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Abstract

This thesis describes numerical stability analysis of periodic orbits of ordi-
nary differential equations. Stability of the periodic orbits is determined by
eigenvalues of matrix solutions of variational equations corresponding to the
orbits. These eigenvalues are called Floquet multipliers. There are some
conventional methods to compute periodic orbits and Floquet multipliers.
However, it has been reported that these methods may produce inaccurate
Floquet multipliers even if periodic orbits are accurate enough. It is because
variational equations are solved as an initial value problem for which it is
difficult to control numerical errors. Then this thesis proposes an iterative
method to solve ordinary differential equations and the corresponding varia-
tional equations.

The basic ideas of the proposed method are to construct an iterative
method for variational equations using a property of dynamical systems, and
to compute Floquet multipliers using eigenvectors of the fundamental matrix
of variational equations. The iterative method enables us to control errors
of computed results of differential equations, and utilization of eigenvectors
reduces round-off errors in the computation of Floquet multipliers.

Numerical examples for the nonlinear Mathieu equations and the FitzHugh-
Nagumo equations showed that the proposed method can produce highly ac-
curate results with practical computational costs. The errors of the computed
results of differential equations were bounded by 107¢, and Floquet multi-
pliers were much more accurate than those computed by the conventional
method.
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Chapter 1

Introduction

This thesis considers numerical stability analysis of periodic orbits of or-
dinary differential equations. We can examine stability of periodic orbits
using Floquet multipliers which are defined by solutions of the correspond-
ing variational equations. There are some conventional numerical methods to
compute periodic orbits and its Floquet multipliers. However, those methods
may generate erroneous results of Floquet multipliers, even if periodic orbits
are computed with enough accuracy. In order to overcome this trouble, we
propose an iterative method for the variational equations.

This section introduces background of stability analysis of dynamical sys-
tems, and shows the objectives of this work and the basic ideas of the pro-
posed method.

Background of stability analysis of dynamical
systems

In the wide range of fields of science and engineering, time variation of phe-
nomena is modeled by ordinary differential equations such as

& =Fh@) with o(,@) =FE+T,2) ad at) =m0, (11)

where £ € RY and f: R x RY — RY is of class C2. For example, nerve
axon [15,32], population dynamics [42], influence of virus {27, 46], electrical
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circuits [26,44], plasma dynamics [34], astro dynamics [9, 10], etc [17,23].
Generally, solutions of the systems (1.1) with nonlinear vector fields f can-
not be solved analytically. Then we try to numerically catch approximate
solutions of initial value problems. However, it is well known that nonlin-
ear systems (1.1) can produce quite complex behaviours, namely bifurcation
phenomena, with variation of parameters [7,18,25,45]. In order to system-
atically understand complicated nonlinear phenomena, we consider qualita-
tive changes of invariant sets such as equilibria, periodic orbits, and strange
attractors in the state space. Invariant sets can be characterized using sta-
bility, stationary distribution, fractal dimensions, Lyapunov exponents, and
topological entropy [36,40]. Various numerical methods for computation
of invariant sets [30,43,2, 3,24, 11, 41] and numerical stability analysis of
them [12, 14, 19,22, 31, 37] have been developed.

This thesis considers numerical stability analysis of periodic orbits. Let
x(t) denote a periodic orbit with the period T satisfying

z(t+T)==(t) for Vt. ‘ (1.2)

It follows from linear stability analysis that a perturbation v(¢) of the periodic
orbit z(t) can be expressed as

v(t) = Xo(7) v0, (1.3)

with the matrix solution Xo(7) € RV*N (7 =t —ty) of the corresponding
variational equations given by

dXo _ of Xo(r) with Xo(0)=1, (1.4)

dr Oz t=to+7, T=p7 (<o)

where I denotes the identity matrix. Eigenvalues A; (j = 1,2,.-- | N) of
the matrix solution Xo(T") determine stability of the periodic orbit. These
eigenvalues are called Floquet multipliers.

There are various commonly used numerical methods to compute periodic
orbits of (1.1) and Floquet multipliers such as the finite difference method,
the shooting method, and the collocation method [25,8]. Also, some stan-
dard bifurcation analysis tools such as AUTO [12] are available. However,



it has been reported that these methods can produce incorrect Floquet mul-
tipliers under some conditions, even if the periodic orbits are approximated
accurately [14,29,31].

Figures 1.1(a) and (b) show examples of computed results of the periodic
orbits for the nonlinear Mathieu equations [18] defined by

dz

a_t- =Y,

dy

dt
using one of the conventional methods, the multiple shooting method sum-
marized in Section 2.2. Figure 1.1(a) shows the orbits in the state space
and Figure 1.1(b) shows the time series for the parameters p = 2, 20, and
40, respectively. Figure 1.2(a) shows the Floquet multipliers A; and A, com-
puted with the conventional method. We can find that the smaller Floquet
multiplier ); is computed incorrectly for the parameter p > 20, even if the
periodic orbits are computed accurately as shown in Figures 1.1(a) and (b).
Note that the ratio of the Floquet multipliers -R—;% (|A1] > |A2|) drastically
increases with p for p < 20. Such systems with large ratio of the Floquet
multipliers are called ‘stiff’. It is known that it is not straightforward to
numerically obtain solutions of ‘stiff’ equations with enough accuracy, even
if systems are theoretically stable. In order to overcome this difficulty for
‘stiff’ equations, implicit methods such as BDF (Backward Differentiation
Formulae) and implicit Runge-Kutta methods [6,16,20] are used in general.
However, as shown later in Chapter 4, the implicit methods do not improve
accuracy of the Floquet multipliers.

Also, algebraic computation of eigenvalues of such X(T") causes large
round-off errors. Lust developed an improved algorithm to avoid the round-
off errors [29], as shown in Section 2.3. Lust’s method divides a periodic
orbit into some sub-orbits, and computes the expanding or contraction rates
of perturbations on each sub-orbit using the periodic Schur decomposition [4]
of Xo(T). Then the Floquet multipliers are obtained as products of those
rates. Lust’s method produces accurate Floquet multipliers. However, his
method cannot control errors of variational equations (1.4). It is because
his method solves the variational equations (1.4) as an initial value problem,

= —(1+pcost) sinz, (1.5)
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similarly to the other conventional methods.

Ob jectives. of this work

The objectives of this work are to develop a new method to compute solu-
tions of the variational equations (1.4) and Floquet multipliers with enough
accuracy, and to examine effectiveness of the proposed method using some
numerical examples. For that, the basic ideas are to construct an iterative
method for the variational equations (1.4) and to use eigenvectors of Xo(T)
as initial condition of (1.4).

Existing numerical methods for initial value problems can produce inac-
curate solutions of variational equations (1.4) and Floquet multipliers [33].
Then we propose an iterative method to solve (1.4) using a general prop-
erty of solutions of ordinary differential equations, as shown in Chapter 3.
This iterative method enables us to control errors of the solutions Xo(T)
of the variational equations. On the other hand, when computed Floquet
multipliers are incorrect as shown in Figure 1.2(a), some elements of Xo(T)
are considerably large. In such a case, a standard computational method of
eigenvalues using a transformation of Xo(T') gives incorrect results due to
round-off errors, even if the computed Xo(T') is accurate. This work pro-
poses an alternative method to obtain eigenvalues without using the standard
methods. It is the key that the initial condition Xo(0) of (1.4) can be set to
any non-singular matrix. Using eigenvectors of Xo(7T') as initial conditions
of (1.4), we can obtain a relation for eigenvalues of Xo(T"), namely Floquet
multipliers, as shown in Chapter 3. Computation of eigenvalues using this
relation reduces the round-off errors.

The outline of this thesis is as follows: Chapter 2 summarizes the con-
ventional numerical methods to compute periodic orbits of ordinary differen-
tial equations and Floquet multipliers. Chapter 3 describes a new iterative
method for variational equations and an effective method to compute eigen-
values of Xo(T), namely Floquet multipliers. Chapter 4 shows computed
results of some numerical examples using the proposed method, and com-
pares those with the conventional methods. Finally, we discuss computed



results in Chapter 5, and conclude this thesis in Chapter 6.
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Figure 1.1: Computed results of the periodic orbits of the Mathieu equations

(1.5) with the multiple shooting method. T : the period. p: the parameter
of the equations.
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nonlinear Mathieu equations (1.5). p : the parameter of the equations.



Chapter 2

Numerical stability analysis of
periodic orbits of ordinary
differential equations

Stability of periodic orbits is determined by eigenvalues of matrix solutions
of the variational equations for the periodic orbit. There are some standard
methods to compute periodic orbits and their Floquet multipliers. For ex-
ample, the shooting method, the finite difference method and the collocation
method are often used [39,25,8]. The computational method in this work
is based on the shooting method. This chapter describes stability of peri-
odic orbits and Floquet multipliers, and summarizes the shooting method to
compute them. Also a brief review on Lust’s method [29] which improves
the conventional methods is given.

2.1 Stability of periodic orbits and Floquet
multipliers

This thesis considers nonlinear dynamical systems defined by ordinary dif-
ferential equations such as

(31—:: = f(t,z), with f@¢,z)=f(t+T,z), | (2.1)

9
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where z € RY and f : R x RY — RY is of class C?. Periodic orbits of
the ordinary differential equations (2.1) are defined by solutions x(t) which
satisfy

2t +T) =z(t). (2.2)

The solution of the non-autonomous system (2.1) with an initial condition
x(ty) = xo can be written in the form

(t) = ¢ (20 , (2.3)
and the periodic solution o with the period T satisfies
x(to + T) = ¢, (To) = To - » (2.4)

Substituting a perturbed solution of the periodic orbit, namely,
&(t) = x(t) + v(t) = ¥l (mo) + v(t) with v(to) = vo, (2.5)
into z in (2.1), we get

dz

LR %—ﬁl v(t) + O(llolf") (2.6)

t, z=p;; (o)

Assuming that ||v|| is sufficiently small, we can linearize (2.6) with respect
to v(t) and get differential equations for time variation of the perturbation
v(t) as

dv 0f

=5 v(t) with v(to) =vo. : (2.7)

t—t,
t,x=yp, O (xo)

These equations are called the variational equations, and the solution v(t) of
(2.7) can be expressed as

v(t) = Xo(7T) vo, (2.8)

with the fundamental matrix solution Xo(7) € R¥N*Y (1 =t —to) of (2.7).
The matrix Xo(7) is a solution of the variational equations given by

o 9 Xo(r) with Xo(0)=1, (2.9)

oz t=to+T, :c=(p{°(a:o)
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where I denotes the identity matrix. Expansion or contraction of pertur-
bations v(tp + 7) is governed by Xo(7). Thus, we can examine stability of

the periodic orbit using eigenvalues of Xo(T"). These eigenvalues are called
Floquet multipliers.
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2.2 The shooting method for periodic orbits

Simple shooting method

The simple shooting method is one of standard methods to compute periodic
orbits. Let @(to+7) = ¢, (o) denote a periodic orbit of (2.1) with the period
T, which satisfies (2.4), namely,

go(@o) == ¢}, (Zo) — o =0, (2.10)

For non-autonomous systems (2.1), the period T is given. We can obtain
@t (xo) by computing (2.1) with the initial condition @y using the Runge-
Kutta method. The unknown variable is &g at a certain time ¢y. The simple
shooting method solves xy using an iterative method for g, in (2.10) such as
Newton’s method.

Although this method is relatively simple, it is difficult to compute peri-
odic orbits with large period T or large Floquet multipliers. It is because that
errors for computation of ¢f (o) accumulate with time ¢, and convergence
region for &, becomes small. For such periodic orbits, the multiple shooting
method below is used.

Multiple shooting method

The basic idea of the multiple shooting method [39,25,8] is the same as the
simple shooting method, but this method divides a periodic orbit into M +1
sub-orbits such as '

Try1 = T(tryr) = O () for k=0,1,---, M, (2.11)

k

where tp < t; < -+ < tyy < taer = o +T and TpM+1 = Tg. Since the
period T is given for non-autonomous systems (2.1), each time #; can be
fixed. Equation (2.11) can be rewritten as

9i(@k, Brra) = @it (k) — Tpy1 = 0. (2.12)

The solutions cp:'lzl_t" () in (2.12) are computed on each sub-orbit between
the time sections ¢; and x4, with the initial conditions ) at t; using the
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Runge-Kutta method. Using an iterative method for g, in (2.12), we can
obtain approximate solutions of {z;}#Z,. Since each time interval t,; —
of the sub-orbit becomes short with increase of M, we can expect that errors
of the computation of ;" () are reduced.

Figures 1.1(a) and (b) show examples of the computed periodic orbits in
the state space and the corresponding time series of the nonlinear Mathieu
equations (1.5) for p = 2,20, and 40, respectively, using this multiple shooting
method with M+1 = 50. In order to solve initial value problems on each sub-
orbit, we used the 4th order Runge-Kutta method with the time increment
At = 0.025. Figures 2.1(a)-(d) compare the periodic orbits computed by the
multiple shooting method with M+1 = 8. As shown in Figure 2.2 too, we
can see that the error d; of the condition (2.12) is reduced with the iteration
number v increases.
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(a) v=0, d; =5.34 x 107!
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Figure 2.1: Examples of computed periodic orbits for the nonlinear Mathieu
equations (1.5) using the multiple shooting method with M +1 = 8. v :

the iteration number. d; :

the error of the condition g; in (2.12). See

(3.10) for details. + : approximate solutions a:E”) ofxp (k=0,1,++-,7)

after the v-th iteration.
dy = 5.03 x 10~18,

Dotted line : the best approximate solution with
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Figure 2.2: Errors d; of the condition g, (2.12) for periodic orbits of the
nonlinear Mathieu equations (1.5) with p = 2. v : the iteration number. d,
: See (3.10) for details.
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2.3 Computational methods of Floquet mul-
tipliers

In order to examine stability of the periodic orbit with Floquet multipliers,
the standard methods compute the solution Xo(T") of the variational equa-
tions (2.9) and its eigenvalues. Writing 7 =t —#¢; for k = 0,1,--- , M, we
can express the variational equation (2.9) for each sub-orbit as

dX; _ of Xu(r) with X4(0) =1, (2.13)

A7 0T limyir, wmpy (@)

where X (1) € R¥*N and I denotes the identity matrix. The conventional
methods compute the solutions X () of the variational equations (2.13) with
the solutions ¢, () of the ordinary differential equations (2.1) on each sub-
orbit. Figure 2.3 shows the concept of the computation with M +1 = 3.
The closed curve denotes a periodic orbit in the state space and the gray
areas represent expansion or contraction of perturbations on the sub-orbits,
namely, Xy(hi) (hr = tps1 — t). Bach X(hg) is computed from ¢ = ¢, to
tr4+1 as an initial value problems with an initial condition X(0) = I.

Floquet multipliers are eigenvalues of the matrix solution Xo(7T) given
by

Xo(T) = X pm(ha) X p—1(har=1) - -+ Xo(ho) . (2.14)

We can numerically get X (hi) using the Runge-Kutta method, and the
Floquet multipliers using standard tools for linear algebra such as LAPACK
[1]. This is one of the commonly used methods for stability analysis of
periodic orbits using the multiple shooting method. Hereafter we call this
method “Method 1”.

Figure 2.4 shows computed results of the Floquet multipliers for the non-
linear Mathieu equations (1.5) by “Method 1”. It is found that “Method 1”
inaccurately computes the smaller Floquet multiplier A, for the parameter
p > 20. Also, we can find the ratio of the Floquet multipliers JI'%Il drastically
increases with p for p < 20. It should be noted that the periodic orbit gets
closer to the equilibrium @, at the origin with increase of p, as shown in Fig-

ure 1.1(a). The point x(t) on the periodic orbit moves very slowly with time
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Figure 2.3: Closed curve : a periodic orbit in the state space. Gray areas :
expansion or contraction of perturbations on each sub-orbit between ¢, and
trt1, namely, X.(hy).

near the equilibrium @, and very fast away from z,. In such cases, it is not
straightforward to numerically solve the initial value problems. In addition,
we can find that some elements of the matrix X o(T') are considerably large.
Then round-off errors can produce erroneous results of eigenvalues of X o(T').
As the example in Figure 2.4 illustrates, the conventional method may
produce inaccurate numerical results of Floquet multipliers when periodic
orbits get closer to equilibria, and ratios of Floquet multipliers |A;|/|;]
(]As] > |A;]) increase. We consider that the followings cause this problem:

(i) In general, it is difficult to control numerical errors of initial value
problems of differential equations.

(i1) When some elements of X o(T") are large, round-off errors of transforma-
tion of Xo(T') in computation of the eigenvalues can lead to erroneous
results of Floquet multipliers.

For (ii), Lust proposed the following improved method [29].
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Figure 2.4: The Floquet multipliers A; (j=1,2) computed with “Method
17 for the nonlinear Mathieu equations (1.5). p : the parameter of the
equations.

Lust’s method [29]

Lust developed an improved method [29] to obtain accurate Floquet multipli-
ers. This method computes expanding or contracting rates of perturbations
on each sub-orbit using transformation of X (hy) by the perlodlc Schur de-
composition [4] of Xo(T') such as

A = Qg Xo(T)Qo
= Q5 X (k) - - X1(h1) X o(ho)Qo
= Qg X p(har)Qur - - - Q3 X 1(71)Q1QT Xo(ho) Qo
= Ap--- A1 Ao, (2.15)

where Q) € RV*¥ are orthogonal matrices , and A and Ay, = s +1X k(hi) Qk
are upper triangular matrices, respectively. Since the triangular matrix A is
linearly conjugate to Xo(T), the eigenvalues of A are the same as those of
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Xo(T). Thus, we can obtain the Floquet multipliers \; (j =1,2,---,N) as

M
X =AG) = Au(Gd) - 4G, DAGH) = [[4G.0). -~ (216)
k=0
Existence of the orthogonal matrices @y to transform X (ki) is proved in [4]
and construction of Q) is described in Appendix A.

In this thesis, we call Lust’s method “Method 2”. Figure 2.5 shows com-
puted results of the Floquet multipliers for the nonlinear Mathieu equations
(1.5) using “Method 2”. Comparing Figure 2.4 with Figure 2.5, we can find
that “Method 2” produces accurate Floquet multipliers even for p > 20, for
which the results of “Method 1” are erroneous.

In Lust’s method, the variational equations are computed as an initial
value problem, similarly to some conventional methods. If the solution
X o(T) of the initial value problem is accurately obtained, then Lust’s method
is very effective. However, it is not straightforward to control errors of com-
puted results of initial value problems of differential equations. Then, in
Chapter 3, we will propose a new iterative method for the variational equa-
tions, and an improved method to obtain Floquet multipliers with small
round-off errors.
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Chapter 3

A new iterative method for
periodic orbits and Floquet
multipliers

In order to overcome troubles in the conventional method shown in Chapter
2, this thesis proposes an improved method based on the following two ideas:

(I) Construction of an iterative method to solve variational equations using
a property of dynamical systems

(II) Reduction of round-off errors in the computation of Floquet multipli-
ers using eigenvectors of Xo(7") as the initial condition for variational
equations

Sections 3.1 and 3.2 describe the ideas (I) and (II), respectively. Section 3.4
shows some indices for accuracy of computed results.

3.1 An iterative method using a property of
dynamical systems

The multiple shooting method in Section 2.2 computes periodic solutions
{z;}}L, such that

Thp1 = wfﬁ‘“_t"(azk) for k=0,1,---,M, (3.1)

21
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and

TMmM+1 = o, (3.2)

using an iterative method for these conditions. On the other hand, solutions
Xx(h) (R = tgr1 — tx) of the variational equations (2.13) are solved as
initial value problems on each sub-orbit between t; and #;4;. In general, it
is difficult to control errors of computed results using standard numerical
methods for initial value problems of ordinary differential equations, such as
the Runge-Kutta method. This section derives an iterative method for varia-
tional equations (2.13) using a property of solutions of differential equations.

First, consider ordinary differential equations (2.1) with an initial condi-
tion 2(t) = xr. The map @], of a solution ®(t) = @] (®k) (T =1 — 1) has
the following property:

T+o

O =i o0y for 0 €R. (3.3)

Note that this property is also used as definition of dynamical systems. The
property (3.3) gives the following condition:

Qo () = g%, 0 ok (k) = O (Traa) (3.4)
with
sk = pr b, (3.5)

where p € [0,1] for £=0,1,--- ,M. Then we get

91(@ky Tra1) = O (@) — Pk (Tes1) = 0. (3.6)
Figure 3.1 shows the meaning of this condition. The closed curve denotes a
periodic orbit in the state space, and the solid curve represents a sub-orbit
between ¢ and ti4;. Consider an intermediate point on the sub-orbit, and
let si denote the time interval from the end at ¢x41 to the point. Using
the Runge-Kutta method, we can compute the intermediate point at ¢ =
t + hi — si as @?:—3" () or ¢ °* (k1) with the initial conditions z or
X1, respectively. Since these two solutions express the same point, the
solutions must be equal to each other (3.4).
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Periodic orbit in state space

 or o T ~
-~
A \ tk—]—l = tk+hk9 Lk+1
/7
Time interval Ay, — S, cp,;ci’“l (Tr+1)
C
\ : |
~ _/
T
Ly Tn hk—Sk [ h ( k)

Figure 3.1: Image of the meaning of the condition (3.4) for solutions of
ordinary differential equations. Closed curve : a periodic orbit in the state
space. Solid curve : a sub-orbit between ¢, and #;.;. s, : the time interval
from the end at tp.; to an intermediate point on the sub-orbit. cp'“ * (2),
Oy, +1(:c;,+1) : representations of the intermediate point computed with the
initial conditions x; and @y.,, respectively.

Next, consider variational equations (2.13). Solutions X (7) = U7 . (X(0))
of (2.13) also have the same property as (3.3), namely

Uit = Ve ir ottt © Vi fOr T,0 ER. (3.7)

ty, Tk

Similarly to (3.4), this property yields

Tk k(X (0) = Wk, {txthi) © Tk (Xk(0) = T3 % o (X)),
(3.8)
and it follows that

Q. (@rey Thr1, Xio(hae)) = TR (X3(0)) — U2k o (Xi(hi)) =0
(3.9)
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where O denotes the null matrix and X(0) is set to the identity matrix
Xr(0)=1.

Thus, introduction of s; enables us to solve not only ordinary differential
equations (2.1) but also variational equations (2.13) using an iterative method
for g, in (3.6) and @, in (3.9). In this work, in order to iteratively obtain
the approximate solutions &, and X (h;), Newton’s method is applied to g,
(3.6) and Q,, (3.9) in which ¢ and ¥ are computed using the Runge-Kutta
method. Then the convergence conditions in Newton’s method are given by

d == oI, lgell < 61, (3.10)
and
dy i= ‘max 1@l < &, (3.11)

with sufficiently small d;,d; > 0 and

1Qull = 113182 - aw)ll = max lig,ll, (3.12)
where g; denotes the j-th column vector of the matrix Qk. Using the thresh-
old 4, this iterative method enables us to control accuracy for computed
results of the ordinary differential equations and the variational equations.
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3.2 Improvement of the proposed method us-
ing eigenvectors of the fundamental ma-
trix of variational equations

In Section 3.1, in order to control errors of the computed results of variational
equations (2.13), we derived an iterative method for (2.13). This section con-
siders reduction of round-off errors in the computation of Floquet multipliers.
For that, we can try to suitably choose initial values of variational equations,
which can be set to any non-singular matrix. This section shows that choos-
ing eigenvectors of Xo(7T') as the initial value helps us reduce the round-off
€rrors.

Let vjo (5 = 1,2,---,N) denote the linearly independent normalized
eigenvectors corresponding to the j-th Floquet multipliers A; € C, namely,

)\j Vjo = Xo(T) Yj0- (313)
Consider a solution v;(t) = ¥f, % (v;0) of (2.7) with the initial value v;.
Write solutions v;(t) at t = t as vy == vj(te) = Yoo (vj0) for k =
0,1,--- ,M + 1. Then v;;_; and v;; are related by

Vi = Y ey (Vi) = X (o) Vi1 (3.14)

where hy, = ty41 — tr and X (h) is a solution of (2.13). It follows that
Vjr = Xk—l(hk—l)Xk—2(hk—2) s Xo(ho) (315)
Also, equations (2.14), (3.13), and (3.14) yield

Aj Vjk
= X Xp-1(hi-1) - - - X1(h1) Xo(ho) v50
= Xj_1(hg-1) - - - X1(R1) Xo(ho) (A vj0)

= X1 (he-1) - - - X1(h1) Xo(ho) Xo(T) vj0
= Xp—1(hi-1) - - - X1(h1) Xo(ho) X am(har) - - - Xesa (his1) X i (Pre)
Xp-1(hg-1) - - - X1(h1) X o(ho) v

= X(T) vs. (3.16)
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Here the following relation is used:

Xi(T) = X1 (hg1) -+ - X1(h1) Xo(ho) X n(Rae) -+ X1 (Ries) X e (B) -
(3.17)

Equation (3.16) means that the j-th Floquet multiplier A; is equal to the
j-th eigenvalue of each X (T'), and v;y is the eigenvector corresponding to
Aj.

Note that v;(to + T') = Xo(T)v;0. From equation (3.13), we get

Ajvi0 = Xo(T)vjo = vi(to +T) =Vjm41 = '91)?,",}‘,%,('0]',1%) . (8.18)
and
A= (050, vi(to+T)) = (vj0, YoMz, (Vin)), (3.19)

where (-, -) denotes the inner product. This representation (3.19) of the
Floquet multiplier enables us to compute the Floquet multiplier A; with rel-
atively small round-off errors, even if some elements of the matrix Xo(T) are
considerably large. It is because that (3.19) does not require transformation
of Xo(T) which is commonly used in computation of eigenvalues of a matrix
and may cause round-off errors.

In addition, in order to avoid overflow of computed results, we normalize
v;(t) at every t = tx, similarly to the computation of Lyapunov exponents
[40], as follows : :

Uik

Uik = . 3.20
35 = Togal (3.20)
Then, u;k41 can be expressed as

v . o v .

Ujk+1 = = = .
logestll — Nhe o i)l Nl 58 o, (i)

From (3.21), we get

lwsaall = Il o, (us)ll - (3.22)
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Using (3.20)—-(3.22), we can rewrite (3.19) in the form

h
’\j = <u.‘iyo’ "'btzy,wu("vj'M“uj’M)>

h
= (wsor YUt 0y, asan) ) 00|

’d)?)y Tar (u],M) > h
~\ " i U e (s
< ""/’tM,mM( i)l [l (wsm)|

har—
I "/)tly_l,mm_l(uj,M—l) w001 |

ha
_ <uj,0, Vtnrswas (Ws01) >H" Ui (w50 - (3.23)

||¢tM :l:;u( JM)II k=0

In order to obtain accurate Floquet multipliers using (3.23), we utilize the
idea of the method in Section 3.1, and iteratively compute the normalized
eigenvectors u; of X (7).

Assume that eigenvectors wyy, Usy,- -, and uyy, are linearly indepen-
dent. Then, any perturbations v(t;) = (v1,v2,++- ,vn)T € R¥ can be ex-
pressed as

U n
V2 'i)z N R
v(te)=| . | = (urg wap -+ ung) . | =Xk(0) (), (3.24)
UN ON
where
X1(0) = (wrk ok -+ UNg) 5 (3.25)

and d(ty) = (1,09, ,0n)T € RN. Write the solution at ¢ = £;,+7 of (2.13)
with the initial condition X(0) as X (7). Then, we get

o(t) = Xu(r) v(t)
= ], . (DXW(0) 9(t)

=07 . (X(0)) d(tk)
= Xi(7) D(ts) - . (3.26)
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Thus, time variation of perturbations can be expressed as linear combination
of column vectors of the non-singular matrix X (7). Furthermore, equations
(3.14), (3.18)-(3.21) yield

X (i) =01, (X1(0))

788 7%
= (Ui m(uLk) Vi (o) o Yo, (ung)
=(Urp+1 U241 o0 Ungs1) D
= X141(0) Dy for k=0,1,---,M, (3.27)

where X 7,1(0) = Xo(0) and Dy, € R¥*¥N are the diagonal matrices such
that

Dy = diag |94 o, (wip)ll» (3.28)
1<i<N
fork=0,1,--- ,M—1 and

Dy = diag (uj0, %Mz, (Winr)) - (3:29)
1<j<N
Since u,; and 1/1&"’% (ujx) are the j-th columns of X ;(0) and 'I!Zf mk(f( £(0)),
respectively, Dy depends on x; and X;(0). Then, equation (3.9) can be
rewritten as

Q(Tk, Ty, X 1(0), X 541(0))

= Uk (X(0)) — U7 % o (Xi(he))

tk, Tk tht1) Tt
= UK (X 1(0) — Ui oy, (X k41(0) Di)
=0. (3.30)

Using an iterative method for (3.6) and (3.30), we can control errors of ap-
proximate solutions @ and X «(0), namely, the corresponding eigenvectors
u;r with a threshold 4 in (3.10) and (3.11). Also, Floquet multipliers are
accurately computed with the approximate solutions of u;; and equation
(3.23). We call this method “Method 3”.

We should emphasize that equation (3.30) can be separated to each col-
umn q;; of Q. That is, for each j, we can iteratively compute u;; and
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Ujk+1 USIDG

Qj,k(mk, Lit1, Ujky uj,k+l)
hy— - ..
= ’wt:, :czk (uj,k) - wtkiﬁ,zkﬂ (Dk(.71 .7) uj,k+1)
by~ CoN -
= tkk,:cik (uj,k) - Dk(]a]) '(/)tk.s*.’;,mk+1(uj,k+l)

=0. (3.31)

Therefore, we can obtain each Floquet multiplier independently for each j.
This leads to reduction of round-off errors in the computation of Floquet
multipliers. In addition, even if eigenvectors {u;;} are not linearly inde-
pendent, (3.31) enables us to obtain Floquet multipliers of which the total
number is less than N.

Finally, we refer to computational costs of this proposed method for sim-
plicity using M +1 = 1, namely, the simple shooting method. Since unknown
variables are 2o € R" and X(0) € R¥*¥, the number of the unknown scalar
values is (N + N2). In order to reduce computational costs, in this thesis,
we solve the unknown variables o and X,(0) separately using Newton’s
method for g, (3.6) and for @, (3.9), respectively. Otherwise, the derivative
?9_23 is required in Newton’s method, then we must additionally compute N3
dimensional solutions of differential equations as an initial value problem.
Therefore, we separate the proposed method into two steps. First, we com-
pute the periodic solutions x; using Newton’s method for g,(3.6). Next,
we can get Floquet multipliers A; and X1(0) using Newton’s method for
Q.(3.30). Figure 3.2 shows the computation time for periodic orbits and
Floquet multipliers of the Mathieu equations (4.1) using the “Method 3”.
We can see the computation time of the method is reduced using g, and Q;,
separately.
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Figure 3.2: Computation time 7 [seconds] of “Method 3 * for periodic or-
bits and Floquet multipliers for the nonlinear Mathieu equations (4.1) using
both (3.6) and (3.30) simultaneously and separately, respectively. p : the
parameter of the equations.



31

3.3 Application of the proposed method to
autonomous systems

The proposed method “Method 3” can be applied to autonomous systems
defined by

2 - i) (3.32)

where f : RN — R is of class C2. For autonomous systems, the time
intervals hy = tg41 —tx (k=0,1,---, M) are unknown, and the period T is
expressed as

M
T=> h. (3.33)
k=0

These intervals hj, must be computed simultaneously with z; and X x(0)
so that (3.6) and (3.30) are satisfied. Since the initial time 5 can be set
arbitrarily, we set t; = 0. Unknown variables are {hk,wk,f( £(0)}4,. The
number of the unknown scalar values is (14+ N +NxN) x (M +1), and is more
than the number of equations (3.6) and (3.30). In order to close this problem
and determine the unknown variables, we use an additional condition under
which each x;, is located on Poincaré sections Hj, transverse to the periodic
orbit as shown in Figure 3.3. Consider a given approximate solution &; of
. A section orthogonal to the vector field f(&;) at &, is transverse to
the periodic orbit when &; has enough accuracy. Thus, we can express the
additional condition x; € H;, as

be(zr) = (= — &k, F(@r)) =0. (3.34)

Using Newton’s method for (3.6) and (3.30) with (3.34), we can iteratively
obtain approximate solutions of {hy, xx, X (0)}},, and from (3.33) we can
determine ¢; and the period 7.
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ho = t1 — 1o

Figure 3.3: The additional condition (3.34) of the multiple shooting method
for autonomous systems. Closed curve : a periodic orbit in the state space.
Hy, (k=1,2,3) : Poincaré sections transverse to the periodic orbit.
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3.4 Accuracy of computed results

As stated in Section 3.2, the j-th Floquet multiplier Aj is equal to the j-th
eigenvalue A\jr (k= 0,1,---, M) of (3.17). However, numerical results of
Ajx may be different from each other. Thus we can use

1
A = J0D Aj 3.35
maXo<k<M |Ajkl ockens 9k oShghs k| (3.35)

R()j) =

as an index of accuracy of the computed Floquet multipliers.
Additionally, for autonomous systems, one of the Floquet multipliers )\,
must be equal to unity [36,31]. Thus we can use

() = e, s — 11, (3.36)

as an index of error of numerical results of .
Using these indices R();) and E()\,), we will compare accuracy of Floquet
multipliers computed by “Method 17, “Method 2”, and “Method 3”.



Chapter 4

Numerical examples

As shown in Chapter 2, the conventional method “Method 1” can compute
inaccurate Floquet multipliers when periodic orbits get closer to equilib-
ria. This chapter compares numerical examples computed with “Method 17,
“Method 2”, and “Method 3”. The first example is a two dimensional non-
autonomous system defined by the nonlinear Mathieu equations [18,13, 38].
Next, we show the results of a three dimensional autonomous system de-
fined by the FitzHugh-Nagumo equations [15,32]. In the computations with
“Method 3”, s (3.5) in (3.6) and (3.30) is fixed to %’i We may expect that
suitable choice of s; can improve computed results, but this is left for future
works. Eigenvalues and eigenvectors of X (T") (3.17) were computed with
“geev” of LAPACK [1]. The eigenvalues are the results of Floquet multipli-
ers with “Method 17, and the eigenvectors are used as initial approximate
solutions of “Method 3”.

Using indices R(};) (3.35) and E(\,) (3.36) in Section 3.4, we compare
accuracy of the computed Floquet multipliers. Also, we check errors of the
conditions (3.10) and (3.11) for the periodic orbits and the solutions of the
corresponding variational equations, respectively.

35
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4.1 The Mathieu equations

The nonlinear Mathieu equations [18,13,38] are given by

do _
dt_y)
dy

i —(g+ pcost) sinz, (4.1)

where p is the free parameter and q is set to 1 in this thesis. These equations
are a mathematical model for prametrically excited nonlinear oscillation, for
example, the forced motion of a swing [5], vibration of elastic cables [35], the
seesaw oscillator [28], oscillatory motion of a ship [38], etc. Note that this
system has an equilibrium z, at the origin in the state space (z,y).

Figures 4.1(a) and (b) show the computed periodic orbits with the period
T = 2x in the state space and the corresponding time series for p = 2, 20,
and 40, respectively. We can find that the periodic orbit gets closer to the
equilibrium , with increase of p, and that the point a(t) on the periodic
orbit moves very slowly with time near x, and quickly away from x,.

In these computations, the proposed method “Method 3” with M+1 =
100, t, = MLHk, and hy = tg4 — t = ML-H (k =0,1,--- ,M) are used.
The thresholds d; and d; of the convergence conditions (3.10) and (3.11) of
“Method 3” are set to ; = d; = 107%. Initial value problems of the ordinary
differential equations (2.1) and the corresponding variational equations (2.13)
are numerically solved using the 4-th order explicit Runge-Kutta method with
the time increment At = 0.025. The conventional multiple shooting method
“Method 1” also produced accurate enough results of the periodic orbits.

Figure 4.2 shows the computed Floquet multipliers using “Method 1”.
The ratio of the Floquet multipliers R—;ll (|A1] > |A2]) becomes considerably
large as the periodic orbit gets closer to the equilibrium z, with increase
of p. Then, “Method 1” gives inaccurate Floquet multiplier Ay, even if the
corresponding periodic orbit is accurately computed.

We may expect that some commonly used implicit methods for initial
value problems of ordinary differential equations improve accuracy of com-
puted results of Floquet multipliers. Figures 4.3(a) and (b) show the com-
puted Floquet multipliers using “Method 1” with the implicit Runge-Kutta
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methods called the 3rd order RadaullA method and the 4th order Lobattol-
IIA method, respectively [6,16,20]. Figures 4.4(a) and (b) show the index
of error R();) defined by(3.35) for “Method 1” with the 4th order explicit
Runge-Kutta method and with the 4th order RadaulIA method, respectively.
In both cases, R();) for the smaller Floquet multiplier ), increases with p.
These results indicate that the implicit methods do not help us obtain accu-
rate Floquet multiplier ).

Figures 4.5(a) and (b) show that both Lust’s method “Method 2” and
the proposed method “Method 3” compute Floquet multipliers accurately.
Lust’s method “Method 2” uses dg = 107° as the threshold dg (A.5) for the
periodic Schur decomposition of X(T) (3.17).

Figures 4.6(a) and (b) show the index of error R();). The results indicate
that R(};) for “Method 2” are less than 107>, and that R();) for “Method
3" are almost zero. Also we can see that R();) of “Method 2” are large when
p is small. From these, we can say that the results of the proposed method
“Method 3” are more accurate than Lust’s method “Method 2”. We will
discuss the results of Lust’s method in Chapter 5 in more detail.

Figures 4.7(a) and (b) show errors d; (3.10) and d; (3.11) for “Method 3,
respectively. We can see that the errors of the computed results of “Method
3” are bounded by the thresholds 6; = , = 10~.
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Figure 4.1: Computed results of the periodic orbits of the nonlinear Mathieu
equations (4.1) with “Method 3”. T : the period. p: the parameter of the
equations.
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Figure 4.2: The Floquet multipliers A; (5 = 1,2) computed with “Method
1" for the nonlinear Mathieu equations (4.1). For initial value problems of
differential equations, the 4th order explicit Runge-Kutta method with the
time increment At = 0.025 is used. p : the parameter of the equations.
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Figure 4.3: Comparison of the computed Floquet multipliers \; (j = 1,2)
for the nonlinear Mathieu equations (4.1) with the implicit Runge-Kutta
methods called the 3rd order RadaullA and the 4th order Lobattollla, re-
spectively. The time increment At of the methods is set to At = 0.025. p:
the parameter of the equations.
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Figure 4.4: Comparison of accuracy of the numerical results of the Floquet
multipliers A; (7 = 1,2) by “Method 1”7 with the implicit methods for the
nonlinear Mathieu equations (4.1). R();) : See (3.35). p : the parameter of
the equations.
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Figure 4.5: Comparison of the computed Floquet multipliers A; (j = 1,2)
by “Method 2” and “Method 3” for the nonlinear Mathieu equations (4.1).
For initial value problems of differential equations, the 4th order explicit
Runge-Kutta method with At = 0.025 is used. p : the parameter of the
equations.
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equations.



44

1 00 I 1 T T | T

10° 5
10710 .
10-15 B ] | 1 1 1 1 x|

0 10 20 30 40 50 60 70
P
(a) Errors d; for the periodic orbits
1 00 1 T T T T T
ot | =10 ;
S

1010 -
10-15 'W"l W I 1 1 1 1 a

0 10 20 30 40 50 60 70

(b) Errors dp for the variational equations

Figure 4.7: Errors d; (3.10) and dy (3.11) for the convergence conditions of
Newton’s method in “Method 3” for the nonlinear Mathieu equations (4.1).
p : the parameter of the equations. d;, d; : threhsolds for the errors d; and
ds, respectively.
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4.2 The FitzHugh-Nagumo equations

The FitzHugh-Nagumo equations [15,32] are given by

dr _

dt _y)

dy

§=qy+x(w—1)(w—p)+z, (4.2)
e _7,

dt ¢

This is a simplified model of Hodgkin-Huxley equations [21] which describes
excitation dynamics of nerve axon. This model (4.2) has an equilibrium z,
at the origin in the state space (z,y,z). In the following computations, p
is used as the free parameter, and g and r are set to ¢ = 0.28288600873
and r = 0.0025, respectively. We computed periodic orbits near x, using
the proposed method “Method 3” with M +1 = 100 and thresholds §; =
d, = 1078, For initial value problems of differential equations in the iterative
method, the 4th order explicit Runge-Kutta method with the time increment
At = 0.05 was used.

Figures 4.8(a) and (b) show the computed periodic orbits, and the cor-
responding time series of equations (4.2) for p = —0.015,0.01, and 0.015.
Similarly to the results of the Mathieu equations, the point =(t) on the pe-
riodic orbit moves very slowly with time near the equilibrium @, and very
fast away from ..

Figure 4.9 shows the computed Floquet multipliers A1, A2, and Az (|A1] 2
|A2| > A3|) using the proposed method “Method 3”. It was found that this
result is almost the same as that using the conventional shooting method
“Method 1” and that using Lust’s method “Method 2” in this figure. We
can see that the ratios II:\\_;Il and JI:\\—;{ rapidly increase with p. Here note that
one of the Floquet multipliers A, of this autonomous system must be equal
to unity [36,31]. In this case, the corresponding eigenvalue A, is As.

Figures 4.10(a) and (b) compare the index of error R(};) (3.35) of the
“Method 17 using the 4th order explicit Runge-Kutta method and the 4th
order implicit Runge-Kutta method, respectively. The time increment At is
At = 0.05. Similarly to the computed results of the Mathieu equations, the



46

implicit method for initial value problems with a sufficiently small threshold
8; = 10712, does not help us obtain accurate Floquet multipliers.

Figures 4.11(a) and 4.12(a) show the computed Floquet multipliers using
Lust’s method “Method 2” and the proposed method “Method 3", respec-
tively. It is found that the index of error R(};) of “Method 2” and “Method
3” are less than 107, Furthermore, Figures 4.11(b) and 4.12(b) show that,
with smaller thresholds §; = d; = dg = 1072, both methods reduce R(};)
less than 10~!!. Since the periodic Schur decomposition for autonomous sys-
tems is constructed such that A\, = Az = 1 as shown in Appendix A, R()2)
of “Method 2” is not displayed in the figures.

Figures 4.13(a) and (b) compare the error E(),) of “Method 17 with that
of “Method 3”. We can see that E()\,) can be reduced using “Method 3”
with smaller time increment At of the Runge-Kutta method, but not using
“Method 1”. :

Figures 4.14(a) and (b) show the errors d; (3.10) and d (3.11) for the
convergence conditions of “Method 3”, respectively. Figures 4.15(a) and (b)
show the iteration number v. The thresholds §; and d, are set to §; =
8, = 10712, It is found that the proposed method “Method 3” enables us
to control accuracy of not only the periodic orbits but also the solutions of
the variational equations with a few iterations, even for considerably small
thresholds.

Finally, Figure 4.16 compares computation time for the periodic orbits
and Floquet multipliers. In this figure, 74+71, T4+72, and 7p+73 represent
the total computation time of the conventional shooting method “Method
17, Lust’s method “Method 2”, and the proposed method “Method 3", re-
spectively. These results show that the proposed method “Method 3” can
produce accurate Floquet multipliers in practical computation time.
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Figure 4.10: Comparison of accuracy of the numerical results of the Floquet
multipliers A; (7 = 1,2,3) by “Method 1”7 for the FitzHugh-Nagumo equa-
tions (4.2). For initial value problems of differential equations, (a) the 4th
order explicit Runge-Kutta method and (b) the 4th order implicit Runge-
Kutta method called LobattoIIIA are used. R(}A;) : see (3.35). p : the
parameter of the equations.
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Figure 4.11: Comparison of accuracy of the numerical results of the Flo-
quet multipliers A; (j = 1,2,3) by “Method 2” for the FitzHugh-Nagumo
equations (4.2). 6, : see (3.10). dg : see (A.5). R(\;) : see (3.35). p : the
parameter of the equations. '
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Figure 4.12: Comparison of accuracy of the numerical results of the Floquet
multipliers A; (7 = 1,2,3) by “Method 3" for the FitzHugh-Nagumo equa-
tions (4.2). d1, 2 : see (3.10) and (3.11), respectively. R(};) : see (3.35). p :
the parameter of the equations.
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Figure 4.13: Comparison of errors of the unit Floquet multiplier A, (= A2)
for the FitzHugh-Nagumo equations (4.2) by “Method 17 and by “Method
3”. At : the time increment of the 4th order explicit Runge-Kutta method.
E(Xy) : the error defined by (3.36). p : the parameter of the equations.
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(b) Error d- of the condition for variational equations

Figure 4.14: Errors of the convergence conditions of Newton’s method in
“Method 3" for the FitzZHugh-Nagumo equations (4.2). d;, d» : see (3.10)
and (3.11), respectively. p : the parameter of the equations.
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(b) Variational equations

Figure 4.15: The iteration number v of “Method 3" with 6; = J; = 10712 for
the FitzHugh-Nagumo equations (4.2). p : the parameter of the equations.
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27 and “Method 3” , respectively. p: the parameter of the equations.



Chapter 5

Discussions

5.1 Significance of two ideas in the proposed
method

The proposed method is based on two main ideas, (I) construction of the
iterative method for variational equations and (II) reduction of round-off er-
rors in the computation of Floquet multipliers using eigenvectors of Xo(T')
as the initial condition of variational equations. Although these two ideas
(I) and (II) are separately described in Sections 3.1 and 3.2, it should be
emphasized that both (I) and (II) are required for accurate computation of
Floquet multipliers. Actually, in Section 3.2, eigenvectors of X o(T") are com-
puted using the iterative algorithm for variational equations. The followings
indicate significance of both ideas (I) and (II) in the proposed method.

We can compute Floquet multipliers without using eigenvectors of X o(T),
namely “Method 3 without eigenvectors”. Figure 5.1(a) shows the computed
results of Floquet multipliers for the FitzHugh-Nagumo equations (4.2) us-
ing “Method 3 without eigenvectors” in which variational equations are it-
eratively solved. Although Xo(T) is accurately computed, the results using
“Method 3 with eigenvectors” shown in Figure 5.1(b) are more accurate than
“Method 3 without eigenvectors”. Thus reduction of the round-off errors us-
ing eigenvectors is critical in the proposed method.

On the other hand we can compute Floquet multipliers without using

o7
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the iterative method for variational equations, namely “Method 3 without
iteration”. Figure 5.2(a) shows the computed results of Floquet multipliers
for the FitzHugh-Nagumo equations (4.2) using “Method 3 without iteration”
in which eigenvectors of Xo(T") are used the initial condition of variational
equations. Although utilization of eigenvectors of Xo(T") reduces the round-
off errors, the results using “Method 3 with iteration” in Figure 5.2(b) are
more accurate than “Method 3 without iteration”. It is because we cannot
control the errors of solutions of the variational equations without iteration.
From these, we can see that the iterative computation of variational equations
is essentially important in the proposed method.
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Figure 5.1: Comparison of accuracy of the numerical results of the Floquet
multipliers A; (7 = 1,2,3) for the FitzHugh-Nagumo equations (4.2) . p :
the parameter of the equations. R(};) : see (3.35).
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Figure 5.2: Comparison of accuracy of the numerical results of the Floquet
multipliers A; (j = 1,2,3) for the FitzHugh-Nagumo equations (4.2) . p:
the parameter of the equations. R();) : see (3.35).
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5.2 Comparison with Lust’s method

Lust’s method improves some other conventional methods. For example,
Figure 4.5(a) shows that Lust’s method “Method 2” produces accurate results
for p > 20 of the nonlinear Mathieu equations (4.1) which the conventional
shooting method “Method 1” cannot solve correctly. However, Figure 4.6(a)
shows that the index R(};) (3.35) of error of Floquet multipliers computed
by Lust’s method “Method 2” is large for small p near the bifurcation point.
That is, the computed results using Lust’s method can be erroneous near the
bifurcation point. We can consider the reason as follows:

The idea of Lust’s method is to use the periodic Schur decomposition of
matrix solutions of variational equations as shown in Appendix A. Then the
variational equations are solved as an initial value problem until the orthog-
onal matrices @ converge. Since the transient state is long near bifurcation
points in general, it takes time for @Q); to converge and the errors of the com-
puted results accumulate due to long time calculation of the initial value
problem. This results in the errors in Figure 4.6(a).

On the other hand, the proposed method “Method 3” iteratively solves
the variational equations using Newton’s method. Consequently, the com-
puted results using “Method 3” are accurate enough even near the bifurcation
as shown in Figure 4.6(b).



Chapter 6

Conclusions

This thesis has considered numerical stability analysis of periodic orbits of or-

dinary differential equations, and proposed a new method to compute Floquet

multipliers with enough accuracy. The basic ideas of the proposed method

are to construct an iterative method to compute the variational equations,

and to utilize eigenvectors of the matrix solution Xo(T") of the variational

equations. Numerical examples showed effectiveness of the proposed method.
The followings summarize each chapter:

Chapter 2 introduced the conventional method to numerically investigate
stability of periodic orbits of non-autonomous ordinary differential equations
given by

dz .

i flt,z) with f(t,z)=f(t+T,x). (6.1)
We can examine stability of periodic orbits ®(t) = ¢] (€o) with the period
T using the variational equations

iX, _of
dr = oz

Xo(r) with Xo(0)=1. (6.2)

to+T, :c=(p{0 (o)

Eigenvalues of Xo(T'), namely Floquet multipliers, determine stability of the
periodic orbit. The proposed method is based on the shooting method which
is one of the commonly used methods. It was shown using numerical examples
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that the shooting method and the standard method to obtain eigenvalues of
Xo(T) can produce inaccurate results when the periodic orbit passes near
the equilibrium point or the ratio of the maximum Floquet multiplier to
the minimum one is very large. These computational errors are due to the
numerical method for the variational equations and round-off errors in the
computation of eigenvalues of Xo(T).

Chapter 3 proposed a new method to numerically obtain Floquet multi-
pliers. The basic ideas are to construct an iterative method for the variational
equations, and to utilize eigenvalues of Xo(T') as the initial condition of the
variational equations. The iterative method enables us to control errors of
the computed results of the variational equations. Utilization of eigenval-
ues of Xo(T) reduces the round-off errors in the computation of Floquet
multipliers.

Chapter 4 showed some computed results for the nonlinear Mathieu equa-
tions and the FitzHugh-Nagumo equations. Comparison with the conven-
tional methods indicated that the proposed method can yield Floquet mul-
tipliers with enough accuracy and practical computational cost.

Chapter 5 discusses significance of the two main ideas of the proposed
method and compares the proposed method with Lust’s method. Numer-
ical examples illustrate the importance of the ideas to accurately compute
Floquet multipliers.

In this thesis, accuracy of computed Floquet multipliers is examined using
some indices given by necessary conditions of them. However, the indices
are not sufficient to verify accuracy of numerical results. We may further
investigate accuracy of numerical solutions using the proposed method, for
example, following the idea of numerical verification methods [41,39,8]. This
remains as future works. Also, the eigenvectors of Xo(T) can be used in
approximation of (un)stable manifolds of the periodic orbits. We expect to
apply the proposed method for computation of (un)stable manifolds.



Appendix A

The periodic Schur
decomposition

An upper triangular matrix A = Qf Xo(T)Qo with an orthogonal matrix
Qo is linearly conjugate to a matrix Xo(T) € R¥*N (2.14) which is the
matrix product of X(hx) (k=0,1,---,M). Using orthogonal matrices Qy
(k=0,1,---, M), the periodic Schur decomposition [4] of X o(T") represents
the conjugate matrix A as the matrix product of upper triangular matrices
Ag € RVN*N gych as

A =QFXo(T)Qo
= QgXM(hM) v Xl(hl)XO(hO)QO
= Q¥ X 1 (has)Qu - - Q3 X1 (h1)Q1QT X o(ho) Qo

=Apm--- A4, (A.1)
where
Ae=QF X1 (i) Qi for k=0,1,---,M—1, (A.2)
and
An = Qg Xn(har) Qur - (A.3)

The orthogonal matrices @y, are constructed by the following steps.
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(i) Construct an arbitrarily orthogonal matrix Qo € R¥*V.

(ii) Using Gram-Schmidt orthonormalization, decompose X k(hi) Qr such
as

Xi(he) Qr = Qri1 Ax (A.4)
for k=0,1,--- ,M.

(iii) If the following convergence condition between Q41 and Qo is satisfied,
finish the iteration and recompute Aps as (A.3), or else, substitute
Q41 into Qo and return step (ii).

The convergence condition in step (iii) is given as follows. Let wj; 41 and
wj denote the j-th columns (5 = 1,2,---,N ) of Qar+1 and Qo, respec-
tively. This iteration is continued until w; 41 becomes oriented to the same
direction of w;g except for the sign, namely, the convergence condition is
given as

dg = zax lwj s+ — sign({wjo, wjars1)) Wioll < dq, (A.5)
for sufficiently small §g > 0 where (-, -) denotes the inner product.

It should be noted that X (k) Qr = ‘I’mek (Qr), namely solutions of the
variational equations (2.13) with the initial condition Q. The computation
of \I!gf’zk(Qk) is iterated in (i), (ii), and (iii) until Q) are converged so
that the condition (A.5) is satisfied. Then, the 1st vector w;; of Q is
most expanded to the direction of the eigenvector for the largest Floquet
multiplier, namely, the largest eigenvalue of X (T).

The method above is available for both of non-autonomous systems and
autonomous systems, but for autonomous systems, we can set more accurate
1st vectors w ; using a theoretical property. The property is that perturba-
tions directed to the vector field f (3.32) is not expanded or contracted on
the trajectory. Write a solution @(t) with an initial condition z(tx) = x\ as
x(t) = @] (@) (7 =1t —1tx). Then, it follows that

dz(t) _ d o] (zx)

dt 5 dt
o ) = 2D pay = X0 5@, (a6)

T=2)
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and this property gives
Frp1 = Xi(hi) Fy., (A.7)

where f; denotes f(x;). Therefore, we can select the orthogonal matrices

Qx as
Q= (i ), (A.8)

where S, € RV*(N-1) are orthonormal matrices. With minor modifications
of steps (i), (ii), (iii), we can iteratively obtain appropriate S as follows.

(i’) Construct an arbitrarily Sy orthonormal to f, so that Qo is orthogonal.
(ii') Using Gram-Schmidt orthonormalization, decompose X (ht)Q) as
Xi(ha) Qn = (i Xelh)Fi Xu(hi)S)
= (ﬁﬁf k1 X k(hk)Sk)
= ("h‘l—"ﬁ'L Xk(hk)Sk)

[FR N E
! I f ksl bT
—_— fk 1 k
- (ll-fk+1” Sk+1) ( ”Jacll Bk)

= Qk+1Ak ) (A'g)

where B;, € RW-Dx(N-1) gre upper triangular matrices and by, € RW-1
for k=0,1,--- ,M.

(iii") If the convergence condition (A.5) is satisfied, finish the iteration and
recompute Aps as (A.3), or else substitute Sp4; into Sp and return
step (ii').

As stated in Section 2.3, we can compute each Floquet multiplier A; as
j-th eigenvalue of the conjugate matrix A, namely, the product of elements
Ar(j, 7) of the upper triangular matrices Ay. It should be noted that this
decomposition of X(T) for autonomous systems gives the unit Floquet mul-
tiplier \, as

M M
“fk+1” ”fM+1”
A= 114D = = =1. A.10

[T A0 =112 = T = (A.10)
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