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Summary

There are a large number of drive systems employing numerous actuators in
industry. As such, the performances of these actuators require constant improvement in
terms of higher speed and precision, miniaturization, and lower energy consumption. In
addition, most of these drive systems need a design that permits MDOF (Multi-Degree-
Of-Freedom) motion. Motion controls allowing MDOF have been practically realized by
using stacked multiple actuators. However, there are problems in attempting to
improve the performance of these types of drive systems such as a larger and more
complicated structure, fluctuation of the center of gravity, and Abbe errors in position
measurement due to the multiple-moving parts. In order to eliminate these problems,
MDOF actuators—which have only a single moving part, but are capable of being
directly driven with MDOF—are emerging technologies for future applications.

This study deals with planar actuators, which have a mover capable of traveling
over large translational displacements in a plane. Various types of planar actuators
have been proposed, and synchronous planar actuators with a permanent-magnet
mover are expected to offer good controllability of the motion controls. However, the
movable area tends to be quite narrow due to the use of conventional magnetic circuits
for the MDOF drives, which are spatially separated from one another, unless the planar

actuator has a large number of armature coils as shown in Figs. S-1 and S-2. Table S-1



shows classifications of synchronous planar actuators according to mover type, coil, and
degree-of-freedom of controlled motion.

With this in mind, this study is aimed at designing high-performance planar
actuators that have the following drive performances:

» . decoupled control for 3-DOF (Three-Degree-Of-Freedom) motions on a plane.

» wide movable area that can be extended regardless of the number of armature

coils.

> ease of mover miniaturization.

v

no problematic wiring that can negatively influence drive performance.

» small number of armature currents to control.

Next, I propose a design for a novel synchronous planar actuator having spatially
superimposed magnetic circuits for the 3-DOF drives as shown in Fig. S-3. The
magnetic circuits are a combination of a two-dimensional (2-D) Halbach permanent-
magnet mover, and mutually overlapped stationary polyphase armature conductors.
The movable area can be easily extended by increasing the length of the armature
conductors, regardless of their number. However, independently controlling MDOF
driving forces by means of superimposed magnetic circuits is very difficult and an
extremely important issue in this study. This thesis demonstrates a design for a planar
actuator that enables MDOF driving forces to be controlled by using spatially
superimposed magnetic circuits.

First, based on the results of a numerical analysis of the driving forces, I design a
decoupled control law for the 3-DOF driving forces on a plane by using two polyphase
armature currents. I experimentally demonstrate that the 3-DOF motions of the mover
can be independently controlled by using two polyphase armature currents. The
movable area in the translational directions is infinitely wide, and that in the yaw
direction is in the range within + 26 deg, namely the planar actuator has the widest
movable area of all planar actuators that have only two polyphase armature conductors.
Second, in order to further improve drive characteristics, the planar actuator is
theoretically redesigned so that the mover can be stably levitated and the 3-DOF
motions above a plane can be controlled. The planar actuator can be made quite small
because the permanent-magnet array and armature conductors for the MDOF drive are
integrated. The planar actuator would provide a significant starting point when used

with small electromechanical components in an MDOF drive.
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Table S-1:

degree-of-freedom of controlled motion.

Classification of synchronous planar actuators by mover type, coil, and

, Moving-Magnet Type Moving-Coil Type
Mover Type
No problematic wiring Extendible movable area
. regardless of number of coils
Coil Type [ il racss s eunpre fman dv s s prismmmeson e
Inventor DOF ! Coils | Inventor : DOF : Coils
Korenaga 2 2x2¢ | Hinds 3 4% B¢
Fujii 2 | 2x3¢ |Jung 3 | 4x3¢
_ 2 x 3¢ | Shikayama 3 4x3¢
Polyphase Coils Ohira 5 :
i (+4) | Compter 6 ! 4x3¢
Less dependence of : :
. Kim 6  4x3¢ :
driving forces : E
i Compter 6 : 9x3¢ :
on mover positions ; ;
Oh 1 6 1100x3¢
Ueda 3 i 2x3¢ 5
(This study) { 5 | 3x2¢
Binnard 3 | Many | Asakawa 3 4
Non-Polyphase Coils !
i ) . Ueta 3 | Many | Ueta 6 ! Many
High design flexibility ;
Vandenput 6 | 84
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Chapter 1

Introduction |

This chapter introduces the background to this study, which includes
general features, element technologies, and technical issues related to
MDOF actuators. Next, the purpose and position of this study against this
background, and the contribution of this thesis are presented.
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1. Introduction

Conventionally, linear drives have been realized by a combination of rotary motors
and reduction gears. Continual advances are being made to improve the speed of the
drives and the precision of the positioning of motion controls, however, these drive
systems have extremely complicated nonlinear phenomena such as friction and
backlash, which makes it difficult to attain satisfactory drive performance. Against this
background, direct drives have been attracting attention because they are high-
performance drives that do not use reduction gears, and drive systems utilizing linear
motors have replaced drive systems that use a combination of rotary motors and
reduction gears in industry applications, for example in robots and machine tools.

Most industry applications require that drive systems be able to control MDOF
motion. Motion controls with MDOF have to date been practically realized by stacking
multiple linear motors. Looking ahead, MDOF actuators, which have only a single
mover capable of being directly driven in MDOF, are emerging technologies for the
future. MDOF actuators offer the following advantages: the center of mass of the mover
does not fluctuate, easier creation of smaller structure, and a saving on energy
consumption [MDDO05].

This chapter introduces the general features, element technologies, and technical
issues of MDOF actuators. Next, the purpose and position of this study against this
background, and the contribution of this thesis are presented.

1.1. Actuators with MDOF

In an MDOF drive system built using stacked rotary and linear motors
(one-degree-of-freedom, or 1-DOF, drive), the motor on the lower side of the drive system
requires a high degree of torque to suspend the mass of the motor on the upper side of
the drive system. Consequently the drive system tends to have a much larger structure
than the load of its drive system [MDDO5]. Furthermore, these drive systems have more
complicated multi-body dynamics, which make it difficult to realize high-performance
motion controls. On the other hand, MDOF actuators have only a single mover, which
can be directly driven with MDOF, and they are therefore expected to gain acceptance
as MDOF drive systems offering a simple structure and high performance [MDDO5].

Most MDOF actuators can be classified into two prominent types [MDDO05]: a planar
actuator that can drive in two-degrees-of-freedom (2-DOF) translational directions; and,
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a spherical actuator that can drive in 2-DOF rotational directions. As for the drive
principles, electromagnetic, piezoelectric, magnetostrictive, and electrostatic types of
MDOF actuators have been proposed. Most models are of the electromagnetic actuator
type [IMDD05, MDD07, MDDOS8].

Planar actuators have been studied with the primary objective of application in
high-precision and high-speed stages in fields such as semiconductor manufacturing
equipment, machine tools, and conveyance systems [MDDO08]. To date, various types of
planar actuators have been proposed, including stepping, induction, and synchronous
types. In stepping planar actuators, the mover can be positioned without position
sensors to a positioning accuracy of several tens of um. In induction planar actuators,
the mover consists of a single aluminum plate including a back iron, and the structure
tends to be simple and solid. In synchronous planar actuators, the driving forces have a
proportional dependence on the amplitude of polyphase current, and a sinusoidal
dependence on the phase difference between the magnetic field generated by the stator
and the mover. Therefore, synchronous planar actuators are often adopted because of
their good controllability in terms of motion control. The mover of the planar actuator is
suspended on ball bearings, air bearings, or magnetic bearings. The position of the
mover is measured using a combinations of optical sensors (for example, laser
interferometers, photodetectors, encoders, or 2-D angle sensors), and magnetic sensors
(for example, Hall elements, or differential transformers), inductive sensors or
capacitance sensors.

Spherical actuators have been studied with the primary objective of usage in robot
components, for example, their joints and eyes [MDDO8]. Various types of planar
actuators have been proposed including stepping, induction, synchronous, piezoelectric,
and magnetostrictive models. The driving forces of electromagnetic spherical actuators
(that is to say, stepping, induction, and synchronous types) have the same features as
planar actuators. However, it is very difficult to suspend the mover and to sense
position.

Piezoelectric actuators can drive the mover in close contact with the stator by
controlling the piezoelectric strain on the stator, which is made of a piezoelectric
material [Act04]. Piezoelectric actuators are generally small (less than several-cm in
size), and can generate high-power driving forces and retaining forces with the power
supply turned off. Therefore, piezoelectric actuators are suitable for small actuators
used for short-stroke precise positioning. The mover is often precompressed by
electromagnetic forces so that the mover is in close contact with the stator.

Magnetostrictive actuators drive the mover in close contact with the stator by
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controlling the magnetostrictions of the stator, which is a magnetic material [Hig07].
Magnetostrictive actuators often have superior temperature characteristics and
mechanical characteristics to those of piezoelectric actuators [Hig08al.

In electrostatic actuators, the driving force (electrostatic forces) per volume (unit:
m83) is inversely proportional to their length (unit: m) [Act04]. When the dimensions of
electrostatic actuators decrease, the driving force per mover weigh increases. Therefore,
electrostatic actuators are being studied for use in micro-electro-mechanical systems
(MEMS). In addition, high-power electrostatic actuators having dimensions of a few cm
can be realized by integrating micro-electrostatic actuators. To generate a sufficient
driving force, however, it is necessary to supply several kV of power across the- gap
between the moving and stationary electrodes, which is a sub-mm gap, and to design

electrostatic actuators that are not subject to dielectric breakdown.

1.2. Element Technologies of MDOF Actuators

To construct MDOF actuators, various technologies such as driving force generation,
position sensing, and suspension and guide mechanisms are absolutely essential
[MDDO07]. First, driving forces with some degree of freedom need to be independently
generated. Second, the mover position in all driving directions needs to be detected
precisely within a short time period. Finally, the mover motion—except in the driving
directions—should be constrained, having less influence on the mover motion in the
driving directions. In electromagnetic actuators with MDOF, the performance of the
driving forces depends on the characteristics of the magnetic material used and the
configuration of the magnetic circuits. This section introduces element technologies of
electromagnetic MDOF actuators such as magnetic materials, magnetic circuits,

position-sensing methods, and suspension and guide mechanisms.
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1.2.1. Magnetic Materials

Most electromagnetic actuators with MDOF make use of permanent magnets to
achieve both a compact structure and high-power driving forces [MDD05, MDDO7].
Thus, permanent magnets are essential for these actuators, and they are created by
magnetizing magnetic materials. The magnetic characteristics of these magnetic
materials are vitally important in the design of high-performance actuators.

As we know, ferromagnetic materials polarize in a magnetic field H. Figure 1.2.1-1
shows the magnetic polarization M, and flux density B, of a ferromagnetic material
when the material is positioned in the magnetic field H; the M~H curve and B-H curve
have hysteretic properties. In Fig. 1.2.1-1, the residual flux density, coercive force,
residual magnetic polarization, saturation magnetic polarization, and magnetic
susceptibility are expressed as B,, H., M,, M,, and , respectively [Sag07].

To evaluate the performance of a permanent magnet, a maximum energy product
(BH)max is often utilized, which expresses the maximum magnetic energy stored in a
permanent magnet, and depends on the residual flux density B, and coercive force H..
Rare-earth magnets, which are alloys with rare-earth metals and 3d transition metals,
have the highest (BH)ma of all known permanent magnets [Edw01, Sag07, Taw05]. To
date, rare-earth magnets in which the main phase is SmCos, Sm2Co17, Nd2Fe14B, or
SmeFe17Ns have been presented [Fuk04]. Table 1.2.1-1 shows the magnetic
characteristics and theoretical limitations of (BH)ua of alloys with rare-earth and a
transition metal [Fuk04]. Table 1.2.1-1 shows that a NdsFe1sB magnet has a maximum
limitation of (BH)max- In fact, a Nd2Fe14B magnet in which the (BH)pn is more than 400
kJ/m3 has been reported, and the (BH) is developed further every year as shown in Fig,
1.2.1-2 and is close to the theoretical limit [Kan04].
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Fig. 1.2.1-1: Magnetic characteristics of ferromagnetic materials [Sag07].

Table 1.2.1-1:  Magnetic characteristics of rare-earth magnets [Fuk04].

Material M, (T) K, (MJ/m3) 7. (°C) (BH)max (KJ/m3)
SmCos 1.14 11-20 727 259
Sm2Co17 1.25 3.2 920 311
NdzFe14B 1.60 4.5 313 509
SmsoFe17N3 1.57 21 474 490

K. : Magnetic anisotropic energy, T, : Curie temperature
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Fig. 1.2.1-2: Status of (BH)max of Nd-Fe-B sintered magnets [Kan04].
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Enormous Nd-Fe-B permanent magnets are used in various types of motors and
actuators in some industry applications, consumer electronics, and electronic devices,
and absolutely contribute to the development of their miniaturization and high-power
output. Permanent magnets are classified according to manufacturing process as major
types [Edw01, Sag07, Taw05]: one is a sintered magnet, which has a high density of
magnetic materials and high-performance magnetic characteristics; and the other is a
bonded magnet, which has high mechanical strength and a great deal of flexibility in
geometry. Recently, Nd-Fe-B sintered magnets are being increasingly used in motors as
shown in Fig. 1.2.1-3, and are essential for the construction of electrical machines
[Kan04]. In electronic devices such as computers, cameras, and cell-phones Nd-Fe-B
bonded magnets, which have a great deal of flexibility are often applied [Joh97].

Figure 1.2.1-4 shows the production process of Nd-Fe-B sintered permanent
magnets [Sag07]. The production process is classified as: powdering, forming, sintering,
machining, surface treatment, and magnetization. In the sintering process, the formed
powder is sintered at about 1100 °C, and contracts due to directional anisotropy, and
therefore a machining process is required after the sintering process. Figure 1.2.1-5
shows the production process of Nd-Fe-B bonded permanent magnets, which does not
include the machining process because there is no sintering process [Sag07].

In fact, permanent magnets should have a high heat resistance. The Curie
temperature of Nd-Fe-B magnets is less than that of Sm-Co magnets. Furthermore, the
coercive force of Nd-Fe-B magnets drastically decreases with an increase in
temperature (-0.69 %/K in NdisFe77Bs magnets). To compensate for heating resistance,
Dy or Tb are substituted for part of the Nd, and Sm-Fe-N magnets, which have about
the same saturation magnetic polarization M, a high Curie temperature T,, and a high
corrosion resistance are expected to be substituted for Nd-Fe-B magnets. The addition
of Dy or Tb to Nd-Fe-B magnets, however, decreases the saturation magnetic
polarization M, and it is difficult to manufacture Sm-Fe-N sintered magnets because
the Sm-Fe-N materials dissolve into Sm-N and Fe at 600 °C [0za08]. Hence, it is

necessary to improve the magnetic characteristics of permanent magnets.
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1.2.2. Magnetic Circuits

In MDOF actuators, the design of magnetic circuits, which involve magnetic
materials, is absolutely essential in generating the MDOF driving forces. MDOF
actuators have a magnetic circuit structure that basically extends the magnetic circuit
of linear or rotary motors, and is based on drive principles such as stepping type,
induction type, or synchronous type.

Stepping MDOF actuators can position a mover without position sensors, and were
first put into practical use as drafting tools [MDDO5]. Induction MDOF actuators have a
simple, firm secondary conductor, and are being studied for application in transport
switch systems in factories. Synchronous MDOF actuators offer good controllability of
the driving forces, and therefore are being studied for use in the high-precision stages of
semiconductor manufacturing, and in robot elements such as joints and eyes.
Synchronous MDOF actuators often include permanent magnets to simplify and
miniaturize their structure. Furthermore, to improve their drive performance in terms
of such factors as speed and precision, synchronous MDOF actuators with a 2-D
Halbach permanent-magnet array as shown in Fig. 1.2.2-1 have been studied. A
Halbach permanent-magnet array generates a higher flux density and quasi-sinusoidal
distribution with lower harmonic in the arranging direction than a NS permanent-
magnet array does. Figure 1.2.2-2 shows the flux lines of NS and quasi-Halbach
permanent-magnet arrays, and shows that the flux lines of the Halbach magnet array
on one side are more densely and smoothly drawn than those of the NS magnet array
[Jan07]. These Halbach magnetized actuators generate larger electromagnetic forces

with less force ripples [How01].
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Fig. 1.2.2-2: Magnetic fields of Halbach and NS magnet arrays [Jan07].
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1.2.8. Position-Sensing Systems

The MDOF position-sensing systems of a mover are of particular importance for
high-performance motion control. To date, the following method of position sensing with
MDOF have been used:
» Laser interferometer [Has01, HOh07, Kim97, Kim98, Tom94, Tom96].
» Combination of laser and photodetector [Ebi03, Ebi05, Ebi89, Ebi91, GKiO1,
GKi94, Ohi06].

» Magnetic sensor [Com03, Com04, Com07, Ish97, Hol98, Phi06].

» Inductive sensor or capacitance sensor [HOh07, Kim97, Kim98, Jan07, Van07a,
Van07b].

> Optical encoder [Chi99, Don00, Don02, Kiy04, Kiy05a, Kiy05b, Nis07, Toy07,
Toy95, Toy96, TSh06, Yan07).

In the high-precision stages of semiconductor manufacturing, for which planar
actuators are mostly applied, position-sensing systems are required to measure the
mover position with resolutions of several nanometers, and therefore often include
multiple laser interferometers, as shown in Fig. 1.2.3-1 [Kim97]. In these applications, a
position-sensing method with MDOF that utilizes a 2-D angle grid and a 2-D angle
sensor, called a Surface Encoder, as shown in Fig. 1.2.3-2, is an emerging technology
[Kiy04, Kiy05a, Kiy05b]. The surface of the 2-D angle grid installed on the mover is
patterned three-dimensionally and cyclically. The five-degrees-of-freedom positions of
the mover, which are the x—, y—, a—, #~, and ypositions defined by Fig. 1.2.3-2, can be
measured by detecting the diffraction pattern generated by irradiating the surface of
the 2-D angle grid with multiple laser beams.

Some synchronous MDOF actuators with permanent magnets measure six-degree-
of-freedom (6-DOF) mover positions by detecting the magnetic field using Hall elements,
as shown in Fig. 1.2.3-3 [Com03, Com04, Com07]. Some variable reluctance-stepping-
type planar actuators, often called Sawyer Motors, measure the x— and y-positions of
the mover using multiple differential transformers, which are extremely easy to install
in variable reluctance-stepping-type planar actuators, as shown in Fig. 1.2.3-4 [Hol98].
Most spherical actuators measure the mover position using optical encoders, as shown
in Fig. 1.2.3-5 [Yan07].
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1.2.4. Suspension and Guide Mechanisms

Suspension mechanisms, which guide a mover in the driving directions and
suppress it in the other directions, are a particularly important part of MDOF actuators.
So far, the following methods of suspension and guide for the mover have been used:

» Oil lubrication [Don00, Don02]

» Ball bearings [Chi99, Ebi89, Ebi91, GKi01, GKi94, Ohi98, Rau06, Yan07]

» Air bearings [Has01, Hol98, Kiy04, Kiy05a, Kiy05b, Ohi98, Saw68, Tsh06,

Tom94, Tom96]
» Magnetic bearings [Com03, Com04, Com07, Higd0, HOh07, Kim05, Kim97,
Kim98, Kor06, Kos04, Ohi06, Phi06, Tru06, Van06, Van07a, Van07b]

Oil lubrication on a contact surface between the stator and mover is extremely easy
to realize, although it cannot be expected to smoothly drive the mover because of the
viscosity resistance [MDDO7]. Ball bearings are relatively easy to install in the stator or
mover and they can suspend and guide the mover relatively smoothly [MDDO7].

Contactless suspension of the mover by air bearings or magnetic bearings enables
the mover to smoothly move because there is no friction between the mover and stator
[MDDO7]. Air suspension has a much higher stiffness at a shorter gap between the
mover and stator, which is several pm/N on a 10-um gap [Kiy04]. Therefore, air bearings
are used in most planar actuators. The design of the air conduit and the compressor are
extremely important parts of air bearings. Magnetic suspension requires not the design
of an air conduit, but that of a magnetic circuit so that the suspension forces of the

mover are generated without interfering with the driving forces.

1.3. Technical Issues with MDOF Actuators

MDOF actuators have three principally important element technologies: MDOF
driving force generation, MDOF position sensing, and mover suspension and guides.
Currently, the driving forces are generated multi-directionally, forming multiple
magnetic circuits for unidirectional drive; mover positions are detected by a
combination of position sensors for unidirectional displacement; and most movers are
suspended and guided with ball bearings.

In most MDOF actuators that have been proposed, the magnetic circuits are all

spatially separated from one another to make it easy to independently control the
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driving forces with each degree of freedom. The configuration of the magnetic circuits,
however, often makes the movable area of the mover extremely narrow, unless
numerous coils are used. If numerous coils were utilized to extend the movable area,
then the power-supply system would become more complicated. In an MDOF
position-sensing system that combines multiple-position sensors for unidirectional
displacement, the measurable area, where all position sensors can measure each
displacement, also is extremely narrow.

As stated above, the following improvements in MDOF actuators are required:

» Extension of the MDOF movable area without a complicated power-supply

system.
> Extension of the measurable area with MDOF.

1.4. Contributions of this Thesis

This section presents the purpose of this study and the approach taken to this goal,

and clarifies the assertions and contributions of this thesis.

1.4.1. Purpose of this Study

This study targets the design of driving force-generation mechanisms and motion-
control systems of a planar actuator that has a mover capable of traveling over large
displacements along a plane. In this study, to realize a high-performance drive for the
mover, a planar actuator that has the following specifications is designed;

» decoupled control for 3-DOF motions on a plane.

» a wide movable area that can be extended regardless of the number of armature

coils.

> ease of mover miniaturization.

> absence of problematic wiring that can hinder drive performance.

» asmall number of armature currents to control.

First, to realize a planar actuator that can control the driving forces over a wide
movable area, I have to design the planar actuator so that the movable area can be
given, regardless of the number of the armature coils. For that purpose, I propose
magnetic circuits that are not separated spatially due to overlapped armature

conductors. The configuration of the magnetic circuits is the most novel feature in this
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study and enables the extension of the movable area by lengthening all the conductors,
regardless of the number of conductors. However, the configuration of the magnetic
circuits is not suitable for decoupled control of the MDOF driving forces because the
magnetic fields, as a result of armature currents, are superimposed, and so a planar
actuator with this type of magnetic circuit configuration has never been studied. This
study asserts that it is possible to design a planar actuator so that the MDOF driving
forces can be independently controlled using spatially superimposed magnetic circuits,
and this assertion is the main contribution of this thesis.

Spatially superimposed magnetic circuits also allow the miniaturization of planar
actuators, which was conventionally difficult. I see an application for this planar
actuator for use as lens-driving-actuators in electronic devices, and this study involves
the design of a planar actuator with a small mover—in the order of several tens of mm.

Finally, as a fundamental investigation of incremental improvements and to avoid
deterioration of the drive characteristics caused by friction forces between the mover
and stator, this study includes an investigation into the feasibility of magnetic
suspension of the mover. This magnetically levitated planar actuator is defined as
having six armature conductors, which is the minimum number of armature conductors
needed to realize both magnetic suspension and planar motion control.

To perform an experimental verification of this planar actuator, I have to design the
driving force-control system and position-sensing system with MDOF. In this study, the
MDOF mover positions are detected using multiple laser-displacement sensors because
of their fine precision. This sensing method gives a relatively wide measurable area,
which is wide enough to investigate the drive characteristics of the proposed planar

actuator.

1.4.2. Procedures used in Conducting this Study

This thesis presents an investigation into the feasibility of my targeted planar

actuator by going through the following four, ordered stages;

o Conceptual Design of a Long-Stroke 3-DOF Planar Actuator:
In this stage, a planar actuator with spatially superimposed magnetic
circuits for 3-DOF motion control is conceptually designed to drive the
mover over a wide movable area on a plane by controlling only two

pairs of three-phase currents. Then, the fundamental characteristics



of the planar actuator are clarified and a 3-DOF decoupled

motion-control system is designed.

In Design of an Experimental System for Verification of the Motion-Control
Characteristics of the Planar Actuator:

In this stage, an experimental system for the verification of the

motion-control characteristics of the planar actuator proposed in Stage

(D) is designed, for example, the position-sensing system and the

suspension and guide mechanisms. Specifications and characteristics

of all the experimental apparatuses are described.

(II1) Experimental Verification of the 3-DOF Motion-Control Characteristics of
the Planar Actuator:

In this part, experiments on the motion-control characteristics of the

planar actuator proposed in Stage (I) are conducted. There are two

major experimental objectives: first, verification of decoupled control

for the 3-DOF motion of the mover; and, second, investigation of the

movable area of the mover in the yaw direction.

(IV)  Feasibility Study on Planar Motion Control of the Planar Actuator with
the Mover Magnetically Levitated:
In this stage, a planar actuator having the same configuration as the
magnetic circuits for planar motion control is conceptually designed so
that the mover can be magnetically suspended. The mover has 6-DOF
motions (3-DOF translational and rotational motions), and so this
stage introduces the 3-DOF translational and 1-DOF rotational
motion-control system, which offers the other 2-DOF stable rotational
motion, and an investigation of the motion-control characteristics by

numerical analysis.

48



1.5. Thesis Overview

First of all, Chapter 1 comments upon the background and purpose of this study,
and clarifies positions, assertions, and contributions of this thesis. Chapter 2 introduces
previous techniques used in motion control with MODF, and comments upon their
features and issues in detail. Chapter 3 presents fundamentally conceptual design of a
long-stroke 3-DOF planar actuator. Chapter 4 presents the design of an experimental
system for verification of the motion-control characteristics of the planar actuator.
Chapter 5 describes experimental results of the motion-control characteristics of the
planar actuator, and suggests incremental improvements to the planar actuator.
Chapter 6 proposes conceptual design of the planar actuator with the same
configuration of magnetic circuits for the planar motion control, so that the mover can
be magnetically suspended, and presents a feasibility verification of the motion-control
characteristics by numerical analysis. Finally, Chapter 7 concludes this thesis and
suggests future work. Figure 1.5.0-1 shows the structure of this thesis.
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