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1. INTRODUCTION 
 

The Japanese sardine (Sardinops melanostictus) is a valuable marine living resource of Japan, 

and a highly variable one. This variability, probably led by environmental processes (Yatsu et al. 

2005), resulted in a four-years recruitment failure during the late 1980’s which in turn, when 

coupled with excessive fishing, led to severe stock depletion with biomass levels falling one order 

of magnitude between 1987 and 1992. A TAC based management was introduced in 1997 (Nishida 

et al. 2007) but it has done little to reverse this trend, as biomass has kept falling steadily to current 

levels, two orders of magnitude below those of 1987.  

 

1.1. Life history of the Japanese sardine 

The Japanese sardine is a coastal-pelagic fish that forms large schools, migratory, moving 

northward in summer and tending also to move more inshore, the reverse as temperatures begin to 

drop. It feeds mainly on zooplankton, especially copepods, but also phytoplankton. 

Sardines breed from December to the beginning of May, earlier in the southern than the 

northern parts of range, in bays and in coastal parts of open sea; fishes mostly mature in second 

year. They live up to 5-6 years and their size usually range from 15 to 20 cm. (Whitehead 1985) 

 

1.2. Historical background 

1.1.1. Japanese sardine stock trends 

Due to its high numbers and importance to Japan, the Japanese sardine has been widely 

studied, with extended research literature and complete annual stock assessment reports being 

performed since 1996 and available to the public from 2001. A good reconstruction of the earlier 

stock history is given by Wada and Jacobson (1998) who presented a complete recount of the late 

half of the twentieth century. The trend, shown in fig. 1-1, indicates the extreme variability of the 

stock with periods of depletion and recovery. Before the 70’s the stock was at low levels but from 

1971~1972 stock size started increasing rapidly until it reached record levels in the late 80’s. It is 

notable how before the 70’s the exploitation rate was low but then starts rising as the biomass 

increased and the stock became profitable.  

To understand what happened next it is better to use a new source of information, such as the 

data presented in the latest Japanese stock assessment annual report (Nishida et al. 2007), shown in 

fig. 1-2. Here it can be seen how during the early 90’s there were decreases of an order of 

magnitude in biomass and catch in less than a decade, which clearly shows a collapse of the stock. 

Biomass kept falling down until the last 5 years where it seems that it has stabilized around the 130 

thousand tons level. An important difference must be noted in the period after the collapse when 

compared with that before the 70’s when the stock was low, the rate of exploitation stayed at high 

levels even after the stock decreased. 
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Figure 1-1. Yearly changes for the period of 1951-1991 in biomass, catch and rate of exploitation of 

the Pacific stock of the Japanese sardine. Data from Wada and Jacobson (1998) 

 

1.1.2. Reasons behind the stock collapse.  

It is now clear that the stock collapse of the early 90’s was due to natural causes: a recruitment 

failure for four consecutive years (1988-1991) (Watanabe et al. 1995) undermined the ability of the 

stock to maintain its numbers as it did not allow population turnover for almost a generation (fig. 

1-3). The recruitment failure coupled with high fishing rates ultimately lead to the current status of 

the fishery. 

The cause of the recruitment failure has been widely studied and debated as well, with several 

opinions on its ultimate causes, but most authors accept that there is a negative correlation between 

recruitment processes and the sea surface temperature (SST) of the Kuroshio extension southern 

area (KESA) (figs. 1-3 and 1-4), which is the nursery area of the sardine (Yatsu et al. 2005). It has 

also been recognized that this correlation presents prolonged alternate periods of favorable and 

unfavorable conditions, or regimes, and that these regimes change between each other in an abrupt 

and fast fashion, called regime shifts (Wada and Jacobson 1998; Yatsu et al. 2005).  
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Figure 1-2. Yearly changes for the period of 1976-2006 in biomass, catch and rate of exploitation of 

the Pacific stock of the Japanese sardine. Data from (Nishida et al. 2007) 

 

The mechanism behind the relation between the environment and recruitment is still not very 

clear, but many options like optimal growth temperatures (Takasuka et al. 2007), food abundance 

related to the mixed layer depth (Nishikawa and Yasuda 2008) or habitat variability (Itoh et al. 

2009) have been considered. 

 

1.3. Fishery resources management in Japan 

Fishery resources management by means of catch quotas is a relatively recent introduction in 

Japan. Even after the introduction of the 200-nautical miles economic exclusive zones in 1970 by 

the United Nations Convention on the Law of the Sea, it was not until 1994 that Japan adopted this 

convention, which would be later ratified in 1996 approving the introduction of fishery resource 

management by the means of TACs (total allowable catch). 
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Figure 1-3. Recruits per spawner (RPS) of the Pacific stock of the Japanese sardine and sea surface 

temperature (SST) of the Kuroshio Extension southern area (KESA) between 1976 and 2006. The 

orange band shows the four-year recruitment failure. Data from Nishida et al. (2007) 

 
 

 
Figure 1-4. Map showing the general hydrography of the northwest Pacific. Nursery area of the 

Japanese sardine is located in the Kuroshio Extension southern area (~31-35°N and 150-164°E). 

Figure courtesy of Dr. S. Itoh. 
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Since then marine resources in Japan are managed according to the Allowable Biological 

Catch (ABC) guidelines (Fisheries Agency of Japan and Fisheries Research Agency 2007). This 

document describes several management strategies according to data availability which are 

essentially model based strategies with clear and quantitative procedures to calculate ABC. Being a 

data rich stock, in the case of sardine ABC is specified by a management decision rule, or catch rule. 

Management objectives are specified according to this catch rule and simulations to predict future 

states of the stock under different fishing pressures are used as scenarios. However close 

examination revealed that the simulations used to make predictions could be flawed, as recruitment 

is simulated bootstrapping the recruits per spawner (RPS) values of the last 10 years, all of which 

had low levels (i.e. it ignores environmental variation), and it does not consider alternative 

scenarios which are also plausible. This is a clear example what has been called ‘the shifting 

baseline syndrome’ (Pauly 1995), an undesirable condition involving high risks while tending to 

preserve the status quo. It could be argued that using the RPS values of the last 10 years would give 

a conservative management, however due to uncertainty, worst case scenarios have the undesirable 

effect of generating mistrust between decision makers and shareholders, ultimately leading only to 

lengthy haggling and discussions on how to set quotas, which has led to a broad acceptance that 

worse-case scenarios have to be avoided (Butterworth 2007). Although this is not strictly a ‘worst 

case scenario’, its undesirable effects have been seen in the Japanese sardine fishery and have 

resulted in the continuous setting of very high quotas, as can be seen in fig. 1-5. 
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Figure 1-5. Yearly values of stock biomass, actual catches and catch quotas (TAC -total allowable 

catch-) for the Pacific stock of the Japanese sardine since the introduction of TACs in 1997 to 2009. 

Note how quotas have been set at high values and that actual catches have almost always been 

below the quota. Data from Nishida et al. (2007) 
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Using a management strategy based on possibly flawed predictions and only one population 

dynamics scenario potentially contradicts the recommendations of the FAO Precautionary 

Approach Guidelines which states that decision rules are required for precautionary management 

measures and that the feasibility and reliability of the management options needs to be evaluated, 

so that “a management plan should not be accepted until it has been shown to avoid undesirable 

outcomes” (FAO 1995).  

 

1.4. Management strategy evaluation using operating models 

For this study I used a management strategy evaluation framework, which involves computer 

intensive methods to help to determine the most suitable management approach for different 

management objectives. 

This framework has received various names, but it is mainly known as Management Strategy 

Evaluation (MSE) (Smith et al. 1999) or as Operating Management Procedure (OMP), as proposed 

by Butterworth (see for example refs. Butterworth and Bergh (1993); Rademeyer et al. (2007)). The 

MSE/OMP framework was developed from the Revised Management Procedure of the 

International Whaling Commission, and has been described as “a set of rules for calculating annual 

catch limits from available stock information where the rules are determined with the assistance of 

models of the dynamics of the stock” (Kirkwood 1997). Such models are called Operating Models 

(OM), and they are used to simulate the “real” dynamics of the stock under different assumptions, 

as well as the assessment-management process and its uncertainties.  

 
1.5. Purpose of this study 

Following the FAO Precautionary Approach recommendations, I aim to evaluate the 

performance, potential for stock recovering and robustness to uncertainties of different 

management strategies. Good OMs are essential for MSE thus I intend to construct a full OM for 

sardine that is highly flexible but still reliable under a wide range of assumptions and scenarios. I 

also propose a management strategy that can adapt to the different stock and environmental 

conditions, and compare its performance against ABC and a basic management strategy. 

Later I discuss the implications of uncertainty and of different management priorities for the 

selection of the most adequate strategy, focusing my discussion on stock recovery objectives. 
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2. DEVELOPMENT OF THE OPERATING MODEL  
 

To evaluate different management options and their robustness to uncertainty, traditional 

evaluation methods like the use of past data are not very useful, since they only account for already 

observed states of the system, while analytical methods would present as terribly difficult, therefore 

we needed to take a different approach to the problem at hand. The solution was found through 

modeling the population dynamics not as a single “correct” model, but as a series of different 

models representing plausible scenarios or sets of assumptions, and then testing the management 

strategies over each single model, an MSE approach.  

For this study, I constructed a three-section OM constituted by a stock dynamics section, a 

stock assessment section and a management section, related among them as shown in fig. 2-1. The 

stock dynamics section contains all the different assumptions about the population inner dynamics 

(like various recruitment processes, presence or absence of environmental effects and fishing 

selectivity by age), the stock assessment section was modeled so that it resembles the actual 

assessment process, and the management section contains the three different management strategies 

that I wanted to evaluate.  

 

2.1. Data 

Data on biomass, weight, numbers, mean fecundity, fishing mortality and catches structured by 

age class (0 to 5+) and year (1976-2006) as well as recruitment by year (also 1976-2006) was taken 

from 2007 Japanese Stock Assessment Report (Nishida et al. 2007). 

Data on SST for KESA was obtained from two sources: the Japanese Meteorological Agency 

(JMA) (reported in Yatsu et al. (2005)) and the British Atmospheric Data Centre (BADC) 

ukmo-hadisst database (UK Meteorological Office 2006, 2009). Following the findings of Yatsu et al. 

(2005), I used the average SST of the winter months (January to March) in the nursery grounds in 

KESA, 31-35°N and 150-164°E. Original data had the form of monthly SST averages for 1° blocks. 

Only data from 1950 to 2008 was taken.  
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Figure 2-1. Simplified scheme showing the relations among the three sections (stock dynamics, 

stock assessment and management) in the operating model.  

 

2.2. Stock dynamics section 

The Stock dynamics of sardine were simulated using an age-structured model on which three 

main processes were controlled: recruitment, survival and growth.  

 

2.2.1. Recruitment: 

Three possible stochastic stock-recruitment models were considered. A Ricker model (Hilborn 

and Walters 1992)  

 SR Se eα β ε+=  (1) 
where α and β are parameters, S is the spawning stock biomass (see below) and ε is an error term. 

For convenience, (1) was rewritten as 
 ln RPS Sα β ε= + + , (2) 

where RPS is recruits per spawner.  

The second model was a modified Ricker model with environmental effects (Basson 1999) 

 ( S E )R Se eα β γ ε+ +=  (3) 
again, rewritten for convenience as 

 ln RPS S Eα β γ ε= + + +  (4) 

where α, β and γ are parameters and E is an environmental covariate, in this study the SST of 

KESA.  

Parameters were estimated from the data for recruitment and biomass in Nishida et al. (2007) 

(data period 1976-2006) using maximum log likelihoods with log-normal distribution, thus ε are 
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independent, normally distributed errors, ~ 0, . For equation (3) parameter estimation, 

environmental data from either BADC or JMA was also used thus providing two different sets of 

parameters. Estimated values for all parameters as well as each model’s fit (given by AIC) are 

shown in table 1.  

 

Table 1. Parameter values and AIC for all recruitment models 

Model/Parameter α β γ σε AIC 

Ricker 3.611 -0.000156 -- 1.268 171.6 

Ricker with environment JMA 30.187 -0.000156 -1.559 1.119 161.2 

Ricker with environment BADC 22.744 -0.000156 -1.136 1.203 168.4 

 

Spawner stock biomass, S in year t is given by the equation 

  (5) 
5

, ,
1

t a t a t
a

S N w
=

=∑ ag

where Na,t is the number of fish in the cohort of age a in year t, wa,t is the average bodyweight of 

age a in year t and ga is the fecundity index (ratio of mature individuals) of age a, assumed constant 

across time (table 2).  

 

Table 2. Fecundity index for all age-classes 

Age 0 1 2 3 4 5+ 

Fecundity index 0 0.5 1 1 1 1 

 

lnRPS was capped at 6 ln(recruits/kg spawner) for stock biomass values below 500,000 tones 

and at 4 ln(recruits/kg spawner) for stocks higher than that. These maximum values correspond to 

the maximum observed values in the historical data (Nishida et al. 2007). 

 

2.2.2. Weight-at-age: 

Body weight in sardines is highly variable and appears to be negatively correlated with the 

total stock biomass (fig. 2-2), thus modeling age-specific body weight as constant with respect to 

year did not seem appropriate. To simplify the model, instead of using a growth model like Von 

Bertalanffy’s model, the weight-at-age of a single age class a in a given year t was assumed to be a 

linear function of the stock biomass of the form 

 ,t a a a t aw m p B 1 ε−= + +  (6) 

where m and p are parameters, wt,a is the average weight of an individual of age class a in year t, 

Bt-1 is the total stock biomass in year t-1 and ε is a normally distributed error term, ~ 0, . 

Parameters were estimated by linear regression and the obtained values are shown in table 3.  
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Figure 2-2. Correlation between mean weight-at-age and stock biomass showing the central trend 

calculated with linear regression. 

 

Table 3. Estimates of parameters of the density-dependent weight-at-age model using linear 

regressions. 

Age class ma pa σ R2 P 

0 24.9 -0.00074 8.66 0.27 <0.01 

1 57.8 -0.00083 9.34 0.29 <0.01 

2 87.8 -0.00164 10.45 0.56 <0.001 

3 109.3 -0.00190 10.66 0.63 <0.001 

4 123.6 -0.00173 13.34 0.48 <0.001 

5+ 136.4 -0.00153 12.39 0.45 <0.001 

 

2.2.3. Survival and catch dynamics (including age selectivity processes) 

An age-structured model was used, which means that the modeled population is divided into 
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age-classes or cohorts. Each one of these enters the fishery through recruitment at age 0 and from 

there its numbers decline exponentially driven both by natural and fishing mortalities. Survival, or 

how many individuals of age a survive from year y to y+1, was derived from the cohort analysis 

initially developed by Pope (1972) and modified by Hiramatsu (2001). The survival process is thus 

defined as 

,
1, 1 ,

a yM F
a y a yN N e− −
+ + =  (7)  

where Na,y is the number of individuals of age a at the beginning of year y, M is the natural 

mortality coefficient which is assumed constant and to have a value of 0.4 (Nishida et al. 2007), 

and Fa,y is the fishing mortality for age a in year y (see below). Assuming that catch is taken on a 

single pulse in the middle of the year, it can be defined as 

  (8) , /2
, , (1 )a yF M

a y a yC N e e− −= −

where Ca,y is the catch in number of age-class a individuals on year y.  

Since the maximum age-class is a plus group including ages 5 and older, to calculate the 

number of individuals of this age-class in year y+1, assuming that Fp=Fp-1 equation (7) can be 

modified as 

 ,
, 1 , 1,

1,p yM F M F
p y p y p yN N e N e −− − − −

+ −= + p y  (9) 

where Np,y is the size of the plus group in year y and Fp,y is the fishing mortality for the plus group 

on year y, defined as in equation (8).  

Fishing mortality is also very variable across different age-classes and time and was not found 

to be correlated with any of the population variables studied (stock and cohort biomass and 

numbers, weight-at-age, recruitment and SST) so the age specific Fa,y was assumed to be random 

and to follow a normal distribution ,  with parameters μ and σ estimated from past data.  

 

2.2.4. Environmental data generation 

Since the OM is not spatially explicit there was no need for a detailed model to generate SST 

data; instead, it was generated randomly from past data. However, it is important to consider that 

sardines show good and bad production regimes and that these seem to be related to environmental 

variation (Wada and Jacobson 1998), so to imitate this behavior first the winter average of the SST 

in KESA for each of the last 58 years (1950-2008) was assigned to either favorable or unfavorable 

regimes based on the year’s reproductive success, as defined by Wada and Jacobson (1998). 

Unfavorable regime was thus assumed to happen during 1951-1970 and 1988-2008 and favorable 

during 1971-1987. 

Having defined the regimes, to generate environmental time series an algorithm was built to 

continuously draw values at random from a given regime set. Regime shifts were also simulated 
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randomly and had a probability P to occur in a given year. Due to the apparent bidecadal nature of 

regimes, P was assigned a value of 0.05 and assumed constant across time so that in average a 

regime shift would occur every 20 years. 

This procedure was applied independently to each of the two datasets used. The typical 

behavior of the algorithm is shown in fig. 2-3. 
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Figure 2-3. Example 50-year SST time series generated using the described algorithm (see above) 

with JMA (upper) and BADC (lower) datasets. Thin blue and thick purple lines correspond to 

yearly SST and moving average (n=4) respectively. Note the regime shifts occurring approximately 

every 20 years. 

 

2.3. Assessment section: 

The catch rules considered use two data inputs, stock biomass and SST. SST is assumed to be 

measured without error but not stock biomass, which is estimated by actual biomass plus random 

error, and follows a simple equation 
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ˆ
y yB B eε=  (10) 

where ε follows N(μ,σ2). In this case μ gives the bias and σ gives the error. Recruitment was 

estimated the same way 

ˆ
y yR R eε=  (11)  

 

2.4. Management section: 

Using the data obtained through the assessment process, management is performed according 

to one of three predefined management decision rules, or catch rules. Management follows the 

sequence data gathering (assessment)→fishing mortality calculation→quota setting→catch. The 

quota is assumed to be caught completely unless it is higher than 0.6 of the total biomass which is 

defined as the upper catch limit and corresponds to the historical maximum fishing rate. 

 

2.4.1. Constant fishing mortality strategy (hereafter referred as CF)- Also known as ‘constant 

fishing effort policy’, CF is a widely used basic management strategy that is independent 

of any reference points where the same fishing pressure is applied across all values of stock 

biomass (Hilborn and Walters 1992) (fig. 2-4a). 

2.4.2. Japanese allowable biological catch guidelines catch rule (hereafter referred as ABC) - A 

feedback management strategy, it uses two biomass reference points (Bban and Blim) and a 

fishing mortality one (Flim). Flim sets the maximum F allowed, Blim can be considered a 

“security level” below which F decreases linearly until it reaches Bban, the fishery closure 

level where F becomes 0 (fig. 2-4b). It is more conservative than CF because a lower F is 

given when the stock size is below a critical level. 

2.4.3. Environmental based management catch rule (hereafter referred as EBM) - A modification 

of ABC based on an idea by King and McFarlane (2006) and also a feedback strategy, 

EBM has the same three reference points plus an environmental one which acts as a 

threshold to switch between alternative states. The environmental threshold is given by the 

SST and was set arbitrarily at 17.1°C, value slightly above the middle point between the 

average temperatures of good and bad regimes identified by Wada and Jacobson (1998). If 

the SST is higher than this threshold, the catch rule is modified by a factor λ = 0.6, whose 

value was selected through simulations (fig. 2-4c). This strategy is the most conservative 

among the three strategies because F is reduced further when the environment is 

unfavorable. 
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Figure 2-4. Catch rules for the evaluated management strategies: Constant fishing mortality (CF) 

(a), Japanese ABC guidelines (b) and environmental based management (EBM) (c), showing 

biomass reference points (Blim and Bban) and F values. For CF, the same F is maintained across all 

biomass levels; for ABC and EBM, above Blim, F has a maximum value of Flim; between Blim and 

Bban, F decreases as biomass does; below Bban F is 0. In EBM, when the environmental proxy 

crosses some value, F is modified by a factor λ. 

 

2.4.4. Quota calculation 

The fishing quota is given by a TAC which is calculated using equation (8) written as  

  (12) 
ˆ /2ˆ (1 )F M

y y tT C B e e− −
−Δ= −A

where TACy is the quota for year y, ∆  is the estimated biomass for year y-Δt, Δt is the time 

lag between assessment and management and  is the fishing mortality estimated from the catch 

rule using ∆ . An upper limit for the TACy value was set at 0.6By, which is the highest historical 

fishing rate observed (Nishida et al. 2007). 

 

2.5. Underlying assumptions 

For the construction of this model a few important (but hidden) assumptions had to be made. 

First, the OM does not consider any economical or social dynamics. This is a major flaw in the 

model however for the objective of this work I only needed to assume that all management 

decisions are taken with scientific advice as the only driver. 

Another major hidden assumption is that only environmental trends on short- and mid-term 

scales are considered, this means that only inter annual and bidecadal (regime shifts) are included, 

while the possible effects of long-term trends like climate change and global warming are ignored. 

A third hidden assumption is that, except for environmental influences, the population is 

assumed to be ecologically isolated i.e. the population is closed (no immigration/emigration 

processes) and there are not any interactions with other species (like predation/competition). This 

assumption highly simplifies the model but prevents a more comprehensive picture of the small 

pelagic fisheries system, which is known to be correlated. 
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2.6. Study scenarios and details 

2.6.1. Sources of uncertainty 

Uncertainty had to be explicitly taken into account and the six sources of error identified by 

Francis and Shotton (1997) served as a useful start points. These six sources are: process, 

observation, model, error structure, estimation and implementation uncertainties.  

Process uncertainty arises from natural variability, not error, and is defined as ‘random 

variation in demographic rates and processes’ (Francis and Shotton 1997). In the model it is 

represented by the uncontrolled stochasticity present in recruitment, weight-at-age and 

age-selectivity.  

Observation uncertainty arises during data collection through measurement and sampling error, 

thus it exists in the assessment process where actual biomass is unknown and estimated with error.  

Model uncertainty arises from lack of information in the workings of the system and as such 

appears in the multiple recruitment scenarios considered. Error structure uncertainties were not 

explicitly included in the model as all processes were assumed to follow a normal or log-normal 

distribution. 

Estimation uncertainties, which arise from the effect of the previous three sources, is related to 

the process of parameter estimation and is also considered in the multiple recruitment scenarios, 

more clearly in the difference between the parameters of similar models estimated using 

environmental data from the alternative sources (BADC and JMA). 

Implementation uncertainties or “the extent to which management policies will be successfully 

implemented” (Francis and Shotton 1997) is also not directly included, as the quota set by the 

model is assumed to be caught completely, however the existence of time lags between assessment 

and management could be considered related to implementation uncertainties, as the assessment 

from any given year is not available for management purposes until the next one.  

 

2.6.2. Simulations/Scenarios considered. 

Since reality is not completely understood, to study the effect of the different sources of 

uncertainty various scenarios had to be considered. Differences in recruitment and environmental 

influence on this presented three scenarios given by the different recruitment models, while time 

lag between assessment and management, and nature of the quota set presented two scenarios each 

(1-year lag and no lag, and quota as a fishing mortality value or as a catch quota, respectively).  

Using Monte Carlo simulations with 1000 iterations, each scenario was evaluated over a 

comprehensive range of Flim, between Flim = 0.05 and 1.8. 

 

2.7. Model behavior 

Before proceeding with the evaluation, the OM had to be checked to test if it behaved in a 

realistic manner. This was done visually, checking that during simulations the stock would not rise 
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above historically observed levels, that it would not increase rapidly even under high fishing 

mortality values or that it would not collapse easily under low Fs. 

 

2.8. Performance statistics 

I selected depletion risk, mean biomass and mean catches as performance statistics. Depletion 

risk was defined as the probability of the stock to fall below certain level. Since the stock is already 

depleted, with current biomass levels estimated around 131,000 tons, I arbitrarily set the depletion 

level at 100,000 tons, a level close to current one. This index should be interpreted as the 

probability of further depletion. 

Mean biomass and mean catch should not be understood as predictors of future behaviors but 

as indicators of management potential. Due to high variability of the stock, mean, and not minimum 

or maximum values, were chosen.  

Variance of catches was not used because on one hand catches variability is dependent both in 

management and natural sources and the later could easily mask the effect of the earlier. On the 

other hand, values of catch variance tend to be difficult to interpret and make sense of for people 

without a strong background in stock assessment theory (and even those with it) (Butterworth and 

Punt 1999), so this information will not be presented.  

To summarize, performance statistics were summed across scenarios. No weightings were used. 

Performance statistics were not summed across Flim values. For easiness of visualization, profiles 

were drawn across values of Flim for the three performance statistics. To evaluate relative 

performance, results were normalized dividing by the overall lowest performing management 

strategy’s outcome values. 

It seems important to remind that it is not the purpose of this study to search for the optimal 

value of Flim but the general evaluation of the different catch rules across a wide range of 

possibilities. 

 

2.9. Sensitivity to uncertainty 

The effect of different levels of environmental influence and time lags between assessment 

and management on the relative performance of the three described management strategies was 

evaluated.  
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3. RESULTS 
 
3.1. Model performance  

The operating model showed to perform according to expectations as is shown in fig. 3-1. High 

variability can be observed, especially under low fishing pressures, but no anomalous behaviors 

were observed under any scenario.  

When evaluated using JMA data the environment had a stronger influence on recruitment than 

when analyzed using BADC data, as can be observed in both the value of the γ parameter of the 

recruitment equations (higher on JMA) and model fitting (lower AIC for JMA indicating better fit) 

(table 1). This is based on the assumption that the estimate ofλfrom JMA data shows a strong 

environmental effect on recruitment and that an estimate from BADC data shows a weak effect. 

 

3.2. Evaluation of management strategy performance 

Figures 3-2 and 3-3 show the summarized performance statistics profiles across values of Flim. 

All management strategies presented responses of the same shape but different magnitude. In all 

cases higher biomass represented lower depletion risk, with biomass monotonically decreasing and 

risk increasing in a logistic fashion as Flim increases. As Flim increased, catches initially increase 

until a maximum is reached and from there decrease. Long and short term responses were different 

and as such will be analyzed separately. 

On the long term (fig. 3-2), as Flim increases depletion risk increases in a logistic fashion with a 

sharp increase between Flim≈0.3~0.8 for CF and Flim≈0.7~1.2 for both ABC and EBM. EBM, which 

is the most conservative strategy, shows the best performance with ABC following closely while 

CF presents a considerably worse behavior. The 50% risk of depletion levels were reached at 

Flim≅0.82, 0.75 and 0.46 for EBM, ABC and CF respectively. High biomass potential levels were 

observed at low levels of Flim, and then decreased rapidly in an exponential fashion as Flim increases. 

As before, EBM shows the best overall performance followed by ABC and CF as showing the 

worst of the three. Catch potential showed its maximum levels at low Flim values, between 0.2 and 

0.3. These levels were similar for all three strategies, with ABC being only slightly better, while at 

lower Flim values EBM had the best performance, again followed by ABC and then CF. Although 

EBM performance in catch may be worse in some cases, no remarkable differences were detected 

in the long term case, and only 10-15% decreases in catch (when compared with CF) was detected. 

This shows EBM works well taking account of the management objective of recovering the stock 

from depletion with the lowest risk. 

Since biomass and catch potential present high variability, it can be useful to look at their 

relative instead of absolute performances (fig. 3-3). Both show the same response shape with all 

three strategies having a similar behavior at low Flim levels and a strong difference at higher ones, 

where EBM clearly displays a superior performance to that of ABC and CF. CF has the worst 
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performance of the three, with EBM and ABC showing biomass levels more than four times larger 

at the highest difference. 

Short term results show that feedback strategies still present lower risk and higher biomass 

potential than CF, but catch potential was similar for all three strategies. It is also noteworthy that 

ABC and EBM show no appreciable difference. 

 

3.3. Sensitivity to environmental effects 

Figures 3-4 and 3-5 show the performance statistics for the different environmental effects 

scenarios. No difference was observed at low Flim levels; at higher levels it was observed that under 

strong environmental influences EBM clearly outperformed both ABC and CF in the long term, 

while in the remaining scenarios EBM and ABC performed similarly and outperformed CF. These 

results indicate that management outcomes are sensitive to environmental influences. Since EBM is 

the most conservative rule, it still produces the best results 

 

3.4. Sensitivity to time lags between assessment and management  

Figures 3-6 and 3-7 show the performance statistics for the different time lags. No major 

difference in the relative performance of the management strategies was observed between 

scenarios, which indicates that time lags may not be a major source of variation between strategies. 

Only a small difference could be appreciated in biomass, where CF registered lower levels when a 

time lag was present. 
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Figure 3-1. Sample future projections for 20 year using strong environmental effects (λ= -1.56) 

and Flim=0.8, showing 5 iterations. 20 year projections are run using each of the management 

strategies evaluated: allowable biological catch (ABC), environmental based management (EBM) 

and constant fishing mortality (CF). Note how in some iterations the biomass presents behaviors 

similar to those seen in the past, like those seen in figure 1-2. Different colors show different 

iterations. 
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Figure 3-2. Performance statistics profiles for the three management strategies across a range of 

Flim values evaluated both over short (5-year) and long (20-year) terms. Lower risk, higher biomass 

and higher catches are desirable. Note how catches are maximized at different values of Flim when 

considered long and short terms. Green, blue and purple lines correspond to CF, ABC and EBM 

respectively.  
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Figure 3-3. Relative performance statistics profiles for the three management strategies across a 

range of Flim values evaluated both over short (5-year) and long (20-year) terms. Higher biomass 

and catches are desirable. Note how in the short term ABC behaves very similar to EBM. Green, 

blue and purple lines correspond to CF, ABC and EBM respectively. 
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Figure 3-4 Results of sensitivity to environmental effects for the three management strategies 

comparing performance statistics profiles across a range of Flim values evaluated over the long 

(20-year) term. Biomass and catch profiles are normalized. Lower risk, higher biomass and higher 

catches are desirable. Note how under weak and no environmental effect ABC behaves very similar 

to EBM, but differences arise when strong effects occur. In all cases feedback control strategies 

outperform CF, except at very low levels of Flim where behavior of the three strategies is similar. 

Green, blue and purple lines correspond to CF, ABC and EBM respectively. 
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Figure 3-5 Results of sensitivity to environmental effects for the three management strategies 

comparing performance statistics profiles across a range of Flim values evaluated over the short 

(5-year) term. Biomass and catch profiles are normalized. Lower risk, higher biomass and higher 

catches are desirable. Note how under all levels of environmental effect ABC behaves very similar 

to EBM. Differences between CF and feedback control rules exist in risk and biomass, but catches 

present a similar behavior. Green, blue and purple lines correspond to CF, ABC and EBM 

respectively. 
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Figure 3-6. Results of sensitivity to time lags for the three management strategies comparing 

performance statistics profiles across a range of Flim values evaluated over the long (20-year) term. 

Biomass and catch profiles are normalized. Lower risk, higher biomass and higher catches are 

desirable. Note how ABC behaves very similar to EBM regardless of a time lag. In all cases 

feedback control strategies outperform CF, except at very low levels of Flim where behavior of the 

three strategies is similar. Green, blue and purple lines correspond to CF, ABC and EBM 

respectively. 
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Figure 3-7. Results of sensitivity to time lags for the three management strategies comparing 

performance statistics profiles across a range of Flim values evaluated over the short (5-year) term. 

Biomass and catch profiles are normalized. Lower risk, higher biomass and higher catches are 

desirable. Note how ABC behaves very similar to EBM regardless of a time lag. Differences 

between CF and feedback control rules exist in risk and biomass, but in catches present a similar 

behavior. Green, blue and purple lines correspond to CF, ABC and EBM respectively. 
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4. DISCUSSION 
 
4.1. Model 

Model complexity has to depend on its objectives and every new parameter or complexity level 

needs to be justified. It is widely accepted that simplicity is desirable in models used for prediction; 

operating models on the contrary can benefit from the additional complexity allowing direct control 

over the sources of uncertainty and thus enabling more detailed analysis. Although it is usually 

preferable to have simple models that can be easily controlled, traced and understood, the Japanese 

sardine presented an interesting case where simple models tend to produce unrealistic results and 

behavior, thus more complex models did provide a good solution, as shown in this study that 

incorporates environment dynamics, different recruitment models and weight-at-age 

density-dependence.  

 

4.2. Management strategy evaluation 

The selection of performance statistics was appropriate as it permitted to observe differences 

between the different strategies evaluated. 

From the three strategies evaluated, no ‘best one’ can be singled out. CF strategy performed 

poorly under most cases and as such should be avoided. Feedback control rules (ABC and EBM) 

performed more satisfactorily but differences between them are more blurry. EBM apparently could 

be considered as the best option from most performance indexes but it does introduce additional 

complexities into the management process which may be undesirable, as it implies that quotas 

could reduce from one year to the next one even if biomass stays at a stable level. On the other 

hand EBM shows an important reduction of risk when compared with ABC, more notably when 

environmental influences are strong making it an ideal candidate for risk adverse management 

objectives like those of a stock recovery program.  

ABC’s long term performance is sub-optimal but it does not present the uncertainties that EBM 

carries making it a better choice for short term objectives. Short term thinking tends to be 

disregarded as unsustainable but it can present a reasonable case when big economic uncertainties 

are at play. High discount rates may be the clearest example of this, where high present values 

would present a strong incentive against conservation of the resource (Clark 2006) as could easily 

happen in a scenario of social insecurity and high resource variability, such as is the case of the 

South African small pelagics’ fisheries (Butterworth and Bergh 1993). If it could be proven that the 

Japanese sardine will recover easily with good environmental conditions, disregard of the fishing 

pressure imposed on it, short term thinking would also present a reasonable case as environmental 

variation would become the main source of uncertainty, as it has been shown that environmental 

variability should be considered a source of higher discount rates (Clark 2006). 

There are ways that could avoid these potential dilemmas, for example if small pelagic fishes 
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are indeed strongly dependent on environment and a feedback strategy like EBM is applied, 

assuming that quotas are enforced the final cumulative effect would probably be the same as those 

a target switching strategy like was described by Katsukawa and Matsuda (2003), reducing 

economic uncertainties while ensuring resource sustainability. This possibility should be explored 

in more detail.  

This study shows the importance of strategy evaluation and the necessity of clear a priori 

objectives to be defined in any management decision making scenario. It is clear that there are no 

‘silver bullets’ in fisheries management, higher catches will almost invariably bring lower biomass 

and increasing risk, long-term objectives stand at odds with short-term benefits and so on. Selection 

of management strategies will always involve trade-offs and thus needs to be based on objectives 

set beforehand.  

 

4.3. Implications for current management practices 

All three management strategies could be directly applicable to current management, as all the 

data needed is already being collected both by the Japanese Fisheries Research Agency and the 

Japan Meteorological Agency. 

Initially I wanted to evaluate the current management approach so that it could be compared 

side by side with the strategies shown here; however, lacking economic data and knowing that there 

is difference between ABC, TAC and actual catch, it became clear that it would be almost 

impossible to simulate it, as the driver force behind the actual fishery’s dynamics appears unknown. 

A theoretical model could still be developed but the high subjectivity and lack of clear decision 

rules would make it very hard to compare with rule-based management. These facts alone already 

render the current management approach as undesirable under the FAO Precautionary Approach 

paradigm which demands that management procedures have clear objectives and involve 

pre-specified decision rules which were evaluated in advance (FAO 1995).  

Prediction-based management has the undesirable effect of leaving the TAC setting decision 

open to discussion where energy is wasted in arguments over quota haggling and assessment results, 

often lead by agendas rather than scientific means. On the contrary, MSE based management 

frameworks, by predefining the actions that should be taken given existent data, can reduce 

haggling time and pressure to address short-term issues, creating the opportunity to focus more on 

longer-term research efforts (Butterworth 2007). 

MSE also has the advantage of indicating areas where research should be prioritized. Given the 

sensitivity of management strategies to environmental effects, this seems a good candidate for 

research prioritization. Other sources of uncertainty like sensitivity to bias in assessments and 

model selection should be evaluated, as these could provide valuable information for managers.  

Another implication of the present study is the strong necessity for an in-depth economic 

research of the fishery. As was seen in the previous discussion, the importance of economic factors 
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cannot be stressed enough. Differences between TAC, ABC and actual catches suggest that the 

fishery could be being driven entirely by economic behavior with no actual ecological control. Data 

from the last five years (fig. 1-2) show an almost complete stop in the decreasing trend of the stock, 

stabilizing around 150000 tons. ABC and TACs have also stabilized, however the direction of 

causality is obscure. It could be that TACs are being respected generating a stabilizing effect, but it 

is also possible that a point of bionomic equilibrium has been reached. This is a distressing 

possibility that needs to be explored.  
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5. CONCLUSIONS 
 

For any management strategy selection process to be sensible, clear management objectives 

must be stated a priori, as it was shown that there is no single best approach for all cases. Different 

management strategies work better under different objectives.  

 

MSE has the advantage of pointing areas where research efforts should be concentrated. This 

study showed that focusing research in the strength of the link environment-recruitment would give 

valuable information for management, as selection the relative behavior of strategies seemed to be 

sensitive to this factor. It also seems imperative to conduct an economic study of the fishery, as this 

seems a key driving factor of many aspects of its dynamics, but other sources of uncertainty could 

also be explored. 

 

If the Precautionary approach is to be taken into account in current management in Japan, 

given the currently depleted status of the stock it is necessary to adopt a long-term thinking 

framework and that recovery should become a priority. MSE presents itself as a good tool under 

such a framework, as its procedures and methods coincide with most of the recommendations from 

the Precautionary approach.  
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