J(r’,t) is the current density of the source as shown in figure 3.6 [35]. The 

fields observed at point X at time t depend on the position of the electron at an 

earlier time t-|r-r’|/c. For detailed derivation, we can refer to reference [38], here 

only the final calculated electromagnetic field is given 

rpB
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where p is electric dipole moment as figure 3.7 [35] shows. 

 

 

Fig. 3.6 Coordinate system to calculate the electromagnetic field radiated from a 

charge distribution [35]. 

 

 

Fig. 3.7 An electromagnetic plane wave polarized with its electric field along the 

z axis forces an electric dipole at the origin to oscillate [35]. 
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3.2.2 Scattering from an electron 

Before intruding scattering from an electron, the concepts of flux should be 

given in advance [34]. Flux is to describe the strength of radiation. In the case of 

wave, flux density J is proportional to the square of the amplitude A of the 

oscillating wave field. With the amplitude expressed as a complex number, J is 

given by 

*2
AAAJ  ,                     (3.12) 

where A* is the complex conjugate of A. 

As shown in figure 3.8 [34], a free electron placed at position O is irradiated 

with a beam of x-rays of flux J0 propagating in X-direction. The detector is 

placed at point P in the XY plane at a large distance R from O. The scattering 

angle between OX and OP is 2θ. Electric field vector E0 is in YZ plane 

perpendicular to propagation direction X. 

 

Fig. 3.8 Scattering of an unpolarized x-ray by a single free electron at the origin 

[34]. 

 

If an incident beam is polarized in the Z direction, with the magnitude of its 

electric field vector E0z. According to (3.11), the free electron at O will oscillate 

in the Z direction and induce emission of an electromagnetic radiation of the 

same frequency propagating in all directions. At P 

Rmc

e
EE zz

1

4

1
2

2

0

0


 .                    (3.13) 
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If an incident beam is polarized in the Y direction, with the magnitude of its 

electric field vector E0y. At P  

Rmc

e
EE yy





2cos

4

1
2

2

0

0 .                (3.14) 

For an unpolarized x-ray beam with the magnitude of its electric field 

vector E0, the time averages of E
2

0y and E
2

0z obey 
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The flux of energy reaching a unit area per second at P is given by 
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where J0=E
2
0. 

This unit area at P contains a solid angle1/R
2
, therefore the energy scattered 

in OP direction per unit angle per second, which is the flux Je of the scattered 

x-ray is 
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(3.17) is called the Thomson formula for the scattering of x-rays by a single 

electron.  

Classical radius of the electron re is defined as 

2

2

04

1

mc

e
re


 .                   (3.18) 

re has a dimension of length with the value 2.818 ×10
-15

 m. 

 

The scattering length of an electron for unpolarized x-ray is given by (3.19) 

2/1
2

00 2

2cos1
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It should be noted that this form is valid only when the incident beam is 

unpolarized. 
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3.2.3 Scattering from an atom 

X-rays scattered from different electrons will interfere with each other, resulting 

in a constructive or destructive interference. The amplitude of x-rays scattered 

from N electrons at positions rj(j=1…N) is given by 







N

j

rqi

e
jebAqA

1

2

0)(


,                 (3.20) 

where A0 is the amplitude of incident x-ray, q is scattering vector which is the 

vector difference between the wave propagation vectors of the incident and the 

scattered beam, both of length 2π/λ, where λ is the wavelength of the scattered 

radiation in the medium. The magnitude of s can be expressed as 



 sin4
q .                      (3.21) 

Within an atom, the electrons can be expressed by electron density 

distribution n(r). In this way, the amplitude of x-ray scattered from an atom, 

measured in unit of A0be, is called the atomic scattering factor as 

drernqf rqi


 2)()( .                 (3.22) 

Using spherical polar coordinate system, (3.22) can be rewritten to 

dr
qr

qr
rnrqf
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 .             (3.23) 

3.2.4 Scattering from a whole sample 

Sample can be considered to be an assembly of different atoms. With this 

consideration, the position vector rj of an electron can be written as 

mkkj rrr , ,                    (3.24) 

where rk is the position of the center of the kth atom (k=1…Natom), and rk,m is the 

position of the electron (m=1…Z) within the kth atom from its center. 

Equation (3.19) becomes 
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where fk(q) is the atomic scattering factor of the kth atom. 
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Here a parameter called scattering length density distribution ρ(r) is 

introduced to substitute the electron density n(r) and the relation between these 

two parameters is given by 

)()( rr nbe  .                   (3.27) 

In general, the relationship among several most important physical 

parameters can be summarized as following figure 3.9. ρ(r) is scattering length 

density distribution in real space r, Γρ(r) is autocorrelation function of ρ(r), A(q) 

is scattering wave in reciprocal space q and I(q) is scattering intensity at q. 

 

Fig. 3.9 Relationship among ρ(r), Γρ(r), A(q) and I(q) [34]. 

 

By introducing ρ(r) and Γρ(r), the scattered intensity can be expressed as 
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I(q) can be expressed as 
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 .           (3.29) 

Let us denote the mean value of ρ(r) throughout the sample by <ρ> and the 

deviation of ρ(r) from its mean by 

  )()( rr .                (3.30) 

It can de derived that 
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V2)()(   rr ,             (3.31) 

where V is the volume of the sample. 

Finally, scattering intensity from a whole sample can be given as 

)()()( 2
qrrq

qr  VdeI i  
 .        (3.32) 

The second term of (3.32) cannot be experimentally observed because at 

q=0, the scattered signal is strongly influenced by the much stronger transmitted 

direct beam. 

(3.32) indicates that the strength and pattern of scattering from a sample is 

not determined by the absolute value of the scattering length density but the 

difference of the scattering length density in the sample. To increase the scattered 

intensity from a sample, we have to increase the contrast in the scattering length 

density among different atoms or regions within the sample. 

3.3 Small angle x-ray scattering (SAXS) 

Small angle x-ray scattering, usually abbreviated as SAXS, is an x-ray scattering 

method when scattering angle is small. 

3.3.1 Principles of SAXS 

A typical x-ray scattering can be generally schemed as figure 3.10. 2θ is defined 

as scattering angle. When 2θ<10°, it’s often defined as SAXS. The formula and 

principles introduced previously on x-ray scattering can be utilized in SAXS. 

 

 

Fig. 3.10 A typical x-ray scattering experimental setup. 

 

As previously introduced, the magnitude of q can be expressed as 



 sin4
q ,                      (3.33) 
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where θ is half the scattering angle as shown in figure 3.10. 

The reciprocity between real space and reciprocal space means that 

information on relatively large scales in real space is contained at relatively small 

q. On the contrary, small q corresponds to a larger structure in real space. SAXS 

is a fundamental method for determination of the microscale or nanoscale 

structures of particle systems. Besides, it can also detect the structures of ordered 

systems like lamellae and fractal materials. 

3.3.2 Application of SAXS 

SAXS can reveal information of shapes, averaged particle sizes, interparticle 

structure and surface area of the samples. It is widely utilized to study colloids, 

metals, polymers, plastics, foods and proteins. 

3.3.2.1 Shape of simple geometric particles 

The application of SAXS to investigate the shapes is based on the fact that 

scattering intensity from particles of simple geometric shape has instinctive 

characteristics which are determined by the shape of the particles. Here we 

briefly introduce the scattering intensity from sphere, thin rod and thin circular 

disk. For detailed derivation, we can refer to [34]. 

Scattering intensity from a sphere is given by 

6

2
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0
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  ,            (3.34) 

where v is the volume of the sphere, ρ0 is the uniform density within the radius R. 

Scattering intensity from
 
a thin rod is given by 
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  ,           (3.35) 

where L is the length of the rod. 

Si(x) is the sine integral function defined as 
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)( .                    (3.36) 

Scattering intensity from a thin circular disk is given by 
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vqI   ,              (3.37) 

where J1(x) is the first-order Bessel function. 
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We can plot the scattering intensity from spheres, thin disks and thin rods 

together as figure 3.11 shows [34]. 

 

 

Fig. 3.11 Plot of independent scattering intensities from spheres, thin disks and 

thin rods [34]. 

 

The asymptotic form of intensity curves at an appropriate range can be 

represented by 

qqI ~)( .                      (3.38) 

α is equal to 4 for spheres, 2 for thin disks and 1 for thin rods. 

3.3.2.2 Size of particles 

Determination of the average size of particles in the sample is based on Guinier 

law. That is no matter what shape the particle is, the scattering intensity follows a 

certain universal form, in the limit of small q, I(q) can be given by 

)
3

1
exp()( 2222

0 gRqvqI   ,               (3.39) 

where Rg is the radius of gyration of a particle of unknown shape and size. 

Special attention should be paid that Guinier law is valid provided that q is much 

smaller than 1/Rg and that the system is dilute and isotropic. 
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3.3.2.3 Interparticle structure 

For systems where interparticle interactions can not be neglected, I(q) has to take 

account of interaction among the particles. In this case, I(q) can be written as 

)()()( qSqFqI  ,                   (3.40) 

where F(q) is form factor determined by the shape and size of the particles such 

as equation (3.34) in the case of spherical particle. S(q) is structure factor which 

reveals the arrangement of particles or the interparticle structures of the particles. 

3.3.2.4 Surface area 

This application is based on Porod law. For the ideal two-phase system, as q→∞, 

I(q) can be given by 

4

2)(2
)(

q

S
qI

 
 ,                  (3.41) 

where S is total area of the boundaries between the two phases in the scattering 

volume. 

3.4 Microbeam wide angle x-ray scattering (Microbeam WAXS) 

Wide angle x-ray scattering (WAXS) is a method to investigate the crystalline 

structure of materials by analyzing Bragg Peaks scattered to wide angles. WAXS 

is a technique similar to SAXS but the diffraction maxima at larger angles are 

observed. 

Microbeam WAXS is a specific experimental method of WAXS with the 

incident beam size constricted to several microns. This can be achieved 

nowadays thanks to the development of high brilliant x-ray sources and focusing 

optics. Microbeam WAXS is to reveal the information of local areas and by 

scanning the sample, the spatial inhomogeneity can be studied. By combining 

microbeam WAXS and microbeam SAXS, polymer crystallization, spatial 

inhomogeneity analyses, stress transfer under external field and the microphase 

separated structure analyses in block copolymer systems can be investigated 

[39]. 
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3.5 X-ray photon correlation spectroscopy (XPCS) 

X-ray photon correlation spectroscopy (XPCS) is the x-ray analog of dynamic 

light scattering (DLS) and is a relatively new technique which uses coherent 

x-ray beams to study dynamic phenomena. XPCS is a useful complementary 

method to many other methods especially in detecting the low frequency 

dynamics as figure 3.12 shows [40]. XPCS can study the dynamics of samples 

on time scales from seconds down to microseconds and length scales from 

microns to nanometers. 

 

Fig. 3.12 Frequency-scattering vector space covered by XPCS and some other 

complementary techniques [40]. 

3.5.1 Principles of XPCS 

Form the background of x-ray scattering as introduced in the previous sections, 

we know that scattering intensity is determined by the electron density 

distribution n(r) or the scattering length density distribution ρ(r) of the sample. 

In the case the sample is composed of particles, ρ(r) will fluctuate as the particles 

fluctuate, resulting in the fluctuation of scattering intensity. On the contrary, by 

analyzing the fluctuation of scattering intensity, we can reveal some information 
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of the fluctuation of the particles, or the dynamics of the particles. This is the 

general principle of XPCS. 

Experimentally, if coherent light is scattered from a disordered system, it 

generates a random scattering or “speckle” pattern. If the spatial arrangement of 

the disordered system changes with time, the corresponding speckle pattern will 

also change and the intensity fluctuation of the speckles can provide information 

on the underlying dynamics. XPCS probes the dynamic properties of matter by 

analyzing the temporal correlations among photons scattered by the studied 

material. 

3.5.1.1 Normalized intensity autocorrelation function 

The quantity measured in XPCS measurements is the normalized intensity 

autocorrelation function, defined as
 
[40] 
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where  )',()',( ttItI qq  is the intensity autocorrelation function, expressed 

as 
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where q is the scattering vector, )',( tI q is the intensity at q at time t’. 

 )',( tI q  is the expected value of )',( tI q during t0≦t’≦t0+T, expressed 

as 
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 qq .              (3.44) 

In (3.43), when t=0,  )',()',( ttItI qq reaches the maximum as 

 2)',()',()',( tIttItI qqq .             (3.45) 

When t is large enough, there’s no correlation between )',( tI q  

and )',( ttI q  

2)',()',()',()',()',(  tIttItIttItI qqqqq .  (3.46) 

During the XPCS data analysis, a discrete form for equation (3.43), (3.44) 

are introduced as 
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where t=n×Δt, t’=j×Δt, and Δt is the time interval between each successive 

frames. 

3.5.1.2 Time dependence of normalized intensity autocorrelation function 

Single exponential decay: 

In many applications, the autocorrelation function decays from 

 2)',( tI q  to 
2)',(  tI q  like a single exponential, in this case, 

 )',()',( ttItI qq  can be fitted as 
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where η is called relaxation time. 

For simplicity, the last term of (3.49) can be written as 
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where a is an amplitude. 

Some typical modes of relaxation can be briefly summarized here [40]. 

Gaussian: 
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It is commonly used for the study of molecules in a perfect gas, or any particles 

undergoing perfect-gas-like motion with an equilibrium distribution of velocities. 

Sum of exponentials: 
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This form often occurs when there is more than one independent relaxation 

process contributing to the correlation function. 

Oscillating decay: 
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This decay is often measured in scattering from systems when external field 

imposes a constant velocity on a particle undergoing thermal motion. 

Stretched exponential: 
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where the exponent α is smaller than 1. This behavior means that the relaxation 

process is stretched and a longer relaxation time is expected, indicating a slower 

dynamics compared to a single exponential behavior. 

Compressed exponential: 


























t
atC exp)( ,                 (3.55) 

where the exponent α is larger than 1. This behavior means that the relaxation 

process is compressed and a shorter relaxation time is expected, indicating a 

faster dynamics compared to a single exponential behavior. 

The expression for stretched and compressed exponential is very similar 

except that the range of exponent α is different. The last two types of correlation 

function are often used to fit scattering on soft matter systems. The detailed data 

analysis process can be found from reference [41]. 

3.5.1.3 Siegert relation 

Similar to normalized intensity autocorrelation function, the normalized electric 

field autocorrelation function is defined as [40] 
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g1(q,t) is also called normalized intermediate scattering function. 

Siegert relation is to describe the relation between g1(q,t) and g2(q,t), which 

is given by 

2

12 )],([1),( tqgtqg  .              (3.57) 

Siegert relation reveals that the fluctuation of particles will generate the 

fluctuation of electric field scattered by particles, which will subsequently cause 

the fluctuation of scattering intensity. 
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Generally the Siegert relation is given by 

2

12 )],([1),( tqgtqg  ,                (3.58) 

where β is the coherence factor, depending on the beam and instrumentation 

optics. Under fully coherent condition, β=1, while under the fully incoherent 

condition, β=0. 

Here the derivation of Siegert relation will be briefly introduced [75]. XPCS 

deals with normalized autocorrelation functions, so here we omit pre-factors of 

electric field and write    
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Electric field autocorrelation function can be written as 
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g1(q,t) can be written as  
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Intensity autocorrelation function can be written as  
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g2(q,t) can be written as 
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3.5.2 Experimental requirement 

To perform XPCS experiments, coherent or partially coherent x-rays are 

necessary. As equation (3.58) shows, under fully incoherent condition, g2(q,t) 

will be constantly equal to 1, thus no dynamics can be approached. 

To interpret coherence, the longitudinal coherence length and transverse 

coherence length are referred to. Derivation of longitudinal and transverse 

coherence length can be derived from figure 3.13 and 3.14 [38]. 

 

 

Fig. 3.13 Derivation of longitudinal coherence length LL [38]. 
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Fig. 3.14 Derivation of transverse coherence length LT [38]. 

 

In figure 3.12, two waves A with wavelength λ and B with wavelength λ-Δλ 

are propagating in exactly the same direction. They are exactly in phase at point 

P. Longitudinal coherence length LL is to indicate the length from P out of which 

the two waves will be out of phase. The two waves will be out of phase at LL and 

will be exactly in phase again at 2LL. Let the distance be N wavelengths λ, or 

equivalently (N+1)(λ-Δλ) 









)1(

))(1(2

NN

NNLL
.             (3.63) 

We can obtain 

  NN )1( .               (3.64) 

That is  






N .                      (3.65) 

Substitute (3.65) to (3.63), the longitudinal coherence length can be derived 

as 








2

2

1
LL .                     (3.66) 

To deduce transverse coherence length, we can refer to figure 3.13. Here 

two waves A and B have the same wavelength but with slightly angular 

divergence Δθ in the propagating direction. Their wavefronts coincide at P and 

the transverse coherence length LT is the length from P along the wavefront of A 
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before it is out of phase with B. Similar to the process of deriving longitudinal 

coherence length, the two waves will be in phase again at 2LT. From figure 3.13, 

it can be seen that 

 TL2 .                    (3.67) 

Suppose the angular divergence is generated because the two waves 

originate from two different points on the source with a distance D. At an 

observation distance R, we can see that transverse coherence length can be 

deduced as 
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 .            (3.68) 

To perform XPCS experiments successfully, two requirements should be 

satisfied. One is that the beam size or the lateral size of the illuminated sample 

volume should be less than LT. The other one is that the maximum path-length 

difference (PLD) for x-rays in the sample should be less than LL. 

Path-length difference mainly results from beam size d and sample thickness 

W. As figure 3.15 shows, for beam size d, the maximum PLD is 

2sindLd  ,                    (3.69) 

where 2θ is scattering angle. 

For sample with thickness W, as figure 3.16 shows, the maximum PLD in 

this case is 





2sin2
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.                 (3.70) 

The maximum PLD can be approximately given by 

 2sin22sin Wd

LLL WdMAX




.            (3.71) 

As mentioned previously, ΔLMAX should be less than LL at XPCS 

experiments. 
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Fig. 3.15 Path-length difference from beam size d. 

 

 

Fig. 3.16 Path-length difference from sample width W. 

 

3.5.3 Application of XPCS 

The typical and simple application of XPCS is to investigate the dynamics of 

monodisperse particles undergoing Brownian motion [42]. In the absence of 

interactions among the particles, the free particle diffusion coefficient D0 of a 

particle with radius R is given by Stoke-Einstein relation 

R

Tk
D B

6
0  ,                     (3.72) 

where η is the shear viscosity of surrounding medium. 

g1(q,t) in this example can be reduced to 
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)exp(),( 2

01 tqDtqg  .               (3.73) 

By substituting (3.73) to Siegert relation (3.62), g2(q,t) is given by 

)2exp(1),( 2

02 tqDtqg   .            (3.74) 

By fitting the experimental data with (3.74), we can obtain D0. For a specific 

surrounding medium with known η, we can calculate the radius of the particles 

undergoing Brownian motion. 

Here (3.73) will be derived in detail [75]. As previously derived,  

 )](exp[)]}()0([exp{),(1 tititqg rqrrq ,  (3.75) 

where Δr(t) is the displacement of the particle at time t defined as 

)0()()( rrr  tt .                 (3.76) 

Δr(t) has a Gaussian probability distribution as 
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where <Δr
2
(t)> is the particle’s mean-square displacement at time t given by 
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2 6)(  .                 (3.78) 

Finally, it can be derived that  
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Besides this simple example, XPCS is also utilized to study colloid 

suspensions [43-45], slow dynamics in polymer system [46, 47], liquid surface 

dynamics [48-50] and slow dynamics in hard condensed matter systems [51-53]. 
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4 Structure and dynamics of silica nanoparticles dispersed in 

5CB 

Differential scanning calorimetry (DSC), small angle x-ray scattering (SAXS), 

microbeam wide angle x-ray scattering (microbeam WAXS) and x-ray photon 

correlation spectroscopy (XPCS) have been performed to investigate the nematic 

liquid crystal colloid of 5CB dispersed with silica nanoparticles. In this chapter, 

experimental results are presented. Based on the discussion of these experimental 

results, a model to interpret these results is given at the end of this chapter. 

4.1 Sample fabrication 

Silica nanoparticles (Nippon Shokubai, Japan) were dispersed into 5CB (Wako, 

Japan) with the surfactant Tween 60 (Sigma-Aldrich, USA). Samples with 

different volume fraction of silica nanoparticles θ were fabricated, in order to 

investigate the dependence of structural and dynamical properties of these 

samples on θ. 

Firstly, silica nanoparticles (d≈100 nm) were coated with surfactant (Tween 

60). The procedures are shown below: 

(1) Mix Tween 60 (~3.5 wt %) with water using a plastic container, heat at 80 °C 

to melt and dissolve T60, vibrate for 5 minutes with supersonic. 

(2) Put silica nanoparticles into (1) and vibrate for 5 minutes with supersonic. 

(3) Separate the particles from (2) with centrifuge. 

(4) Wash the particles with pure water for three times. 

(5) Evaporate the particles using heat plate at 80 °C for one hour.  

(6) Collect the dried particles. 

 

Secondly, the coated silica nanoparticles were dispersed into 5CB: 

(1) Calculate the weight of particles and 5CB needed. 

(2) Put the particles into a plastic container. 

(3) Put 5CB into (2). 

(4) Disperse at 45 °C for one hour with supersonic. 

 

Thirdly, the nematic colloid was injected into the cell: 

(1) Cover the rings (diameter 4 mm, thickness 1 mm) with mylar spacer on both 

sides. 
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(2) Inject the nematic colloid into the cells with injector. 

4.2 Differential scanning calorimetry 

Differential scanning calorimetry (DSC) is usually used to detect the phase 

transition of samples. Here DSC has been performed to investigate the phase 

transition temperatures of 5CB containing silica nanoparticles with different 

volume fraction. 

4.2.1 Scanning parameters 

DSC measurements were performed using EXSTAR 6000 (Seiko Instruments 

Inc, Japan). Nematic to isotropic transition temperature for pure 5CB is well 

known to be around 35 °C while its nematic to crystallization temperature is 

around 18 °C [54, 55]. The samples with silica nanoparticle volume fraction θ 

equal to 1.0 %, 5.0 % and 10.0 % were initially prepared at room temperature 

and then decreased to 10 °C, at which the samples were kept for two minutes. 

Then the temperature was increased to 45 °C at a rate of 5 °C/min. Samples were 

kept at 45 °C for one minute and then decreased to 10 °C at a rate of 5 °C/min. 

The scanning parameters are briefly illustrated by table 4.1. 

 

Table 4.1 Scanning parameters for DSC measurements 

Parameter 
Step Step Step 

1 2 3 

Initial temperature / °C --- 10 45 

Final temperature / °C 10 45 10 

Rate / °C/min 5 5 5 

Time / min 2 1 2 

 

4.2.2 Nematic to isotropic transition temperature 

Under the scanning parameters set above, DSC experiments of samples with θ 

equal to 1.0 %, 5.0 % and 10.0 % were performed. During the heating process, 

the nematic to isotropic transition temperatures were shown by figure 4.1. It can 

be obviously seen that the nematic to isotropic transition temperature decreases 

with increasing θ. 
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Fig. 4.1 Nematic to isotropic transition temperature during the heating process 

for samples with θ equal to 1.0 % (red line), 5.0 % (blue line) and 10.0 % (black 

line). 

 

To interpret the dependence of nematic to isotropic transition temperature on 

volume fraction of silica nanoparticles quantitatively, we can refer to figure 4.2, 

which shows the dependence of nematic to isotropic transition temperature on θ. 

The black line is a linear fit of experimental data and the fitted gradient was 

estimated to be -0.12. The linear dependence is consistent with some previous 

investigations [14, 30, 33]. The shift in the transition temperature Tc is due to the 

elastic energy around the particles, given by 

)1(~)(
2

2

0 



R

TTc  ,                  (4.1) 

where T0 is the transition temperature of pure nematic liquid crystal, R is the 

radius of the particles, and ξ is the nematic correlation length depending on 

anchoring strength and nematic interaction of liquid crystal [33]. 
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Fig. 4.2 Dependence of nematic to isotropic transition temperature on volume 

fraction of silica nanoparticles (green dots) and linear fit (black line). 

 

 

4.3 Small angle x-ray scattering 

Small angle x-ray scattering (SAXS) was performed to study the structures of 

silica nanoparticles dispersed in 5CB under the surfactant Tween 60. As 

introduced in chapter 3, SAXS can reveal average interparticle distance among 

the nanoparticles.  

4.3.1 Experimental set up 

SAXS was performed on beam line BL 03XU at SPring-8 (Hyogo, Japan). The 

x-ray energy was 8.3 keV, the camera length was 3 m and the detector was 

PILATUS (487×195 pixels, Rigaku) with a pixel size 0.172 mm. The schematic 

experimental setup was shown in figure 4.3. Experiments were performed at 

room temperature which means the 5CB should be at nematic phase. 
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Fig. 4.3 Schematic experimental set up for SAXS at BL 03XU, SPring-8. 

 

4.3.2 Structure factor and interparticle distance 

Figure 4.4 shows the experimental scattering intensity I (q) (red line), 

theoretically calculated form factor F (q) (blue line) and calculated structure 

factor S (q) (black line). Form factor was theoretically calculated according to 

the scattering intensity from a single spherical particle [34] 
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 ,              (4.2) 

where v is the volume and R is the radius of the spherical particle. In this 

experiment, R was given to be 50 nm. 

The scattering intensity I(q) of these samples can be written as  

)()()( qSqFqI  ,                     (4.3) 

where F(q) is form factor determined by the shape and size of the particles such 

as equation (4.2) in the case of spherical particle. S(q) is structure factor which 

reveals the interparticle structure of the particles. 

From (4.3), the structure factor S(q) can be written as 

)(/)()( qFqIqS  .                    (4.4) 

According to (4.4), by simply dividing experimental scattering intensity I(q) 

with theoretically calculated form factor F(q) with R equal to 50 nm, we can 

easily obtain the structure factor F(q) as the black line shows in figure 4.4. 
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The value of scattering intensity is different for samples with θ equal to 

5.0 % and 10.0 %. However, what we focus on is not the value of scattering 

intensity but the peaks on structure factor profile. We found that the samples with 

θ equal to 5.0 % and 10.0 % showed a peak at the same q on the structure factor 

profile at q=0.063 nm
-1

. The interparticle distance d can be simply calculated by 

the relation d=2π/q, and was estimated to be 100.3 nm. The interparticle distance 

100.3 nm is in the same order as that of the diameter of silica nanoparticles, 

indicating that the particles contact with each other. 

At low volume fractions when θ equal to 0.3 % and 0.5 %, dependence of 

S(q) on q is shown in figure 4.5. Both of these two samples show the same peak 

corresponding to an interparticle distance 100.3 nm. This illustrates that even at 

low θ, silica nanoparticles are forced to contact with each other. 

In the case of very low concentration, when the sample is very thin to be 

around several tens of microns, because of the short range repulsive force among 

the particles, there is some space between the adjacent particles [5, 21]. At high 

volume fraction or the sample is much thicker, the interaction between 5CB 

molecules and silica nanoparticles is much stronger than the repulsive interaction 

among silica nanoparticles, thus the silica nanoparticles are constricted to contact 

with each other. 
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Fig. 4.4 Scattering profile of SAXS of sample with θ equal to 5.0 %. Red line: 

experiment scattering intensity; Blue line: theoretical form factor; Black line: 

calculated structure factor. 

 

 

Fig. 4.5 Dependence of F(q) on q for θ equal to 0.3 % (red line) and 0.5 % (blue 

line). The vertical bar is to clarify the peaks. 
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4.4 Microbeam wide angle x-ray scattering 

Microbeam wide angle x-ray scattering (microbeam WAXS) can investigate the 

structure of 5CB molecules. By scanning the samples, the orientational change of 

5CB molecules can be studied. 

4.4.1 Experimental set up 

Microbeam scattering was performed at BL-4A, Photon Factory (Tsukuba, 

Japan). The x-ray energy was 11 keV, the camera length was 12 cm and the 

detector was CCD (Hamamatsu Photonics Ltd., C4880-50-26A) coupled with an 

image intensifier (Hamamatsu Photonics Ltd.) [56]. The beam size was focused 

by Kirkpatrick-Baez optics [57] to 5 μm×5 μm, which enabled us to measure 

local structure of 5CB molecules. By scanning samples with this narrow x-ray 

beam, we studied the structure change of 5CB molecules as the irradiating spot 

changed. The experiments were performed both at room temperature and 45 °C. 

Figure 4.6 shows the schematic experimental set up for microbeam WAXS. 

 

Fig. 4.6 Schematic experimental set up for microbeam WAXS at BL-4A, Photon 

Factory. 

4.4.2 Orientation change of 5CB molecules 

By scanning the samples with the narrow beam size 5 μm×5 μm, the scattering 

patterns from different irradiated areas were obtained. By analyzing the 

scattering patterns, the orientation change of 5CB molecules could be studied. 

Figure 4.7 shows the scattering pattern for pure 5CB at room temperature. It 

can be clearly seen that 5CB is anisotropic, even though it had not been 

pretreated either by rubbing or by adding an electric or magnetic field. Figure 4.8 
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shows the scattering patterns for pure 5CB at room temperature scanned at 

different areas, from which we can see that the scattering patterns are almost 

identical within a scanning area around 1 mm×1 mm. This means 5CB is well 

arranged within a continuous space no less than 1 mm×1 mm, indicating that 

5CB is an ideal candidate which offers a continuous nematic matrix to study the 

nematic colloids at room temperature. We increased the temperature to 45 °C, 

and just as expected, the scattering pattern of pure 5CB becomes isotropic as 

figure 4.9 shows, indicating that 5CB turns to isotropic phase at 45 °C, which 

exceeds its nematic to isotropic transition temperature. 

 

Fig. 4.7 Scattering pattern of pure 5CB at room temperature. Shadow in the 

center is resulted from beam stop while the quadrate shadow at the lower half is 

resulted from the stage holding a microscope. 

 

 

Fig. 4.8 Scattering pattern of pure 5CB at room temperature scanned at four 

different areas within a scanning area 1 mm×1 mm. 
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Fig. 4.9 Scattering pattern of pure 5CB at 45 °C. 

 

After being dispersed with silica nanoparticles, the scattering pattern of 5CB 

varies from that taken from pure 5CB. Figure 4.10 shows the scattering pattern 

of 5CB containing silica nanoparticles with a volume fraction θ equal to 0.3 % at 

room temperature. Four scattering patterns taken at four different areas within a 

scanning area 1 mm×1 mm are shown here by figure 4.10. It can be clearly seen 

that 5CB stays in anisotropic phase at this condition. However, the scattering 

patterns show different orientation, meaning that 5CB molecules undergo some 

orientational transition under the effect of dispersed silica nanoparticles. When 

temperature was increased to 45 °C, the scattering pattern becomes isotropic as 

figure 4.11 shows, which indicates that 5CB turns into isotropic phase just 

similar to that of pure 5CB. 

The scattering patterns of sample with θ equal to 0.5 % measured within the 

same scanning area at room temperature are shown by figure 4.12. The scattering 

patterns in this case are similar to that of sample with θ equal to 0.3 %. 

Nevertheless, within each scanning area 5 μm×5 μm, 5CB is anisotropic at low 

volume fraction of silica nanoparticles, which enables us to perform XPCS 

experiments as to be introduced later, for the beam size of XPCS experiments is 

also 5 μm. 
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Fig. 4.10 Scattering pattern of 5CB containing silica nanoparticles with θ equal 

to 0.3 % at room temperature scanned at four different areas within a scanning 

area 1 mm×1 mm. 

 

Fig. 4.11 Scattering pattern of 5CB containing silica nanoparticles with θ equal 

to 0.3 % at 45 °C. 
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Fig. 4.12 Scattering pattern of 5CB containing silica nanoparticles with θ equal 

to 0.5 % at room temperature scanned at four different areas within a scanning 

area 1 mm×1 mm. 

 

For 5CB containing 5.0 % silica nanoparticles, scattering pattern is 

remarkably changed as figure 4.13 shows. The scattering pattern becomes 

isotropic even at room temperature. We scanned the sample and found this 

isotropic pattern exists wholly within the scanning area 1 mm×1 mm as figure 

4.14 shows. This transition from anisotropic to isotropic is under the effect of 

anchoring of 5CB molecules to the surface of silica nanoparticles. 

 

 

Fig. 4.13 Scattering pattern of 5CB containing silica nanoparticles with θ equal 

to 5.0 % at room temperature. 
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Fig. 4.14 Scattering pattern of 5CB containing silica nanoparticles with θ equal 

to 5.0 % at room temperature scanned at four different areas within a scanning 

area 1 mm×1 mm. 

 

To quantitatively analyze the scattering patterns, two directions were 

defined as illustrated by figure 4.15. One is q along the radial direction and the 

other one is ω along the azimuthal direction. 

 

 

Fig. 4.15 Schematic representation of two directions: q along the radial direction 

and ω along the azimuthal direction. 
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By analyzing the full width of half maximum (FWHM) of intensity along ω, 

the orientation change of 5CB molecules can be studied. The data analysis 

process can be generally summarized as: 

(1) Calculate the average intensity of each azimuthal angle (in the unit of 

degree); 

(2) Draw the profile of the dependence of (1) on azimuthal angle; 

(3) Measure FWHM of (2). 

 

The FWHM of scattering intensity I(ω) along ω is shown by figure 4.17, 

from which it can be seen that FWHM increases with increasing volume fraction 

of silica nanoparticles. 

Another method to evaluate the orientation change of 5CB molecules is also 

introduced here, which is called Hermans orientation parameter. Hermans 

orientation parameter f is to estimate the degree of orientation of molecules and it 

can be calculated following the procedures written here. The direction along 

which scattering intensity is the strongest is defined as the reference axis, and the 

angle θ represents the angular divergence of a direction compared to the 

reference axis as figure 4.16 shows [34]. 
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3 2  f ,                  (4.5) 

where the averaging of cos
2
 θ is given by 
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22 sin)(coscos dt ,             (4.6) 

where t(θ) is pole distribution defined as 
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where I(θ) is the scattering intensity at angle θ. 

By this definition, f equals to -1/2, 0 or 1 when the orientation is 

perpendicular to reference axis, random, or parallel to reference axis, 

respectively. 

The calculated Hermans orientation parameter of samples with different 

concentration of silica nanoparticle is shown in figure 4.17. It can be clearly seen 

that Hermans orientation parameter decreases with increasing volume fraction of 

silica nanoparticle. This result coincides with the FWHM of scattering intensity 

I(ω) along ω, and both indicate that 5CB molecules become less orientated with 

increasing θ. 
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The fact that 5CB molecules become less oriented with increasing θ 

indicates an increasing influence of silica nanoparticles on 5CB. More interfaces 

are generated with increasing θ. The orientation change is due to the anchoring 

of 5CB molecules to the interfaces between silica nanoparticles and 5CB 

molecules.  

 

 

Fig. 4.16 Schematic illustration of calculating Hermans orientation parameter. 

 

 

Fig. 4.17 Dependence of FWHM of scattering intensity I(ω) along ω and 

Hermans orientation parameter f on volume fraction of silica nanoparticles θ. 
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4.4.3 X-ray peak broadening 

As figure 4.15 shows, we also defined a radial direction q. FWHM of scattering 

intensity I(q) along q was calculated following the process written here: 

(1) Calculate the average intensity of each scattering vector q (in the unit of Å
-1

); 

(2) Draw the profile of the dependence of (1) on scattering vector q; 

(3) Measure FWHM of (2). 

 

The calculated FWHM of I(q) along q was illustrated by figure 4.18, from 

which it can be seen that FWHM increases with increasing volume fraction of 

silica nanoparticles θ. This phenomenon is commonly called x-ray peak 

broadening. Two effects are generally considered to cause x-ray peak broadening: 

one is grain refinement, the other one is the existence of microstress. These two 

effects can become stronger with increasing θ, resulting in the increase of 

FWHM of I(q) along q. 

The microstress also has an effect on the dynamics of silica nanoparticles. 

We can see later during XPCS data analysis that the existed microstress between 

5CB molecules and silica nanoparticles can accelerate the silica nanoparticles. 

 

 

Fig. 4.18 Dependence of FWHM of scattering intensity I(q) along q on volume 

fraction of silica nanoparticles θ. 
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4.5 X-ray photon correlation spectroscopy 

X-ray photon correlation spectroscopy (XPCS) can investigate the dynamics of 

silica nanoparticles dispersed in 5CB by analyzing the normalize intensity 

autocorrelation function as will be introduced in this section. 

4.5.1 Experimental set up 

XPCS was performed on BL 40XU at SPring-8 (Hyogo, Japan). The x-ray 

energy was 10.5 keV, the diameter of beam was 5 μm, the camera length was 3 m 

and the detector was CCD (Hamamatsu Photonics Ltd., C4880-80) coupled with 

an image intensifier (Hamamatsu Photonics Ltd.) [56]. The schematic 

representation of experimental set up for XPCS is shown by figure 4.19. It has 

been proven that this set up can generate partially coherent x-rays and satisfies 

requirements to perform XPCS experiments [58]. The x-ray beam comes from 

helical undulator [59] and the x-rays are quasi-monochromatic even without 

monochromator. A high flux can be obtained from this beam line even after 

inserting a pinhole with a diameter of 5 μm. A second pinhole with a diameter of 

35 μm was installed to remove the parasitic scattering. The experiments were 

performed at 29 °C. 

 

Fig. 4.19 Schematic experimental set up for XPCS on BL 40XU at SPring-8. 

 

4.5.2 Fluctuation of scattering intensity 

Actually, what we can observe directly from XPCS experiments is a so-called 

speckle pattern as figure 4.20 shows. Here the sample is 5CB dispersed with 

silica nanoparticles with θ equal to 0.5 %. Under the coherent or partially 

coherent light, this speckle reflects spatial disorder or inhomogeneity of the 

sample being irradiated [60, 61]. As we introduced in the previous section on 
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XPCS, the speckle pattern changes simultaneously as a consequence of the 

spatial arrangement change of the disordered sample. 

 

 

Fig. 4.20 Speckle pattern obtained from XPCS experiments. 

 

Figure 4.21 shows the intensity fluctuation in the time sequence for the 

sample with θ equal to 0.3 %. The ordinate axis is around 120 adjacent pixels 

which locate 80 pixels from the pixel of direct beam on CCD camera, while the 

abscissa axis is frames taken consecutively with a short time interval in the order 

of several tens of milliseconds. We can clearly see that the scattering intensity 

fluctuates as time goes by. 

Figure 4.22 and figure 4.23 shows the intensity fluctuation in the time 

sequence for the sample with θ equal to 0.5 % and 5.0 %, respectively. In these 

two cases, intensity fluctuation was also successfully observed, illustrating the 

change of spatial arrangement of disordered sample. 

From figure 4.21 and figure 4.22, the fluctuation rate seems to be changing 

during the experiments, which may be resulted from inhomogeneity of silica 

nanoparticles within the samples. 
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Fig. 4.21 Fluctuation of scattering intensity for sample with θ equal to 0.3 % 

measured at 29 °C. 

 

 

Fig. 4.22 Fluctuation of scattering intensity for sample with θ equal to 0.5 % 

measured at 29 °C. 
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Fig. 4.23 Fluctuation of scattering intensity for sample with θ equal to 5.0 % 

measured at 29 °C. 

 

By closing watching figure 4.21 to figure 4.23, we can see the fluctuation 

pattern seems to be slower with increasing concentration of silica nanoparticles. 

To verify this, we specify the scattering intensity fluctuation at the same pixel, 

which locates at 50 of the ordinate axis. The result is shown in figure 4.24. Note 

that here the abscissa axis has been changed to time to more precisely compare 

the intensity fluctuation. It can be obviously seen that the intensity fluctuation of 

5.0 % sample is slower than samples with θ equal to 0.3 % and 0.5 %. 

 

Fig. 4.24 Intensity fluctuation at the same pixel for samples with θ equal to 

0.3 % (red line), 0.5 % (blue line) and 5.0 % (brown line). 
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4.5.3 Fitting of normalized intensity autocorrelation function 

Here we will introduce the data analysis of XPCS. As we mentioned previously, 

the most important task in analyzing XPCS data is to calculate the normalized 

intensity autocorrelation function g2(q,t) and fit the function with appropriate 

equations. Theoretically, the data analysis process was given in chapter 3.5. 

Experimentally, we follow the process as introduced by D. Lumma et al [62]. 

Generally speaking, four steps are necessary as follows: 

 

(1) Subtraction of dark patterns 

Dark patterns are the patterns taken by CCD camera with x-rays shut off. To 

eliminate the effect of dark noise, the sequence of dark patterns is averaged 

across frames, and is subtracted on a pixel-to-pixel basis from every scattering 

pattern required. 

 

(2) Correction of incident intensity fluctuation 

Intensity in each pixel is divided by the scattering integrated over the entire 

CCD area to make a correction of incident intensity fluctuation. 

 

(3) Calculation of intensity autocorrelation function for each pixel 

In this step, the normalized intensity autocorrelation function g2(q,t) is 

calculated based on each pixel.  

 

(4) Normalization for each scattering vector  

For the pixels locating at the same length from the direct beam, the magnitudes 

of scattering vector are identical. g2(q,t) is averaged among them to obtain the 

intensity for the same scalar scattering vector. 

 

g2(q,t) can commonly be fitted by an exponential equation as 



























t
tqg 2exp1),(2 ,                 (4.9) 

where α is exponent, η is relaxation time and β is contrast. 

The calculated g2(q,t) is represented by colored marks for sample with θ 

equal to 0.3 % by figure 4.25. Different marks represent different magnitude of 

scattering vector. The yellow lines are the fitting results by equation (4.9). We 

can see (4.9) fits experimental g2(q,t) pretty well and gives us important 

parameters describing the sample investigated. 
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The same analysis was also done to sample with θ equal to 0.5 % and 5.0 % 

as illustrated by figure 4.26 and figure 4.27, respectively. In all these cases, (4.9) 

can fit the experimental data well. By observing the decay patterns, it can be 

primarily seen that the sample decays slower with increasing volume fraction of 

silica nanoparticles. 

 

 

Fig. 4.25 Normalized intensity autocorrelation function g2(q,t) for sample with θ 

equal to 0.3 % measured at 29 °C. Different marks represent g2(q,t) for different 

scattering vectors and the yellow lines are the fitted result. 

 

 

Fig. 4.26 Normalized intensity autocorrelation function g2(q,t) for sample with θ 

equal to 0.5 % measured at 29 °C. 
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Fig. 4.27 Normalized intensity autocorrelation function g2(q,t) for sample with θ 

equal to 5.0 % measured at 29 °C. 

Note that there’s slight deviation of fitting result from experimental data for 

sample with θ equal to 0.3 % as figure 4.25 shows. We think that gravity is the 

most possible cause for this deviation. 

4.5.4 Discussion of relaxation time and component 

By fitting the experimental data with the exponential equation as introduced, the 

relaxation time η and component α can be easily derived. Figure 4.28 shows 

dependence of relation time η on scattering vector q for samples with θ equal to 

0.3 %, 0.5 % and 5.0 %, respectively. It can be obviously seen that η increases 

with increasing volume fraction. All the samples have a relaxation time in the 

order of several seconds to several tens of seconds. 

For comparison, some systems with particles dispersed in isotropic matrices 

are presented here. Latex was dispersed into water [63] with a volume fraction 

10 % and the relaxation time of this sample is around 1 s. PMMA was dispersed 

into cis-decalin [64] with a volume fraction 16 % and the relaxation time of this 

sample is around 0.01 s. Silica were dispersed into propylene glycol [65] with 

the volume fraction less than 2 % and the relaxation time of this sample is 

around 0.1 s. In these three experiments, the relaxation times are no more than 1 

s. From comparison, we can see the particles dispersed in a nematic liquid crystal 

have a much longer relaxation time than those in isotropic matrices, indicating 

the influence of anisotropy on dynamics of dispersed nanoparticles. 
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Figure 4.29 shows the dependence of exponent α on scattering vector for 

samples with θ equal to 0.3 %, 0.5 % and 5.0 %, respectively. For 0.3 % sample, 

α is less than unity one, indicating a stretched exponential behavior. For 0.5 % 

sample, α is around one, similar to a diffusive behavior as the compared systems 

mentioned above [63-65]. For 5.0 % sample, α is larger than one, indicating a 

compressed exponential behavior.  

The stretched exponential behavior means that decay process is slower than 

Brownian motion. This phenomenon is widely observed in gels [66], glass 

forming materials [67], polymers [68] and colloidal systems [69]. This type of 

decay indicates a constrained motion, resulted from formation of clusters or 

branched structures, which slows down decay process and is considered to be the 

possible cause of stretched exponential behavior. 

The compressed exponential behavior means that decay process is faster 

than Brownian motion. This phenomenon has been observed in gels [70, 71], 

polycrystals [72], clays [73] and glassy polymer melts [74]. This type of 

relaxation can be associated with internal stress, which creates a distribution of 

strain velocities. Particles are accelerated to decay faster than Brownian motion 

under this internal stress. 

Attention should be paid that the results here are the average values, because 

the scattering intensity has been azimuthally averaged. 

 

Fig. 4.28 Dependence of relaxation time η on scattering vector for samples with θ 

equal to 0.3 % (red line), 0.5 % (green line) and 5.0 % (blue line). 
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Fig. 4.29 Dependence of exponent α on scattering vector for samples with θ 

equal to 0.3 % (red line), 0.5 % (green line) and 5.0 % (blue line). 

 

Microbeam WAXS shows anisotropic scattering patterns for 0.3 % and 

0.5 % samples. From chapter 2 we know that nematic liquid crystal has 

anisotropic viscosities along different directions compared to director field. Here 

the normalized intensity autocorrelation function g2(q,t) was calculated along 

different directions as figure 4.30 illustrates. g2(q,t) was calculated at confined 

angular ranges 175-185 °, 195-205 °, 220-230 °, 245-255 ° and 265-275°. If the 

silica nanoparticles were homogeneously dispersed in 5CB, we can expect some 

tendency of relaxation time on azimuthal angles, because the viscosities vary 

along different azimuthal angles. 
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Fig. 4.30 Illustration of calculating g2(q,t) at different angles. 

 

The calculated g2(q,t) for samples with θ equal to 0.3 %, 0.5 % and 5.0 %  

along different azimuthal angle were shown by figure 4.31, figure 4.32 and 

figure 4.33, respectively.  

 

 

 

Fig. 4.31 Dependence of η on q for 0.3 % sample calculated at different 

azimuthal angles. 
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Fig. 4.32 Dependence of η on q for 0.5 % sample calculated at different 

azimuthal angles. 

 

 

Fig. 4.33 Dependence of η on q for 5.0 % sample calculated at different 

azimuthal angles. 

 

It can be clearly seen that for each sample, curves of relaxation times 

obtained from various azimuth angles intercross with each other, and there’s no 

obvious dependence on the azimuth angles. Within the time covering the 

experiments, we didn’t see sedimentation of silica nanoparticles. From SAXS 

results, we know that silica nanoparticles contact with each other. Combining all 

these results together, we can say that silica nanoparticles are not homogeneously 
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dispersed in 5CB matrices but contact with each other to form some structures 

which can sustain the nanoparticles in 5CB to prevent sedimentation. Formation 

of cellular structure is most probable. In fact, when the samples are thin to 

several tens of microns, cellular structure of particles dispersed in nematic liquid 

crystal is commonly observed under optical microscope and the size of cellular 

structure is in the order from several tens of microns to several hundreds of 

microns [14, 27-30].  

The formed cellular structure of silica nanoparticles will constrict 5CB into 

grains. From microbeam WAXS analysis, we know that x-ray peak broadening 

becomes stronger with increasing θ, which may partially due to grain refinement. 

This illustrates that grains of 5CB become smaller with increasing θ. 0.3 % and 

0.5 % samples show anisotropic scattering patterns, indicating that some 5CB 

molecules are oriented in grains within these two samples. For 5.0 % sample, 

scattering pattern of 5CB becomes isotropic, indicating 5CB molecules orient 

randomly in grains within this sample.   

Based on above discussion, a possible model for a thin layer of sample can 

be given here as figure 4.34 shows. In the figures, silica nanoparticles are 

dispersed in 5CB as blue spheres show. The matrix is 5CB with red arrows 

indicating the director field around particles and green arrows indicating director 

field of oriented 5CB away from nanoparticles. 

 

 

Fig. 4.34 Schematics of silica nanoparticles dispersed in 5CB. (a) 0.3 %, (b) 

0.5 % and (c) 5.0 %. 

 

At low volume fraction when θ equal to 0.3 %, silica nanoparticles are 

expelled away by 5CB to reduce the Frank elastic free energy and form cellular 

structures. 5CB molecules nearby the surface of silica will orient perpendicular 

to the surface under normal boundary condition of the surfactant, while the 

remaining 5CB away from the surface will orient along the same director to 
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reduce the local free energy. As θ increases to 0.5 %, the cellular structure 

becomes smaller but inside the cellular structure, there still exist oriented 5CB 

molecules. When θ increases to 5.0 %, the cellular structure is further 

compressed and generates much more interface between silica nanoparticles and 

5CB molecules, which forces 5CB molecules to orient perpendicular to the 

interfaces and as a consequence, the oriented 5CB domain disappears.  

Under this assumption, the experimental results can be well interpreted. 

DSC shows that nematic to isotropic transition temperature of these nematic 

liquid crystal colloids decreases with increasing θ. From figure 4.34, it can be 

seen that with increasing θ, more silica nanoparticles are dispersed into 5CB, 

which results in more elastic energy. The increasing elastic energy causes more 

shift of the nematic to isotropic transition temperature from the case of pure 5CB 

[33]. 

SAXS shows that particles contact with each other, just as figure 4.34 

shows. Silica nanoparticles are expelled away from 5CB and form a cellular 

structure with adjacent silica nanoparticles contacting with each other.  

Microbeam WAXS shows anisotropic scattering pattern for θ equal to 0.3 % 

and 0.5 %, which can be well illustrated by figure 4.34 (a) and (b), where inside 

the cellular structures, there exists oriented 5CB molecules. For 5.0 % sample, 

the scattering pattern becomes isotropic, which is schematized by figure 4.34 (c), 

where the domains of oriented 5CB molecules disappear due to the influence of 

condensed interfaces between silica nanoparticles and 5CB molecules. From 

quantitative analysis of microbeam WAXS data, we know that 5CB molecules 

become less oriented with increasing θ, which is a consequence of increasing 

interfaces as figure 4.34 shows. To reduce surface free energy, 5CB molecules 

tend to orient perpendicular to the interfaces, which will cause a stronger 

divergence from the original director field with increasing interfaces, which is 

accompanying the increase of θ. X-ray peak broadening is also found to become 

stronger with increasing θ by quantitative analysis of microbeam WAXS data. 

This is as a result of two effects, the first one of which is grain refinement just as 

figure 4.34 shows. Grains of 5CB become smaller with increasing θ. The other 

effect is the increase of microstress, which compresses silica nanoparticles as 

well as 5CB molecules. 

XPCS shows a transition from a stretched exponential behavior with θ 

equal to 0.3 %, to a compressed exponential behavior when θ is 5.0 %. The 

stretched exponential behavior is the result from the formation of clusters of 

silica nanoparticles [66-69] as figure 4.34 (a) shows, while the compressed 
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exponential behavior is the result from microstress between silica nanoparticles 

and 5CB molecules [70-74] as figure 4.34 (c) shows. 

It should be mentioned that we don’t know exactly the sizes of cellular 

structures, because all these three samples are almost opaque under optical 

microscope. As previously mentioned, very thin samples with thickness around 

several tens of microns show that the cellular structures are in the order from 

several tens of microns to several hundreds of microns [14, 27-30]. Here we 

guess the cellular structures of our thick samples are probably of the same order. 

  

4.6 Conclusion 

Form DSC, SAXS, microbeam WAXS and XPCS experiments, several 

conclusions can be obtained as follows. 

(1) Nematic to isotropic transition temperature of 5CB dispersed with silica 

nanoparticles linearly decreases with increasing θ. 

(2) Adjacent silica nanoparticles contact with each other. 

(3) 5CB shows anisotropic scattering pattern when θ is lower than 0.5 % 

and shows isotropic scattering pattern when θ is 5.0 %. 

(4) 5CB molecules become less oriented with increasing θ, and x-ray peak 

broadening becomes stronger with increasing θ. 

(5) Sample with θ equal to 0.3 % undergoes a stretched exponential 

behavior. Sample with θ equal to 5.0 % undergoes a compressed 

exponential behavior. 

A schematic model to interpret these experimental results is given as figure 

4.34 shows. 
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5 Summary 

Nematic liquid crystal colloids are of great importance and have been widely 

studied nowadays. Colloidal particles can form anisotropic structures when 

dispersed into nematic liquid crystals. To fully investigate the anisotropic 

structures is necessary both physically and for the purpose of fabricating 

anisotropic materials.  

Nematic liquid crystal colloids are usually translucent or even opaque, 

making it difficult to study these colloids with optical microscope. Actually 

optical microscope can only observe very thin nematic liquid crystal colloids 

with a thickness limited to several tens of microns.  

X-rays are applicable to study opaque samples and can be a competitive 

implement to study these colloids. In this study, synchrotron x-ray radiation was 

utilized to study a nematic liquid crystal 5CB dispersed with silica nanoparticles. 

Small angle x-ray scattering, microbeam wide angle x-ray scattering and x-ray 

photon correlation spectroscopy have been performed, respectively, to study 

structures and dynamics of this nematic liquid crystal colloid. Some interesting 

results have been revealed and a schematic model based on experimental results 

has been proposed.   

Much remains to be approached of this field, such as to confirm the 

mechanism underlying the transition from stretched exponential behavior to 

compressed exponential behavior, to investigate exactly the structure of 

dispersed silica nanoparticles, and to clarify the relation between structure and 

dynamics of nematic liquid crystal colloids.  
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