東京大学大学院新領域創成科学研究科 環境学研究系自然環境学専攻 地球環境モデリング分野

2009年度

修士論文

赤外線天体望遠鏡を用いた温室効果ガスの観測

Observation of greenhouse gases from ground-based infrared astronomical telescopes

提出 2010年2月26日

2009年度3月修了

指導教員 今須 良一 准教授

47-086638 林洋司

1	序論		1
	1.1	温室効果ガス	1
	1.2	温室効果ガスの大気観測	2
		1.2.1 様々な観測手法	2
		1.2.2 地上リモートセンシング	5
		1.2.3 TAO 計画	6
	1.3	研究の目的	6
	1.0		Ŭ
2	観測	手法	7
	2.1	観測地	7
		2.1.1 すばる望遠鏡	7
		2.1.2 miniTAO 望遠鏡	8
	2.2		9
		2.2.1 COMICS	9
		2.2.2 観測対象	1
		223 観測頻度 1	1
		2.2.6 観測原復の種類 1	1
			T
3	解析	手法 1	4
	3.1		4
	3.2	大気の吸収スペクトルの導出	6
	0.1	3.2.1 解析ソフト 1	6
		3.2.2 撮像画像の解析 1	7
		323 分光画像の解析 2 3 分光画像の解析	2
		3.2.0 別光首はの時間 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	<u>-</u>
	2 2	3.2.4 周光 アビス 200 (2.4 周光) (2.4 mm) (2.	1
	0.0	<u>価主効未り入め</u> 時们テム 991 - 昭旧物質の半学的同文の道中 9	1 1
		3.3.1 吸収初員の儿子的序Cの等山	่ 1
		3.3.2 血主刈木ガスの等山 · · · · · · · · · · · · · · · · · · ·	-2
4	解析	結果 3	3
-	4 1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3
	4.2		4
	1.2	29日月1日	28
	4.0		0
	4.4		.0
5	結論	4	1
0	5 1	▲論 //	1
	5.2		1
	5.4	/kz · · · · · · · · · · · · · · · · · · ·	Ŧ
謝君	锌	4	2
2.5. F		-	-
参	考文献	4	3

1 序論

近年、世界中で地球温暖化が原因とされる現象が確認されており、地球温暖化は人類共通 の問題となっている。地球温暖化の主要な原因は人為起源の温室効果ガスと考えられている [*IPCC*, 2007]。温室効果ガスは人間活動の様々な場面で排出されているが、排出された温室 効果ガスが地球大気中でどのような挙動を示し、その結果としてどのような気候変化が起き ているか、また起きる可能性があるかということを解明することが重要である。そのために は、温室効果ガスの時間・空間変動を正確に把握する必要があり、現在、地球規模で温室効 果ガスの大気観測が行われている。

1.1 温室効果ガス

温室効果ガスは赤外線を吸収する気体の総称である。具体的には水蒸気、二酸化炭素、オ ゾン、一酸化二窒素、メタン、フロン類などがある。太陽放射は主に可視光線と紫外線、地 球放射は主に赤外線を放射しているため、温室効果ガスは太陽放射の大部分を透過し、地球 放射の大部分を吸収する (図 1.1)。以下に太陽放射スペクトル、地球放射スペクトル、大気 上端から地表面までの代表的な温室効果ガスの吸収による透過率の波長分布を示す。

図 1.1: 太陽放射、地球放射及び主な温室効果ガスの吸収による大気の透過率 太陽放射スペクトルと地球放射スペクトルは最大値が1になるように規格化されている。また、気 体ごとの透過率は熱帯モデル大気を用いて計算されている。(「光の気象学」より)

図 1.1 の気体ごとの透過率の波長分布のグラフから、それぞれの気体固有の吸収線を確認す ることができる。また、気体分子と相互作用を起こす光の波長は量子力学的にも計算するこ とができ、吸収線の波長と吸収強度などの関係は HITRAN[e.g., *L.S.Rothman et al.*, 2008] などにデータベース化されている。

1.2 温室効果ガスの大気観測

1.2.1 様々な観測手法

温室効果ガスの観測手法は現場での直接的な観測と、リモートセンシングによる間接的な 観測に大別できる。ここでは、それぞれの代表的な観測手法について簡潔に解説し、現状の 問題点を示す。

直接的な観測では、主に、非分散型赤外分析計 (NDIR: Non-Dispersive InfraRed analyzer) やガスクロマトグラフィーを用いた観測が行われている。これらの観測手法は観測の精度が 高いため、温室効果ガスの精密な観測には有効な手法である。

非分散型赤外分析計 (NDIR: Non-Dispersive InfraRed analyzer)

NDIR は主に二酸化炭素を測定する目的で用いられている。NDIR では、温室効果ガスが 赤外線と相互作用することを利用して、試料気体に赤外線を照射し、試料気体による吸収と 標準ガスの吸収とを比較することで試料気体中の二酸化炭素量を計測している。NDIR は気 体の連続観測が可能な装置のため、時間分解能が高い観測データを得ることができる。

ガスクロマトグラフィー

ガスクロマトグラフィーを用いた観測では、試料気体を気体の化学的な特性を利用して分離し、標準ガスにより作成された検量線により試料濃度を決定する。また、この手法を用いることで、同時に多種類の気体を測定できるという利点がある。

この2つの手法は相対的な測定法なので、気体の成分が既知である標準ガスと比較するこ とで温室効果ガスの絶対量や濃度を導く必要がある。標準ガスは品質の維持が難しく、定期 的に検定を行う必要があるため、複雑な保守を必要とする。また、試料気体を直接採取する 必要があるため、観測できる範囲が限定される。近年になり、日本航空と国立環境研究所の 合同プロジェクトである CONTRAIL [e.g., *T.Machida et al.*, 2008] などの航空機を用いた 観測が行われるようになり、対流圏内の温室効果ガスの観測が可能となっているが、一般的 には地表面の温室効果ガスの観測が行われている。

これらの直接的な観測で得られた観測データは気象庁が管理する温室効果ガス世界資料センター (WDCGG) などにアーカイブされている。図1.2 に WDCGG に情報を提供している 観測地点を示す。図1.2 より、直接的な観測を用いた温室効果ガスの観測地点は地域的な偏りがあり、南米、シベリア、アフリカなどに観測の空白域が存在することがわかる。

 $\mathbf{2}$

図 1.2: WDCGG に情報提供している観測地点 (WDCGG リーフレットより)

リモートセンシングによる間接的な観測では、地上リモートセンシングと衛星リモートセンシングによる観測が行われている。

地上リモートセンシング

地上リモートセンシングによる温室効果ガスの観測では、一般的には太陽を光源とした観 測 [e.g., *Yang et al.*, 2002] が行われており、月を光源とした観測の試み [*Notholt et al.*, 2003] も行われている。

この手法では、太陽放射の放射輝度スペクトルを観測し、太陽放射が地球大気に吸収され たときに現れる分子の吸収スペクトルを解析することで温室効果ガス濃度を測定している。 例えば、地上リモートセンシングの国際ネットワークの1つであるTCCON [*Toon et al.*, 2009] では約1.1~2.5µm(約4000~9000cm⁻¹)の近赤外域における太陽直達光分光観測を行 い、得られた吸収スペクトルから大気中の温室効果ガスの気柱平均体積混合比を測定してい る。TCCON ではこの手法で得られた温室効果ガスのデータをアーカイブしており、衛星リ モートセンシングの検証用データとして提供している。図1.3 に TCCON の観測地点を示 す。図1.3 より、地上リモートセンシングの観測地点も直接的な観測と同様、観測地点の空 白域が存在することがわかる。

図 1.3: TCCON の観測地点 (TCCON web site より)

一般にリモートセンシングでは、大気の鉛直方向の情報が含まれるため、温室効果ガスの 鉛直積算量や鉛直分布を測定することができる。また、地上で定点観測を行うことで、観測 対象地の長期間にわたる温室効果ガス濃度の変動を観測することができる。

本研究の観測手法は地上リモートセンシングに分類されるため、一般的な地上リモートセンシングによる温室効果ガスの観測手法を 1.2.2 節で簡単に述べる。

衛星リモートセンシング

衛星リモートセンシングによる温室効果ガスの観測は近年になり発展してきた。2009年1 月に世界で初めてとなる、温室効果ガスの観測を目的とした人工衛星 GOSAT が打ち上げら れ、現在、観測データの解析が行われている。この他に、温室効果ガスの観測とは異なる目 的で打ち上げられた人工衛星の観測データからも温室効果ガス濃度を定量的に推定している ものが、いくつか報告されている。気象観測衛星 NOAA 搭載の HIRS センサーにより対流 圏上部の二酸化炭素濃度のトレンド解析を行った研究 [*Chédin et al.*, 2002] や、ENVISAT 衛星搭載の SCIAMACHY センサーからのメタンや二酸化炭素の濃度推定 [*Buchwitz et al.*, 2005]、Aqua 衛星搭載の AIRS センサーからの二酸化炭素の濃度推定 [*Chahine et al.*, 2005] などが挙げられる。

この手法では、太陽放射の反射や地球放射を観測し、地上リモートセンシングと同様に、 観測された放射輝度スペクトルを解析することで温室効果ガス濃度を測定している。しか し、衛星リモートセンシングはまだ新しい分野で、他の観測手法に比べると信頼性が低い。 そのため、他の手法で得られた観測データを用いて解析手法の検証を行いながら発展してい る。人工衛星から温室効果ガスを精度良く観測する技術が確立されれば、温室効果ガスの時 間・空間変動の理解が大きく進展する。

リモートセンシングを用いた間接的な観測では、放射輝度スペクトルの観測精度に加え て、温室効果ガス濃度を導く解析アルゴリズムに不確定性があるため、今後は観測機器の性 能の向上と共に、解析アルゴリズムの発展も重要となる。

以上より、温室効果ガスは直接的な観測手法では精度良く測定することができるが、観測 地点が不足していることや鉛直方向の情報が得られないという問題がある。一方、間接的な 観測手法である地上リモートセンシングでは観測地点の不足、衛星リモートセンシングでは 観測精度の信頼性が課題となっている。しかし、様々な観測手法を用いて観測を行うことで それぞれの観測データ同士の検証を行えることや、それぞれの観測手法の特徴を活かした研 究が行えるため、どの観測手法でも問題点や課題を克服していく必要がある。 通常行われている太陽を光源とした観測の場合、地上で観測される放射輝度スペクトル $I_{\lambda}(z,\mu)$ は、大気の吸収を受けた太陽放射スペクトル (大気の吸収スペクトル) と大気から の放射スペクトルの和で表される。しかし、実際に観測される値 $R_{\lambda}(z,\mu)$ は観測装置の校 正係数 *C* と放射輝度スペクトル $I_{\lambda}(z,\mu)$ の積で表され、相対値となる。以上より、観測値 $R_{\lambda}(z,\mu)$ は放射伝達方程式を用いると以下のように表すことができる。

$$R_{\lambda}(z,\mu) = CI_{\lambda}(z,\mu) = C\left\{I_{\lambda}^{\circ}\exp[-\tau_{\lambda}(z)/\mu] + \int_{z}^{z_{\infty}} B_{\lambda}[T(z')]\exp[-\tau_{\lambda}(z')]dz'/\mu\right\}$$
(1.1)

ここで、zは観測値の高度、 z_{∞} は大気上端の高度、 μ は $\mu = \cos \theta$ で表され、 θ は太陽天頂角である。また、 I_{λ}° は太陽放射スペクトル、 $B_{\lambda}[T(z')]$ は高度 z'の気温 T(z')におけるプランク関数で、 τ は光学的厚さと呼ばれる大気の物理量で以下のように表される。

$$\tau(z) = \int_{z}^{z_{\infty}} k_{\lambda}(z') \rho_{a}(z') dz'$$
(1.2)

ここで、 ρ_a は温室効果ガスの密度、 k_λ は吸収係数である。

赤外域における大気の放射 (式 (1.1) 右辺第1項) は太陽放射 (式 (1.1) 右辺第2項) に比べ 非常に弱く無視することができ、式 (1.1) は以下のように変形できる。

$$R_{\lambda}(z,\mu) = CI_{\lambda}(z,\mu) = CI_{\lambda}^{\circ} \exp[-\tau_{\lambda}(z)/\mu]$$
(1.3)

ここで、温度が既知である校正用黒体等を用いて校正係数 C を求めることができる場合は、 以下のように大気の吸収スペクトルを得ることができる。

$$I_{\lambda}(z,\mu) = I_{\lambda}^{\circ} \exp[-\tau_{\lambda}(z)/\mu]$$
(1.4)

ここで得られた大気の吸収スペクトル $I_{\lambda}(z,\mu)$ にリトリーバル (逆解析) と呼ばれる解析を 行うことで、大気中の温室効果ガスの濃度を求めている [*Rodgers*, 2008]。

1.2.3 TAO 計画

TAO 計画は東京大学大学院理学系研究科天文学教育研究センター (天文センター) が中心 となり、世界最高水準の口径 6.5m の赤外線望遠鏡 (TAO 望遠鏡) を南米チリ共和国北部ア タカマ砂漠のチャナントール山頂 (5640m) に建設し、天文学の最新トピックスの解明のた めの観測を行う計画である。TAO 望遠鏡のように地上から天体を観測する望遠鏡では、天 体の光が望遠鏡に届く前に大気の吸収を受けるため、天文学では観測データから大気の情報 を取り除くことで天体の情報を得ている。ここで、天体観測データに含まれる大気の情報を 独立して取り出すことができれば、通常は温室効果ガスの観測に用いられることのなかった 天体観測データを用いて温室効果ガスの観測を行うことができるのではないかと期待が寄せ られている。また、TAO 望遠鏡は温室効果ガスの地上観測の空白域である南米チリで天体 観測を行うため、TAO 望遠鏡により得られた天体観測データから温室効果ガスを観測する ことにより、地上観測の空白域を埋めることができる。

1.3 研究の目的

本研究では、天体観測データから温室効果ガスを解析する手法の開発を目的とした。前述 のように、温室効果ガスの地上観測点には空白域が存在しているが、天体観測データから温 室効果ガス濃度を測定することができれば、空白域の1つである南米チリで温室効果ガスの 観測を行うことができる。しかし、現在、TAO計画により建設された miniTAO 望遠鏡は観 測の初期段階にあり、観測データを使うことができないため、本研究では同様の観測装置を 持つハワイのすばる望遠鏡で既に得られている天体観測データを解析し、温室効果ガスの観 測可能性について考察する。

天体観測データを用いた温室効果ガスの観測は、地上リモートセンシングに分類される が、一般的な地上リモートセンシングの観測では太陽を光源として大気観測用の観測装置を 用いた観測が行われており、天体望遠鏡を用いた温室効果ガスの観測は今までに報告されて いない。本研究では天体の微弱な光を用いること、大気観測用の観測装置ではなく天体望遠 鏡を用いて得られたデータを利用することが一般的な手法とは異なっており、既存の解析手 法ではなく、新たな解析手法を開発する必要がある。

また、本研究では温室効果ガスの中で最も解析が行い易いと考えられるオゾンについて解 析手法の検討を行った。将来的には二酸化炭素やメタンなどの主要な温室効果ガスについて も解析を行っていく予定である。

6

観測手法 $\mathbf{2}$

2.1観測地

ハワイではすばる望遠鏡、チリでは miniTAO 望遠鏡がそれぞれ天体観測を行っている。 miniTAO 望遠鏡による観測はまだ初期段階にあるため、本研究では、すばる望遠鏡により 得られた観測データを解析することで、天体観測データから温室効果ガス濃度を測定する手 法を検討した。

図 2.1: すばる望遠鏡 (すばる望遠鏡 web site より)

図 2.2: miniTAO 望遠鏡 (TAO 計画 web site より)

COMICS

10

2.1.1 すばる望遠鏡

すばる望遠鏡は標高 4.139m のハワイ島マウナケア山頂にある、有効口径 8.2m の大型光 学赤外線望遠鏡である。すばる望遠鏡は4つの焦点に9つの観測装置を持っている。本研究 では、これらの観測装置のうち温室効果ガスによる吸収のある波長で天体を観測している冷 却中間赤外線分光撮像装置 COMICS を用いた。

7

一般に、赤外線を用いた天体の観測では、地球大気に含まれる水蒸気の吸収を受けるため、赤外線天体望遠鏡は水蒸気の少ない乾燥した高地に建設されることが多い。中でもハワイやチリは晴天率も高いことから、地球上の天体観測の最適地とされており、様々な天文台が設置されている。大気放射伝達モデルLBLRTM[e.g. *Clough et al.*, 1989] により熱帯大気モデルを仮定して計算された、標高 0m と標高 4,139m(すばる望遠鏡の標高に相当) における地表から大気上端までの透過率を図 2.5 に示す。

図 2.5: 標高 0m(地上:青) と標高 4,139m(すばる望遠鏡:赤) における透過率

図 2.5 より、すばる望遠鏡の設置されている標高では標高 0m よりも透過率が高いこと、 標高 0m には届かない波長の光も観測することができることがわかる。天文学では、大気の 窓 (透過率の高い波長帯)を波長帯ごとに呼び分けており、10µm 付近を N バンド、20µm 付 近を Q バンドと呼ぶ。

2.1.2 miniTAO 望遠鏡

チリでは、TAO 計画により口径 6.5m の TAO 望遠鏡に先がけ、2009 年 3 月にチャナン トール山頂に口径 1m の miniTAO 望遠鏡が建設された。望遠鏡には 2 個の観測装置 (近赤外 線カメラ ANIR、中間赤外線カメラ MAX38) が搭載され、本研究では COMICS とほぼ同じ 波長帯を観測することができる MAX38 により得られる観測データを使用する予定である。

2.2 観測装置

2.2.1 COMICS

本研究では、冷却中間赤外線分光撮像装置 COMICS (Cooled Mid-Infrared Camera and Spectrograph)を用いて観測されたデータを用いた。COMICS は中間赤外域 (5~30 μ m)の 天体を観測する目的で作成された観測装置である。図 2.5 より、中間赤外域には 2 つの大気の窓 (N バンド、Q バンド)があり、中間赤外線で地上から天体を観測する際には主にこの 2 つの波長帯を用いている。検出器には 8~26 μ m まで感度を持つ Si:As 320 × 240 BIB 型検 出器を用いている。表 2.1 に COMICS の主な仕様をまとめた。

	撮像	分光		
ピクセルスケール	0.130"/pix	0.165"/pix		
検出器	320×240 , Si:As $\times 1$	320×240 , Si:As $\times 5$		
視野	$42" \times 31"$	ロングスリット, 40"		
知 训 泣 巨	N:8.8-12.4µm(5 バンド)	$N:7.8-13.3\mu m$		
観烈波茂	Q:17.7-24.5µm(4 バンド)	$\text{Q:}16.7\text{-}20.7\mu\text{m}$		
· 油巨 /	R ~ 10-20	N:R ~ 250, 2500, 10000		
<u> </u>	$R \sim 60-70$ (line 用)	Q:R ~ 2500, 5300		

表 2.1: COMICS の主な仕様

中間赤外域の観測では、望遠鏡や観測装置自体が放射する赤外線が観測の妨げとなるため、COMICS は望遠鏡の放射の影響を受けにくいカセグレン焦点(図 2.3 参照)に設置されており、COMICS 自体、光学系及び光学部品を制御するための駆動部品を全て真空容器内に入れ、冷凍機により 30K 以下まで冷却されている。また、検出器部分は観測の際の暗電流を下げるために 7K 程度まで冷却されている。

COMICS では撮像観測と長スリット分光観測が行われている。撮像観測は主に天体の明 るさを測る目的で行われており、ある時間内にある波長範囲の光子が天球上のある範囲から どれだけの数来ているかを計測し、光の強度の天球上での分布を観測している。一方、分光 観測は天体が放つ光を波長方向に分解することで、天体の放射スペクトルを測る目的で行わ れており、ある時間内にある波長範囲の光子を回折格子を用いることで波長ごとの強度分布 として計測し、天球上のある範囲から来る光の波長と光の強度の関係を観測している。

それぞれの観測手法により得られた観測データは、赤外線検出器を用いてデジタル信号に 変換される。赤外線検出器はピクセルと呼ばれる受光素子が並んだ半導体素子で構成されて おり、受光素子に入射した光子を電荷の量に変換し、それを順次読み出して電気信号に変換 することで観測画像を得る。得られた画像はフレームという単位で1つの画像としてデジタ ル化され、複数フレームをまとめたものが1つのファイルとしてアーカイブされている。こ れらの観測画像は国立天文台の天文データセンターにより運営されている SMOKA により 公開・配布されており、本研究で用いた観測画像は全て SMOKA からダウンロードした。 前述のように、COMICS には撮像観測と分光観測の2種類の観測モードがあり、観測の 目的によって使い分けている。図2.6、2.7 に示したように、撮像観測と分光観測ではスリッ トまでは同じ光学系を用いているが、スリット以降では使用している光学系が異なってい る。撮像観測の際にはスリットは鏡に置き換えられ、撮像用の検出器に光が入る。この時、 光学系による透過率の影響は受けるものの、天体の全ての光を検出できる。一方、分光観測 ではスリットにより天体の光の一部分のみを分光用の検出器に通すため、スリット効率が生 じる。このスリット効率は天体のスリットへの入り方で変化し、スリットが回折限界程度の ため、波長によって星像の大きさが変わることから、スリット効率は天体の光量の変化と共 に波長依存性も持つ。そのため、分光観測で得られたデータは、ほぼ同時に行われている撮 像観測のデータを用いて、天体の本来の明るさに補正する必要がある。(3.2.4 節参照)

図 2.6: COMICS 前光学系及び撮像光学系 ([Kataza et al., 2000] より)

図 2.7: COMICS 分光光学系 ([Kataza et al., 2000] より)

2.2.2 観測対象

COMICS では近傍・遠方銀河、星惑星系形成、星間ダスト、太陽系天体などを研究の対 象にして様々な観測が行われている。その中でも、本研究で考案した大気の情報を取り出 す解析では、3.3.1 節より標準星と呼ばれる明るさが既知で時間的に変化しない天体の観測 データを用いる必要がある。一般に天体観測では、観測の対象となる天体の明るさを明るさ が既知の天体を用いて校正する必要があるため、目的の天体を観測する直前か直後に標準星 の観測が行われる。本研究では、それらの標準星の観測データを用いることで、大気の観測 を行う手法を検討した。また、大気の吸収の影響を受けていない標準星の放射スペクトルは [*Cohen et al.*, 1999] によりデータベース化されている。

2.2.3 観測頻度

COMICS では 1999 年より観測が行われているが、本研究では観測画像の品質を考慮して 2003 年以降のデータを用いた。すばる望遠鏡では、全ての観測装置を同時に用いるわけで はなく、審査を経て選抜されたプログラムのみが観測時間の割り当てを受けられる仕組みに なっているため、個々の観測装置の観測期間は限られている。2003 年以降に COMICS を用 いて観測された全観測画像ファイルの月ごとのアーカイブ状況を図 2.8 に示す。

2.2.4 観測画像の種類

天体を観測する際、理想的には天体のシグナルのみを観測できれば良いのだが、観測装置 や望遠鏡の機器による影響も同時に観測されるので、観測された画像は様々な情報を含んで いる。以下に COMICS の観測画像に含まれる情報を挙げる。 バイアス

検出器から値を読み出す時に含まれる電荷のこと。読み出しの際、電圧が負になった場合 に A/D 変換で 0 に丸め込むことを避けるためにプラスされているもの。バイアスはピクセ ルごとに異なった値を持っている。また、この値の時間変動が読み出しノイズとなる。

ダーク

熱的に発生した電子(暗電流)により、検出器に光を当てない状況でも発生する電荷。露 出時間が長いほど、温度が高いほど増加する。COMICSでは検出器を7Kまで冷やして観 測を行っているので、ダークによる影響は極力小さく抑えられている。

スカイ

地球大気による背景放射。気体分子により放射する光の波長が決まっているため、分光観 測では輝線として観測される。赤外域ではこの背景放射が天体のシグナルよりも強く、観測 の弊害となるため、COMICS ではチョッピングという手法を用いて観測を行っている。

オブジェクト

観測の目的天体から来る光。地上からは大気の吸収を受けた天体の光として観測される。

上述の通り、赤外域では大気が放つ放射が天体の放射よりも強ため、天体に対して露出し ても大気の放射が卓越し、天体を観測することが難しい。そこで、COMICSではチョッピン グという手法を用いて大気の放射を差し引く方法を採用している。赤外域で天体を観測する と、大気の吸収を受けた天体の放射と大気の放射を同時に観測することになる(図 2.9)。 そこで、天体の周辺の大気成分が一様であると仮定し、望遠鏡の副鏡を振ることにより検出 器に入る天球上の領域をわずかに変化させて、天体の近傍の大気を観測する(図 2.9)。 最後にチョッピング前の画像からチョッピング後の画像を引くことで、大気の放射が差し引 かれ、天体のシグナルのみを取り出すことができる(図 2.9)。具体的にチョッピングでは 望遠鏡の副鏡を 0.1~数 Hz 程度の周波数、数~60"程度の振幅で動かすことにより、非常に 短い時間で望遠鏡の視野をずらし、天体を含む領域と大気の放射を交互に観測している。

図 2.9: チョッピング

天体を観測すると、大気の吸収を受けた天体の光と大気の放射(灰色)が同時に観測される。 望遠鏡の視野を少しずらすと、 で天体があった場所は大気の放射のみとなる。 から を引くと、大気の放射は相殺されて、大気の吸収を受けた天体の光のみ観測される。 白い部分が天体の正のシグナルで、黒い部分が負のシグナルとなる。 天体観測画像を用いて物理的な議論を行うためには、天体を観測する際に同時に得られる 不要な成分 (バイアス、ダーク、宇宙線、スカイ)を取り除く必要がある (3.2.2 節、3.2.3 節 参照)。そのため、天体の観測では観測装置や望遠鏡に起因する成分を独立に観測し、解析 に用いている。以下に、COMICS で観測を行っている 3 種類のフレームについて解説する。

ダークフレーム

ダークフレームはバイアスを含むダーク(暗電流)を観測した画像である。検出器に光を 入れない状態である一定時間電荷の読み出しを行い、ダークフレームとする。

フラットフレーム

フィルターの透過率、光学系の透過率、CCDのピクセルごとの感度ムラなどの積として 表される画像。これらの影響により生じる観測のムラを落とす目的で取得される。本来は、 一様な明るさの光を望遠鏡の視野全体で観測してフラットフレームとすべきなのだが、現実 的には不可能なので、COMICSの撮像観測ではオブジェクトフレームより作成されたセル フスカイフラット、分光観測ではドームに対して露出したドームフラットを用いている。

オブジェクトフレーム

オブジェクトフレームは天体に対して露出した観測画像である。オブジェクトフレームに はバイアス、ダーク、宇宙線、スカイ、オブジェクトの全てが含まれる。また、オブジェク トフレームを取得する際には前述のチョッピングが行われている。撮像・分光観測について、 それぞれチョップ処理前後の画像を図 2.10、図 2.11 に示す。

図 2.10、図 2.11 共に図 2.9 に対応しており、撮像では検出器に対して左右、分光では上下 に視野をずらしている。の元画像をオンビーム画像、の視野をずらした画像をオフビー ム画像と呼ぶ。チョッピングにより天体のシグナルを判別できる(図 2.10、2.11)。

3 解析手法

3.1 解析の流れ

天体を用いた温室効果ガス観測の解析手順を述べる。天体観測データから温室効果ガスを 導出した事例が無いため、本研究では天体観測の生画像の解析から始め、既存の天体解析手 法の1つ1つのプロセスを確認しながら解析作業を進めた。図3.1に天体観測の生画像から 温室効果ガスを導出するまでのフローチャートを示す。

1.2.2 節の通常の地上リモートセンシングによる温室効果ガスの観測では、式(1.4)の様に 太陽を光源として大気の吸収スペクトルを観測し、得られた吸収スペクトルを解析すること で、温室効果ガス濃度を測定している。しかし、天体観測では天体望遠鏡の全光学装置の最 前部に校正用黒体を置くことができず、式(1.3)のような校正係数*C*が求まらない形で大気 の吸収スペクトルが観測されるため、同様の手法では温室効果ガスの吸収量の絶対値を解析 することができない。そこで、本研究では天頂角の異なる2つの天体を用いることで、校正 係数*C*を求めずに温室効果ガス濃度を解析する手法を検討した。

天体観測画像の解析では、撮像画像と分光画像共に、まずは画像整約を行う。画像整約と は観測された生画像から不必要な成分を取り除くこと、感度補正を行うこと、歪み補正を行 うことなどを指す。次に、整約済み画像を用いて撮像画像は測光を行い、分光画像は分光ス ペクトルの切り出しを行う。測光とは天体の光を数値に直す作業のことで、天体の明るさを 求めることを指す。また分光スペクトルの切り出しでは、分光画像の天体からのシグナル部 分を切り出すことにより、分光スペクトルを求めることを意味する。基本的には大気の吸収 スペクトルは分光画像のみから得ることができるのだが、観測装置の性質上、分光画像では 天体の光を全て検出することができないため、異なる2波長の測光データを用いて分光スペ クトルを補正し、大気の吸収スペクトルを得る (3.2.2~3.2.4 節参照)。本研究では、この一 連の解析手法を全て確認し、大気の情報が取り除かれていないことを確認した。

次に、上述の天体観測画像の解析により得られた大気の吸収スペクトルと大気の吸収を受けていない天体の放射スペクトルを2組み用いて、大気の光学的厚さを導出する。大気の吸収を受けていない天体の放射スペクトルとは天体の本来の放射スペクトルを意味しており、 [Cohen et al., 1999] にデータベース化されている放射照度スペクトルを用いた。そして、得られた大気の光学的厚さから大気放射伝達モデルLBLRTMを用いて温室効果ガス濃度を計算した。本研究で解析の対象としたオゾンは、濃度ではなく鉛直積算量(気柱量)で表すことが一般的なので、気柱量を求めた。(3.3節参照)

14

図 3.1: 解析のフローチャート

3.2 大気の吸収スペクトルの導出

2.2.4 節より、天体観測により得られる画像は様々な成分を含んでおり、物理的な解析を 行うためには画像処理を行い、必要な情報のみを抽出する必要がある。この作業のことを画 像整約と呼び、具体的には生画像から不必要な成分を取り除くこと、感度補正を行うこと、 歪み補正を行うことなどを指す。まず、天体を観測する際、観測される画像の天体の光を含 んでいる1つのピクセルに注目すると、以下の式で表せる。

$$raw = ((T \times star + sky) \times t_{obs} \times flat + dark \times t_{obs}) \div gain + bias$$
(3.1)

ここで、raw は生画像のカウント値、gain は電荷とカウント値の変換係数、その他の値は 2.2.4 節に挙げたものとする。式 (3.1) から、天体の情報を含む部分を取り出すことが画像整 約の基本的な方針である。つまり、ピクセルごとに式 (3.1) を

$$T \times star = ((raw - bias) \times gain - dark \times t_{obs}) \div (flat \times t_{obs}) - sky$$
(3.2)

のように変形することを目的とする。実際には観測装置の性質により式 (3.2) は全ての手順 を含んでいないが、基本的には式 (3.2) に沿って解析を行う。

以下では、具体的な観測画像を用いて、撮像画像と分光画像の画像整約の手順、撮像画像の測光、分光画像の分光スペクトルの切り出し、測光データを用いた分光スペクトルの補正 について説明する。

3.2.1 解析ソフト

天体観測画像の解析には、以下の3つのソフトを用いた。

☆ q_series 解析プログラム (version 31)

COMICS の観測データを解析するために作られたソフトウェア。主に q_series を用いて 画像整約を行った。

 \Rightarrow IRAF (Image Reduction and Analysis Facility)

アメリカの National Optical Astronomy Observatory (NOAO) により開発された天体画 像解析ソフト。q_series で扱っていない処理を IRAF を用いて行った。

 $\, \bigstar \,$ Makali'i

国立天文台と(株)アストロアーツにより作成された、すばる望遠鏡画像解析ソフト。画 像整約後の撮像画像を測光する際に用いた。

3.2.2 撮像画像の解析

撮像画像の解析では、天体の光を定量的に測ることを目的とする。ここでは、具体例として 2006 年 1 月 13 日に観測された、以下の観測データを画像整約した際の画像を載せた。

画像 ID	画像種類	露出時間	読み出しレート	読み出し回数	積分時間	フレーム数
COMA00069805	object	0.080343	40	12	0.964116	22
COMA00070543	dark	0.080343	40	12	0.964116	22
COMA00070545	dark	0.080343	40	12	0.964116	22
COMA00070547	dark	0.080343	40	12	0.964116	22
COMA00070549	dark	0.080343	40	12	0.964116	22

表 3.1: 撮像画像の解析に用いた画像ファイル

図 3.1 において、読み出しレートは1 ピクセル当たりの読み出しにかかる時間 (µs)、読み出 し回数は1フレーム当たりの読み出し回数、積分時間は1フレーム当たりの積分時間 (s)、フ レーム数は画像ファイルに含まれるフレームの数を表す。オブジェクトフレームではチョッ ピングを行っているため、同一チョップビームのフレーム数は全フレーム数の半分となる。

ダークの作成

ダークフレームは複数フレーム取得されており、それらの時間平均をとることで典型的な ダーク $(dark_{i,j})$ とする。ここで、ダークの読み出し回数 (n_{dark}) をオブジェクトの読み出し 回数 (n_{object}) に合わせておく。

 $dark_{i,j} = \sum_{k} dark_{i,j,k}^{raw} \div k_{total} \div n_{dark} \times n_{object}$ (3.3)

ここで、天体観測画像は横軸をx、縦軸をyとして、 320×240 ピクセルで構成されており、色の明暗がカウント値を表している。この先、i は検出器のx座標、j は検出器のy座標、複数フレームある場合にはkがフレーム数を示すものとする。

フラットの作成

フラットは理想的には一様な明るさの光を観測し、観測された値をあるスケールで規格化 することで求めるのだが、大型望遠鏡では一様な明るさの光を観測することができないた め、撮像では天体の写っていない部分の背景光が一様な明るさであると仮定してフラットを 作成する。この方法で作成されるフラットはセルフスカイフラットと呼ばれる。COMICS ではチョッピングを行っているため、オンビーム(*object*^{on}_{i,j,k})の画像を解析する際には、オ フビーム(*object*^{off}_{i,j,k})の画像をフラット画像として用いることができる。

まず全てのオブジェクトフレーム $(object_{i,j,k}^{raw})$ から式 (3.3) で作成したダーク $(dark_{i,j})$ を引き、次にダークを引いたオブジェクトをオンビーム $(object_{i,j,k}^{on})$ とオフビーム $(object_{i,j,k}^{off})$ に分割する。

$$object_{i,j,k}^{dark} = object_{i,j,k}^{raw} - dark_{i,j}$$

$$(3.4)$$

$$object^{on}_{i,j,k} = object^{dark}_{i,j,k} \quad (k = 1, 3, 5, ...)$$
 (3.5)

$$object_{i,j,k}^{off} = object_{i,j,k}^{dark} \quad (k = 2, 4, 6, ...)$$
 (3.6)

次に、 $object_{i,j,k}^{off}$ について時間方向の平均をとる。

$$object_{i,j}^{off} = \sum_{k} object_{i,j,k}^{off} \div k_{total}$$

$$(3.7)$$

ここで、平均した画像 ($object_{i,j}^{off}$) は経験的に大きなパターンを含むことがわかっており、 これを取り除く必要がある。そこで、IRAF を利用して、平均した画像にガウシアンフィル ターをかけてパターン画像 ($gauss(object_{i,j}^{off})$) を作る。次に、このパターン画像で平均した 画像を割り算することでパターンの除去及び規格化を行い、フラット画像 ($flat_{i,j}$) を得る。

$$flat_{i,j} = \frac{object_{i,j}^{off}}{gauss(object_{i,j}^{off})}$$
(3.8)

バッドピクセルマスクの作成

図 3.6 に示したフラット画像を見てわかるように、明らかに周辺に比べてカウントが低い バッドピクセル (黒っぽい点) が存在する。これらのバッドピクセルでは検出器上のゴミや スリット上の金蒸着のムラによりピクセルの感度が落ちているものと思われる。本研究の解 析では、周辺平均の値 (*flat^{ave}*) よりも 20%以上値が増減しているピクセルをバッドピクセ ルとして、それらのピクセルの値を 0、それ以外のピクセルの値を 1 とするバッドピクセル のマスクを作成した。

次にオブジェクトフレームの解析に入る。

チョップ差し引き

オンビームフレーム $(object^{on}_{i,j,k})$ を足し合わせ、そこからオフビームフレーム $(object^{off}_{i,j,k})$ を足し合わせたフレームを引き、背景光 (大気の放射) を差し引く。

(3.10)

以降、 $object_{i,j}^{chop}$ を用いて解析を行う。

読み出しパターンノイズの低減

COMICS の検出器は x = 20 ピクセルごとの 16 チャンネルから構成されており、それぞ れのチャンネルを同時に読み出している。従って、読み出し時にパターンを持って乗るノイ ズは 16 チャンネル全てに同様に乗る。一方、観測天体は検出器の一部にしか乗っていない ため (図 3.8)、天体が乗っていない部分のピクセルを使えばこのノイズを測定することがで き、もとの画像からノイズ画像を引くことでノイズを減らすことができる。

具体的には、チャンネルごとにデータを抜き出し、同じピクセル位置のカウントの中央値 (メディアン)を求め、ノイズパターン画像 $(object_{i,j}^{noise})$ とする。次にこの画像をもとの画像 $(object_{i,j}^{chop})$ から引くことによりノイズを除去する。

20

フラット処理

で作成したフラットを用いて検出器の感度ムラを補正する。さらに、 で作成したバッドピクセルマスクを掛けて、バッドピクセルによる影響を除去し、画像整約が完了する。

$$object_{i,j}^{fin} = object_{i,j}^{pattern} \div object_{i,j}^{flat} \times object_{i,j}^{badpix}$$
 (3.12)

測光

画像整約を終えた画像(*object*^{fin}_{i,j})には、天体のシグナルが画像の一部分に乗っている(図 3.11 白い部分)。最後に、この画像から天体のシグナルのみを数値として求めるために、測 光という作業を行う。測光には国立天文台により配布されている Makali'i という画像解析ソ フトを用いた。Makali'i では天体のシグナルを含む部分を円形に切り出して測光を行う開口 測光を用いて、天体のシグナル部分のみを数値として取り出すことができる。

これにより大気の吸収を受けた天体の明るさを数値として求めることができた。

3.2.3 分光画像の解析

分光画像の解析では、分光スペクトルを求めることを目的に解析を行う。COMICS では、 大抵の分光観測がNバンドの低分散モード(R~250)で行われている。本研究では、このN バンド低分散モードにより得られた観測データを解析したので、その解析手法を下記に挙げ る。また、具体例として撮像と同様、2006年1月13日に観測された以下の観測データを画 像整約した際の画像を載せた。

画像 ID	画像種類	露出時間	読み出しレート	読み出し回数	積分時間	フレーム数
COMA00069824	object	0.301309	150	3	0.903926	100
COMA00070536	flat	0.100429	50	9	0.903859	24
COMA00070556	dark	0.100429	50	98	9.842018	4
COMA00070558	dark	0.100429	50	98	9.842018	4
COMA00070560	dark	0.301309	150	32	9.641880	4
COMA00070562	dark	0.301309	150	32	9.641880	4

表 3.2: 分光画像の解析に用いた画像ファイル

ダークの作成

分光のダークフレームも撮像と同様に複数枚撮られているので、それらのフレームを時間 平均することで、典型的なダークフレーム (*dark*_{*i*,*j*})を作成する。ここで、分光ではオブジェ クトフレームとフラットフレームの読み出しレートに合わせたダークがそれぞれ必要となる ため、読み出し回数をそれぞれオブジェクトフレームとフラットフレームに合わせたダーク を作成する。

$$dark_{i,j}^{object} = \sum_{k} dark_{i,j,k}^{raw} \div k_{total} \div n_{dark_o} \times n_{object}$$
(3.13)

$$dark_{i,j}^{flat} = \sum_{k} dark_{i,j,k}^{raw} \div k_{total} \div n_{dark_f} \times n_{flat}$$
(3.14)

フラットの作成

分光のフラットにはドームフラットを用いる。ドームフラットはドームが放射する光が一 様であると仮定して取得されている。まずは、観測されたフラットフレームに対して時間方 向に平均をとり、ダークを引く。

 $flat_{i,j}^{dark} = \sum_{k} flat_{i,j,k}^{raw} \div k_{total} - dark_{i,j}^{flat}$ (3.15)

ここで求まったフラット画像 (*flat*^{*dark*}) は読み出しノイズを含んだ値となっている。N バンド低分散モードの観測では、5 つある検出器のうち天体の分光データの取得には1 つしか使用していないため、空いている検出器で読み出しノイズ用の参照用データを取得している。そこで、この参照用検出器の画像を読み出しノイズによるカウント値によるものとして、3.2.2 と同様にパターンノイズ画像 (*flat*^{*noise*}) を作成し、フラット (*flat*^{*dark*}) から引く。

$$flat_{i,j}^{pattern} = flat_{i,j}^{dark} - flat_{i,j}^{noise}$$

$$(3.16)$$

3 解析手法

(3.18)

次にオブジェクトフレームの解析に入る。

チョップ差し引き

オブジェクトフレームに対して、背景光 (大気の放射) の差し引きのためにオンビーム画 像とオフビーム画像の差引を行う。

 \boxtimes 3.19: $object_{i,j}^{chop}$

読み出しパターンノイズの低減

フラットフレームと同様にオブジェクトフレームにも読み出しノイズが含まれるため、 と同様に、参照用検出器を用いて読み出しパターンノイズを作り $(object_{i,j}^{noise})$ 、もとの画像 $(object_{i,j}^{chop})$ から引くことで読み出しパターンノイズを低減する。

フラットで割る

読み出しパターンノイズを低減した画像 $(object_{i,j}^{pattern})$ をフラットで割り、検出器の感度 ムラを補正する。

$$object_{i,j}^{flat} = object_{i,j}^{pattern} \div flat_{i,j}$$

$$(3.20)$$

分光観測では、図 2.7 より、回折格子によって分光された光を検出器に通して観測を行っ ている。回折格子から検出器に光を送る際に、理想では図 3.23 や図 3.24 の様に検出器 に光が落ちて欲しいのだが、分光器の性質上、図 3.23 や図 3.24 のように歪みが生じて しまう。この歪みは、波長軸と空間軸の 2 つの歪みが合わさっており、波長一定軸と空間一 定軸を求めることで補正することが可能なため、 と で補正を行う。

波長-定軸

図 3.23: 波長軸の補正

大気の輝線 (波長一定軸) は のように y に依存する歪みを持っており、 のように大気の輝線が検 出器の y 軸に対して平行になるように補正を行う必要がある。

図 3.24: 空間軸の補正

天体のシグナル (空間一定軸) は のように x の 2 次関数で近似される歪みを持っており、 のよう に検出器の x 軸に対して平行になるように補正を行う必要がある。

波長軸の決定

波長軸は、観測により得られた大気放射の輝線(*object^{sky}_{i,j}*)と大気放射伝達モデル ATRAN により得られた輝線の相関を取ることにより求める。大気輝線はチョッピングする前の画像 から作成する。具体的には、オブジェクトフレームを時間方向に平均したものからダークを 引き、フラットで割ることにより得られる。

$$object_{i,j}^{sky} = \left(\sum_{k} object_{i,j,k}^{raw} \div k_{total} - dark_{i,j}^{object}\right) \div flat_{i,j}$$
(3.21)

また、ATRANの輝線は波長との対応関係が既知なので、この対応関係を用いて観測画像の波長校正式を求める。図 3.23 のように、歪みの程度が y 方向に異なるため、波長校正式は y 依存性を持ち、以下のように表すことができる。

$$\lambda[\mu m] = A(y)x[pix] + B(y)$$

$$A(y) = a_0y + a_1$$

$$B(y) = a_2y + a_3$$
(3.22)

 a_0 、 a_1 、 a_2 、 a_3 を波長軸校正のパラメータとして、A(y)、B(y)の値がyに対して一定となるように変換を行う。

空間軸の決定

空間軸の歪みは、天体のシグナルを見ることで検知することができるので、天体のシグナルを含んでいる画像(*object^{flat}*)から導く。分光器の設計上、空間軸の歪みは2次の多項式で表されるため、天体のシグナルの座標を2次関数で近似することで空間軸校正のパラメータを求める。

$$y = b_0 (x - b_1)^2 + b_2 (3.23)$$

ここで得られた b₀、b₁、b₂ が空間軸校正のパラメータとなる。

画像変換

、 で得られた校正パラメータをもとに、IRAF を用いて画像変換を行う。この変換により、波長軸と空間軸が直交した画像 $(object_{i,j}^{trans_sky}, object_{i,j}^{trans})$ を得ることができる。

図 3.28、図 3.29、図 3.30 に画像変換前と画像変換後の波長軸、空間軸を比較したものを 挙げる。波長校正式の A(y)、B(y) は波長軸の校正により校正前に比べて y に対して一定の 値に近づいていることがわかる。また、空間軸は y 方向の歪みがほぼ解消されている。

解析手法 \mathcal{B}

波長校正

波長校正式は y の値に依存するため、最終的な波長校正式は y の値を与える必要がある。 本研究では、天体のシグナルの中心の y 座標を与えて、波長校正式とした。

スカイの引き残しの処理

これまでの解析で天体のシグナルのみを抽出できているはずであるが、現実的にはチョッ ピングの周波数が大気変動に追いついていないため、大気放射の引き残しがチョッピングを 行った後の画像に残ってしまっている。そこで、天体からのシグナルが乗っていない部分か ら大気放射の引き残しを推定(*object*^{residual})し、その値を画像全体から引くことにより、大 気放射の引き残しの処理を行う。大気放射の引き残しの推定は、天体のシグナルが乗ってい ない部分のメディアンを取ることで求める。

スペクトルの切り出し

以上の解析で検出器の感度補正、大気放射の除去、シグナルの歪み補正を行うことができた。最後に図 3.31 から分光スペクトルを切り出し、大気の吸収を受けた天体の分光スペクトルを求める。

図 3.32: 切り出した分光スペクトル

3.2.4 測光データによる分光スペクトルの補正

2.2.1 節で、COMICS の撮像観測と分光観測ではスリット以降で使用する光学系が異なっ ており、分光画像ではスリット効率により光量が変化していることを指摘した。そのため、 分光画像の解析により得られた分光スペクトルは正しい値を示しておらず、スリットを使用 していない撮像画像を解析して得られた測光データを用いて補正を行う必要がある。

スリット効率は波長依存性を持つため、スリット効率の補正には複数の波長の測光デー タが必要となる。通常の観測では1回の分光観測につき2つの異なる波長で撮像観測を行っ ているため、2つの異なる波長の測光データを用いて補正を行う。分光画像の解析により得 られた分光スペクトルを $F'_{spc}(\lambda)$ とし、撮像観測を行った際の2つの異なる波長をそれぞれ λ_1 、 λ_2 、またそれぞれの波長における測光データを $F_{img}(\lambda_1)$ 、 $F_{img}(\lambda_2)$ とする。分光スペ クトルの波長 λ_1 、 λ_2 における値を、 $F_{img}(\lambda_1)$ 、 $F_{img}(\lambda_2)$ となるように補正を行うと、

$$F_{\rm spc}(\lambda_1) = F_{\rm img}(\lambda_1) = \frac{1}{\varepsilon(\lambda_1)} F_{\rm spc}'(\lambda_1)$$
(3.25)

$$F_{\rm spc}(\lambda_2) = F_{\rm img}(\lambda_2) = \frac{1}{\varepsilon(\lambda_2)} F_{\rm spc}'(\lambda_2)$$
(3.26)

となる。ここで、 $F_{\rm spc}(\lambda_1)$ 、 $F_{\rm spc}(\lambda_2)$ はそれぞれの波長の補正された分光スペクトルを表し、 $\varepsilon(\lambda)$ はスリット効率を表している。さらにスリット効率を1次関数と仮定すると、

$$\varepsilon(\lambda) = a \times \lambda + b \tag{3.27}$$

となり、式 (3.29) は式 (3.25) と式 (3.26) を用いることで一意に決まり、スリット効率は以下のように求まる。

$$\varepsilon(\lambda) = \frac{\varepsilon(\lambda_2) - \varepsilon(\lambda_1)}{\lambda_2 - \lambda_1} (\lambda - \lambda_1) + \varepsilon(\lambda_1)
= \frac{\frac{F'_{\rm spc}(\lambda_2)}{F_{\rm img}(\lambda_2)} - \frac{F'_{\rm spc}(\lambda_1)}{F_{\rm img}(\lambda_1)}}{\lambda_2 - \lambda_1} (\lambda - \lambda_1) + \frac{F'_{\rm spc}(\lambda_1)}{F_{\rm img}(\lambda_1)}$$
(3.28)

このスリット効率を分光スペクトルの全ての波長に適用することで、補正された分光スペクトルが求まる。

$$F_{\rm spc}(\lambda) = \frac{1}{\varepsilon(\lambda)} F_{\rm spc}'(\lambda) \tag{3.29}$$

この補正を行うには、露出時間の等しい吸収スペクトルと測光データが必要となるが、通 常、これらの露出時間は異なるため、露出時間を合わせた上で補正を行う必要がある。

3.3 温室効果ガスの解析手法

天体観測データの解析により、撮像画像から測光データ、分光画像から分光スペクトルが 得られた。次に、これらの観測データを用いて温室効果ガスの濃度を求める手法を説明する。

3.3.1 吸収物質の光学的厚さの導出

地上で天体の分光観測を行った場合、観測値 $R_{\lambda}(z,\mu)$ は式 (1.1) と同様に放射伝達方程式 を用いて以下のように表すことができる。

 $R_{\lambda}(z,\mu) = \frac{C}{\varepsilon_{\lambda}} I_{\lambda}(z,\mu) = \frac{C}{\varepsilon_{\lambda}} \left\{ I_{\lambda}^{*} \exp[-\tau_{\lambda}(z)/\mu] + \int_{z}^{z_{\infty}} B_{\lambda}[T(z')] \exp[-\tau_{\lambda}(z')] dz'/\mu \right\} (3.30)$ ここで、 I_{λ}^{*} は大気の吸収を受けていない天体の放射スペクトルを表わしており、本研究で は、標準星の観測データを利用しているので、[*Cohen et al.*, 1999] によりデータベース化さ れている放射スペクトルに対応する。また、 ε_{λ} は前節と同様スリット効率を表す。式 (3.30) は、右辺第1項が大気の吸収スペクトル、右辺第2項が大気の放射スペクトルを表わしてお り、それぞれ式 (3.1) の $T \times star \ge sky$ に対応している。さらに、式 (3.30) はチョッピング を用いることにより右辺第2項の大気の放射スペクトルを差し引くことができるので、以下 のように変形することができる。

$$R_{\lambda}(z,\mu) = \frac{C}{\varepsilon_{\lambda}} I_{\lambda}(z,\mu) = \frac{C}{\varepsilon_{\lambda}} I_{\lambda}^* \exp[-\tau_{\lambda}(z)/\mu]$$
(3.31)

これは分光画像の解析により、T × star を導いたことと対応している。また、1.2.2節では、 太陽放射が大気の放射に比べて非常に大きいことを利用して大気の放射による項を落とした が、天文学の解析手法を用いても大気の放射による項を落とすことができた。

次に、太陽放射を用いた観測のように、校正係数 C を求めることができれば、観測され る放射輝度 $I_{\lambda}(z,\mu)$ を求めることができるのだが、天文台では全ての光学系の最前部に校正 用黒体を置くことができないため、原理的に校正係数 C を求めることはできない。そこで、 本研究では、式 (3.31) を 2 つ組み合わせることで、校正係数 C を求めることなく大気の光 学的厚さを求める手法を考えた。具体的には、天頂角が異なる 2 つの天体の観測データを用 いて解析を行う。

まず、2つの天体を添字1と2で呼び分けると、分光画像の解析によりそれぞれの分光スペクトルは以下のように求まる。

$$R_{\lambda}^{1} = R_{\lambda}(\mu_{1}) = \frac{C}{\varepsilon_{\lambda}^{1}} I_{\lambda}^{1*} \exp[-\tau_{\lambda}/\mu_{1}]$$
(3.32)

$$R_{\lambda}^{2} = R_{\lambda}(\mu_{2}) = \frac{C}{\varepsilon_{\lambda}^{2}} I_{\lambda}^{2*} \exp[-\tau_{\lambda}/\mu_{2}]$$
(3.33)

ここで、同じ望遠鏡で得られた観測データを用いているため、観測地点の高度を省略した。 次に、2つの天体を観測する間、大気状態が変化しないこと ($\tau_{\lambda} = -$ 定)を仮定し、式 (3.32) を式 (3.33) で割ることで以下の式を得る。

$$\frac{R_{\lambda}^{1}}{R_{\lambda}^{2}} = \frac{\varepsilon_{\lambda}^{2}}{\varepsilon_{\lambda}^{1}} \frac{I_{\lambda}^{1*}}{I_{\lambda}^{2*}} \exp\left[\tau_{\lambda} \left(\frac{1}{\cos\theta_{2}} - \frac{1}{\cos\theta_{1}}\right)\right]$$
(3.34)

さらに式 (3.34) を τ_{λ} について解くことで、

$$\tau_{\lambda} = \frac{1}{\frac{1}{\cos\theta_2} - \frac{1}{\cos\theta_1}} \left[\ln\left(\frac{R_{\lambda}^1}{R_{\lambda}^2}\right) + \ln\left(\frac{\varepsilon_{\lambda}^1}{\varepsilon_{\lambda}^2}\right) - \ln\left(\frac{I_{\lambda}^{1*}}{I_{\lambda}^{2*}}\right) \right]$$
(3.35)

を得る。 $\varepsilon_{\lambda}^{1} \ge \varepsilon_{\lambda}^{2}$ は3.2.4節より測光データを用いることで求めることができるため、式(3.35) より、観測された大気の吸収スペクトルとデータベースの放射スペクトルから、吸収気体の 光学的厚さを求めることができる。さらに、天頂角の異なる2つの天体に同じ標準星を選 択した場合には、データベースの放射スペクトルの値が2つの天体で等しくなるため、式 (3.35)のデータベースによる項が0になり、以下の式で吸収気体の光学的厚さを求めること ができる。

$$\tau_{\lambda} = \frac{1}{\frac{1}{\cos\theta_2} - \frac{1}{\cos\theta_1}} \left[\ln\left(\frac{R_{\lambda}^1}{R_{\lambda}^2}\right) + \ln\left(\frac{\varepsilon_{\lambda}^1}{\varepsilon_{\lambda}^2}\right) \right]$$
(3.36)

3.3.2 温室効果ガスの導出

本研究で用いた COMICS は、通常大気観測を行っている観測装置に比べると波長分解能 が低いため、温室効果ガスの鉛直分布を求めることはできない。そこで、本研究では温室効 果ガスの気柱量 (気柱平均濃度)を求める手法を考察した。

大気放射伝達モデルLBLRTM では大気分子の鉛直プロファイルを入力値として、光学的 厚さを計算することができるため、大気分子の気柱量と光学的厚さの関係を求めることが できる。具体的には、観測の対象としている温室効果ガスの濃度のみを変化させた計算によ り、その温室効果ガスの吸収波長における大気の光学的厚さと、計算の入力に用いた温室効 果ガスの気柱量の関係を求める。この関係式に、3.3節の解析手法により求められた大気の 光学的厚さを当てはめることで、温室効果ガスの気柱量を求めることができる。温室効果ガ ス濃度(気柱平均体積混合比)は、地表面気圧から大気の気柱量を求め、大気の気柱量にお ける温室効果ガスの気柱量の割合を計算することで得られる。

4 解析結果

4.1 解析に用いた観測データ

2006 年 1 月 13 日の標準星の観測データを用いて解析を行った。解析に用いた天体観測画像 (オブジェクト画像)を表 4.1、フラット画像、ダーク画像を表 4.2 にまとめた。

画像 ID	観測開始時刻	仰角	観測画像	観測モード	天体 ID	解析 ID
COMA00069805	04:53:15	56.90096	OBJECT	撮像	HD27639	
COMA00069811	04:56:07	57.57866	OBJECT	撮像	HD27639	
COMA00069824	05:03:19	59.25916	OBJECT	分光	HD27639	
COMA00069869	05:45:32	69.13941	OBJECT	撮像	HD27639	
COMA00069873	05:47:49	69.67428	OBJECT	撮像	HD27639	
COMA00069882	05:52:30	70.76961	OBJECT	分光	HD27639	
COMA00069900	06:04:45	63.22483	OBJECT	分光	HD31398	
COMA00069903	06:08:18	63.90815	OBJECT	撮像	HD31398	
COMA00069907	06:10:06	64.25155	OBJECT	撮像	HD31398	
COMA00070017	07:53:34	40.98349	OBJECT	撮像	HD61935	
COMA00070021	07:55:43	41.39437	OBJECT	撮像	HD61935	
COMA00070038	08:04:45	43.15465	OBJECT	分光	HD61935	
COMA00070101	09:14:00	54.79278	OBJECT	撮像	HD61935	
COMA00070105	09:16:11	55.08629	OBJECT	撮像	HD61935	
COMA00070118	09:22:51	55.94134	OBJECT	分光	HD61935	
COMA00070355	13:55:15	58.88465	OBJECT	撮像	HD99167	
COMA00070359	13:57:31	58.96858	OBJECT	撮像	HD99167	
COMA00070374	14:05:51	59.19132	OBJECT	分光	HD99167	
COMA00070487	16:10:06	21.91421	OBJECT	撮像	HD102964	
COMA00070491	16:12:21	21.75781	OBJECT	撮像	HD102964	
COMA00070500	16:18:01	21.35436	OBJECT	分光	HD102964	

表 4.1: 解析に用いたオブジェクト画像

表 4.2: 解析に用いたフラット画像、ダーク画像

画像 ID	観測開始時刻	仰角	観測画像	観測モード
COMA00070536	16:50:31	22.99909	FLAT	分光
COMA00070543	17:02:16	89.97785	DARK	撮像
COMA00070545	17:02:57	89.97786	DARK	撮像
COMA00070547	17:03:46	89.97786	DARK	撮像
COMA00070549	17:04:25	89.97786	DARK	撮像
COMA00070551	17:05:17	89.97786	DARK	撮像
COMA00070553	17:06:02	89.97785	DARK	撮像
COMA00070556	17:06:52	89.96175	DARK	分光
COMA00070558	17:07:48	89.96259	DARK	分光
COMA00070560	17:08:55	89.96258	DARK	分光
COMA00070562	17:09:51	89.96258	DARK	分光

表4.1の同じ天体に対する2つの撮像データは、それぞれ異なるフィルター(波長)を用いて 観測されている。また、天体観測画像の解析では、ダークは表4.2に挙げた画像の全てのフ レームを平均することで典型的なダークとして用いて、フラットは表4.2に挙げたフラット 画像を全ての分光画像の解析に用いた。

次に、図 4.1 に表 4.1、4.2 の観測開始時刻、仰角、観測した天体を時系列で表した。

図 4.1: 2006 年 1 月 13 日の標準星の観測

4.2 光学的厚さ

上記の観測データを用いて 3.3.1 節の手法で解析を行った。3.3.1 節に書いたように、解析 には1つの天体に対して、分光観測から求めた大気の吸収スペクトル、[*Cohen et al.*, 1999] にアーカイブされている大気の吸収を受けていない天体の放射スペクトル、撮像観測から求 めた測光データ (×2) の 4 つのパラメータが必要であり、これら 4 つのパラメータを 1 つの データセットとして解析 ID(以降、 で囲まれた数字は解析 ID とする)で表した。これらの データセットを 2 組用いて大気の光学的厚さを導出した。ここで、図 4.1 の赤で囲んだデー タセットは、撮像観測データが正常に得られていなかったため解析結果には含めておらず、 黄色で囲んだデータセットをそれぞれ 2 つ組み合わせて計算した。また、光学的厚さの参考 値として、観測日 (UT 12:00)における Hilo のゾンデ観測データ(高度、気温、気圧、水蒸 気圧)を入力値とし、大気放射伝達モデル LBLRTM を用いて理論計算した結果を図 4.7 に 示し、図 4.2~4.6 にも重ねて示した。以下に解析結果を挙げる。

4 解析結果

まず、LBLRTMにより計算された参考値は、ゾンデデータ以外は熱帯の標準大気を仮定 しているため、水蒸気の吸収帯(約11~13µm)では理論計算と解析結果をそのまま比較する ことができるが、その他の波長帯に関しては観測が行われた日の大気状態を再現しているわ けではないので、吸収線の構造の目安とはなるが、絶対値に関しては参考値と解析結果を比 較しても意味はない。

図 4.2~4.6 より、 と他のデータセットを組み合わせた場合に、吸収構造をよく再現出来 ていることがわかる。これは、図 4.1 より は他のデータセットと比較すると仰角が小さく (天頂角が大きく)、他のデータセットと組み合わせた際に天頂角の角度差が大きいためであ ると考えられる。逆に天頂角の角度差が小さな 、 、 を組み合わせたものは、マイナス の値を取ることや吸収線の構造を再現できていないことから、うまく解析を行うことができ ていないことがわかる。

そこで、解析に用いた式 (3.35) において、天頂角の角度差が解析結果にどのような影響を 与えているか見積るため、式 (3.35)の天頂角が寄与する部分を以下のように定義する。

$$\Theta = \left| \frac{1}{\frac{1}{\cos \theta_2} - \frac{1}{\cos \theta_1}} \right| \tag{4.1}$$

図 4.8 に θ_1 、 θ_2 と Θ の関係を図示する。

図 4.8 より、天頂角の角度差が小さいほど Θ が大きく、角度差が大きいほど Θ が小さくなることがわかる。また、天頂角の角度差が等しい場合でも、天頂角が小さいデータを組み合わせた場合と天頂角が大きいデータを組み合わせた場合では、天頂角の小さいデータを組み合わせた場合の方が Θ が大きくなることがわかる。例えば天頂角の角度差がともに 20° である $\theta_1 = 10^\circ$ 、 $\theta_2 = 30^\circ$ と $\theta_1 = 50^\circ$ 、 $\theta_2 = 70^\circ$ の組み合わせについて Θ の値を求めると前者は $\Theta = 7.18$ 、後者は $\Theta = 0.73$ となる。

光学的厚さ τ_{λ} は式 (3.35) より、 Θ と観測やデータベースから得られた値との積として表 されており、観測やデータベースの持つ誤差にも Θ がかけられるため、 Θ が 1 より大きい 場合は誤差を増幅させてしまうことになる。逆に、 Θ が 1 よりも小さい場合には誤差を増幅 させずに光学的厚さを計算できるので、 Θ が 1 よりも小さくなるデータセットを用いて解析 を行うことが望ましいと考えられる。図 4.9 に Θ が 1 よりも小さい部分を白、 Θ が 1 よりも 大きい部分を黒で示した。図 4.9 より、白い領域に含まれるデータセットを用いて解析を行 うことが望ましい。

表 4.3 に実際の解析において、データセットの組み合わせごとの ⊖ の値を示した。

	Θ		Θ		Θ		Θ		Θ
-	2.19	-	2.19	-	6.50	-	10.2	-	0.621
-	6.50	-	3.32	-	3.32	-	2.80	-	0.866
-	10.2	-	2.80	-	17.9	-	17.9	-	0.687
-	0.621	-	0.866	-	0.687	-	0.661	-	0.661

表 4.3: 解析の組み合わせごとの Θ の値

表 4.3 より、 との組み合わせ以外は Θ が 1 より大きくなっており、観測やデータベース が含む誤差を増幅させてしまっていることがわかる。これより、 との組み合わせが最も良 い解析結果を示していることがわかる。

次に図 4.6 に着目し、観測間隔が解析結果に与える影響を考察した。本解析では、2つの 標準星を観測する間、大気の状態が一定であると仮定しているが、実際は観測間隔が長くな るにつれて大気状態が変化していると考えられ、解析を行う条件が悪くなる。そのため、図 4.6 では - が最も解析の条件が良い場合の結果を示しており、参考値と比較可能な水蒸 気の吸収帯(約11~13µm)に着目すると、部分的に負の値を含んでいるものの、参考値に近 い値を示していることがわかる。また、観測が行われた日の地上観測データ(気温、気圧、 相対湿度)から、解析が行われた時間帯は気象状態の大きな変動は観測されていないことが わかっている。そのため、本研究で対象にした観測日においては、図 4.6 の - 以外の組 み合わせでも吸収構造を捉えることができている。

実際の天体観測では、図 4.1 のように標準星の観測が連続で行われているわけではなく、 観測間隔が離れているため、観測間隔が解析結果に与える影響を定量的に評価することがで きない。しかし、今後チリで観測を開始する miniTAO 望遠鏡では大気観測用の天体観測を 行える予定なので、時間間隔がより密なデータを得ることで観測間隔が解析結果に与える影 響を定量的に評価していきたい。

37

4.3 誤差解析

解析の条件が最も良い - のについて、式(3.35)の検討を基に誤差解析を行った。

式 (3.35) には天頂角、観測された大気の吸収スペクトル、データベースから取得した大気の吸収を受けていない天体のスペクトルの3種類の変数が含まれているため、それぞれの変数について誤差要因を考察し、その誤差要因に対する誤差を見積もった。

まず、天頂角の値は観測データから取得しており、観測データの天頂角が正しい値を示し ているものとした。1つの観測データのみを用いている場合には、観測中の天頂角のずれは 積分時間に対する天頂角の変化になるが、COMICS では大気の吸収スペクトルを得るため に分光画像と撮像画像 (×2)を用いるため、それぞれの観測に要する時間に対する天頂角の 変化を考慮する必要がある。ここでは、分光観測により得られた分光スペクトルは、撮像観 測により得られる異なる 2 波長の測光データにより補正されるため、異なる 2 波長の測光 データを取得する間の天頂角の変化を天頂角の誤差要因とした。 と のそれぞれのデータ セットにおいて、上述の天頂角の変化は約 0.2 度であったため、この値を用いて天頂角の変 化が大気の光学的厚さに与える誤差を計算した (図 4.10)。

次に、観測された大気の吸収スペクトルによる誤差は、分光スペクトルによる誤差と測光 データによる誤差が考えられるが、最終的に用いる大気の吸収スペクトルは測光データによ り補正された分光スペクトルなので、測光データの不確定性を大気の吸収スペクトルによる 誤差とした。天文学では、撮像画像から測光データを導くために複数の手法が考案されてい るが、COMICS で観測された撮像画像に対してどの方法で測光を行っても、数%程度の不 確定性が生じることがわかっている。ここでは、観測が行われた日に連続して観測された撮 像画像を利用した。連続して観測された撮像画像を解析して得られた測光データは、観測の 間隔が短いことから値がほぼ等しくなると推察される。しかし、約3%程度のばらつきがあ ることがわかったので、この値を測光データの不確定性として大気の光学的厚さに与える誤 差を計算した(図 4.11)。

最後に大気の吸収を受けていない天体のスペクトルの不確定性は、[*Cohen et al.*, 1999]の データベースに含まれる不確定性の値を利用した。データベースの持つ不確定性は標準星ご とに異なっており、 と のデータセットで用いた標準星の不確定性をそれぞれ用いて大気 の光学的厚さに与える誤差を計算した (図 4.12)。

また、上述の3種類の誤差要因による誤差を全て合わせたものを図4.13に示す。

38

4 解析結果

図 4.12: データベースの不確定性による誤差

図 4.13: 式に含まれる全ての誤差要因による誤差

図 4.10、4.11、4.12 より、 と を組み合わせて解析を行った場合、解析の式に含まれる 誤差のうちデータベースの不確定性による誤差が最も大きいことがわかった。データベース の不確定性は標準星ごとに値が異なるため、不確定性の小さい標準星を選択して解析を行う べきである。また、3.3.1 節で示した通り、天頂角の異なる 2 つの天体に同じ標準星を選択 した場合には式 (3.36)を用いることで、データベースの不確定性による誤差を回避できる。 次いで、測光データの不確定性による誤差が大きくなっているが、測光データの不確定性は 観測状況に大きく左右されるため、この誤差は気象条件などにより変化すると考えられる。 最も誤差の小さな天頂角の変化による誤差は、観測の都合上必ず生じてしまうため、本解析 手法では避けることのできない誤差である。

実際には、大気の変動や気象条件など、解析の式に含まれない誤差要因もあるため、今後 は様々な気象データを用いて、考え得る誤差要因の定量的な評価を行っていく必要がある。

4.4 オゾン気柱量

大気の光学的厚さから温室効果ガスの1つであるオゾンの鉛直積算量(気柱量)を計算した。COMICSでは、大気の吸収が強い二酸化炭素やメタンの吸収帯をフィルターを用いて落としており、主にオゾンの吸収帯が観測波長に含まれる。そこで、オゾンの吸収帯について、3.3.2節の手法で解析を行った。図4.14に放射伝達モデルLBLRTMを用いて計算したオゾンの吸収帯(9.5µm)における、オゾンの気柱量(DU(Dobson Unit)とはオゾンの気柱量を表す際に用いられる単位で、300DUは0、1気圧の地表で3mmの厚さに相当)と光学的厚さの関係を示した。図4.14より、オゾンの気柱量と光学的厚さは曲線で近似できると考えられるため、2次曲線で近似した。

次に、 - を用いて解析した大気の光学的厚さからオゾンの気柱量を導出する。図 4.13 から 9.5µm の光学的厚さの値を読み取ると 0.53±0.08 であった。この値を図 4.14 の近似曲 線に当てはめ、オゾンの気柱量は 112(86~139)DU となった。

本解析で得られた結果を検証するため、NASA が運営・管理している Aura 衛星搭載の OMI センサーにより得られた、2006 年 1 月 13 日のオゾン気柱量 (図 4.15) と比較した。当 日の OMI センサーによるハワイ付近のオゾン気柱量は 200±50DU であったため、本研究に より得られたオゾン気柱量は衛星観測により得られた値よりもやや低い値をとっていること がわかった。これより、今後、解析手法に系統的な誤差を生じる要因が含まれていないかな どを他の観測事例を用いて考察する必要がある。

5 結論

5.1 結論

本研究では、天体観測データから温室効果ガス濃度を推定する手法を検討した。天体観測 データには、ハワイのすばる望遠鏡に搭載されている COMICS により観測された天体観測 画像を用いた。これまでに、天体観測データから温室効果ガス濃度を推定した事例はないた め、まずは天体観測の生画像から解析を行うことで温室効果ガスの解析手法を検討した。こ れより、天体観測画像の解析から大気の吸収スペクトルを相対値として得られることがわか り、得られた大気の吸収スペクトルから2つの天体のデータセットを用いて大気の光学的厚 さを導出する手法を考案した。次に、大気の光学的厚さと温室効果ガスの1つであるオゾン の気柱量の関係を大気放射伝達モデルLBLRTM を用いて求め、解析により得られた大気の 光学的厚さを当てはめることでオゾンの気柱量を算出した。

上述のような解析により得られた大気の光学的厚さの解析結果は、天体観測データから大 気の情報を取り出せることを示した。また、誤差要因の定量的な評価を行い、観測に必要な 条件を示した。

また、解析により得られた大気の光学的厚さから温室効果ガスの1つであるオゾンの気柱 量を大気放射伝達モデルLBLRTMを用いて計算したところ、112(86~139)DUとなり、衛 星観測の結果(200±50DU)と比較するとやや過小評価していることがわかった。これより、 本研究で考慮していない誤差要因や、解析手法に系統的な誤差を生じる要因が含まれている ことが示唆され、今後、解析事例を増やすことでより詳細な検証を行う必要がある。

5.2 展望

南米チリで観測が始まる miniTAO 望遠鏡では、大気観測に適した天体観測を行える予定 なので、本研究で得られた大気観測に適した天頂角の条件や誤差を小さく抑えるための標準 星の選択などを実際の天体観測に適用すること、まだ評価することのできていない誤差要因 (観測間隔、気象条件など)を評価することにより観測の精度の向上や解析手法の改良を検討 している。

本研究で開発した解析手法を用いて、天体観測データから温室効果ガス濃度を精度良く測 定することができれば、同様の観測装置を搭載している世界中の天体望遠鏡で得られたデー タから温室効果ガスを観測することができるため、地上観測地点の拡充につながるものと期 待される。温室効果ガスの観測網を広げていくために、本研究で得られた知見を用いて観測 手法を発展させていきたい。

41

謝辞

本研究で用いた天体観測画像は国立天文台天文データセンターにより運営されている SMOKAからダウンロードし、使用させて頂きました。データ提供に感謝致します。

大学院に入学し、2年が経過しますが、本当に多くの人達に支えられ、今に至りました。 指導教官の今須良一准教授には、本当に色々な面で数えきれない程お世話になりました。 ピンチの時に何度もお助け頂いたこと、先生がお忙しい時も私が理解できるまで何度も何度 もお付き合い頂いたこと、サンフランシスコで毎晩夕食に誘って頂いたことなど、挙げれば きりがありません。ありがとうございました。

東京大学天文学教育研究センターの宮田隆志准教授には、私のしつこいメールに何度も何 度もご返信頂いたこと、天文センターへの訪問の際に快くお迎え頂いたことなど、とても感 謝しております。宮田先生はどんなに些細な質問に対しても丁寧にお答え下さるので、大変 心強かったです。ありがとうございました。

今須研究室の皆様には、入学する前から色々とお世話になりました。現千葉大学環境リ モートセンシング研究センターの齋藤尚子元特任助教には、大学院に入りたての頃に、色々 なことを丁寧に教えて頂きました。今須先生が出張などでいらっしゃらないときにも、齋藤 さんに質問することができたので、とても心強かったです。新井さんとは別の部屋だったの ですが、とても気さくに接して頂きました。丹羽さんにはサーバー関係のことで本当にたく さんお世話になりました。丹羽さんのおかげで解決した問題が数多くありました。宮村くん はとても明るい性格で、なんでも話せるいいヤツです。また、秘書の長谷部さん、技術補佐 の稲本さん、永岡さん、武田さんには日常のささいなことから海外出張などの手続きなどの 事務手続きの際にお世話になりました。皆様のご協力により、何不自由なく研究活動を行う ことができました。皆様、ありがとうございました。

中島映至教授には放射コロキウムや CCSR セミナーの際に貴重なご意見やご指摘を頂き ました。その度に自分の至らなさに気付き、やるべきことが明確になりました。中島研の皆 様にもたくさんお世話になりました。放射勉強会では一人で勉強していては得られない知識 をたくさん得ることができました。皆様、ありがとうございました。

同期の学生とは研究の合間や食事の時に色々な話をしました。研究がなかなかうまくいか ない時など、みんなと話すことで落ち着くことができ、また研究を進める力が湧いてきまし た。みんな、ありがとう。

また、この2年間、様々な面で支えてくれた人達に感謝の言葉を述べたいと思います。 ありがとうございました。

参考文献

- M. Buchwitz, R. de Beek, J. P. Burrows, H. Bovensmann, T. Warneke, J. Notholt, J. F. Meirink, A. P. H. Goede, P. Bergamaschi, S. Korner, M. Heimann, and A. Schulz. Atmospheric methane and carbon dioxide from sciamachy satellite data: Initial comparison with chemistry and transport models. *Atmos. Chem. Phys.*, Vol. 5, pp. 941– 962, 2005.
- [2] M. Chahine, C. Barnet, E. Olsen, L. T. Chen, and E. Maddy. On the determination of atmospheric minor gases by the method of vanishing partial derivatives with application to CO2. *Geophys. Res. Lett.*, Vol. 32, p. doi:10.1029/2005GL024165, 2005.
- [3] A. Chédin, Soumia Serrar, Raymond Armante, and Noëlle A. Scott. Signatures of annual and seasonal variations of co 2 and other greenhouse gases from comparisons between noaa tovs observations and radiation model simulations. *Journal of Climate*, Vol. 15, pp. 95–116, 2002.
- [4] S. A. Clough, M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown. Atmospheric radiative transfer modeling: a summary of the aer codes. J. Quant. Spectrosc. Radiat. Transfer, Vol. 91, pp. 233–244, 2005.
- [5] M. Cohen, Russell G. Walker, Brian Carter, Peter Hammersley, Mark Kidger, and Kunio Noguchi. Spectral irradiance calibration in the infrared. x. a self-consistent radiometric all-sky network of absolutely calibrated stellar spectra. *The Astronomical Journal*, Vol. 117, pp. 1864–1889, 1999.
- [6] IPCC. IPCC Fourth Assessment Report (AR4): Climate Change 2007. Cambridge University Press, 2007.
- [7] H. Kataza, Okamoto Y., Takubo S., Onaka T., Sako S., Nakamura K., Miyata T., and Yamashita T. Comics: the cooled mid-infrared camera and spectrometer for the subaru telescope. *Proceedings of SPIE*, Vol. 4008, p. 1144, 2000.
- [8] K. N. Liou. An Introduction to Atmospheric Radiation. ACADEMIC PRESS, 2002.
- [9] T. Machida, H. Matsueda, Y. Sawa, Y. Nakagawa, K. Hirotaniand N. Kondo, K.Goto, N. Nakazawa, K.Ishikawa, and T.Ogawa. Worldwide measurements of atmospheric

co2 and other trace gas species using commercial airlines. *Journal of Atmospheric and Oceanic Technology*, Vol. 25, pp. 1744–1754, 2008.

- [10] J. Notholt and R. Lehmann. The moon as light source for atmospheric trace gas observations: measurement technique and analysis method. *Journal of Quantitative Spectroscopy and Radiative Transfer*, Vol. 76, pp. 435–445, 2003.
- [11] C. D. Rodgers. Inverse Methods for Atmospheric Sounding. World Scientific, 2008.
- [12] L. S. Rothman, Iouli E. Gordon, Alain Barbe, D. Chris Benner, Peter F. Bernath, Manfred Birk, V. Boudon, Linda R. Brown, Alain Campargue, J.-P. Champion, Kelly V. Chance, L. H. Coudert, K. Sung, and R. ... Toth. The hitran 2008 molecular spectroscopic database. *Journal of Quantitative Spectroscopy and Radiative Transfer*, Vol. 110, pp. 533–572, 2009.
- [13] G. Toon. Total Column Carbon Observing Network (TCCON). Technical report, Optical Society of America, 2009.
- [14] Z. Yang, Geoffrey C. Toon, Jack S. Margolis, and Paul O. Wennberg. Atmospheric co2 retrieved from ground-based near ir solar spectra. *Geophys. Res. Lett.*, Vol. 29, p. doi:10.1029/2001GL014537, 2002.
- [15] 小池勲夫. 地球温暖化はどこまで解明されたか. 丸善株式会社, 2006.
- [16] 柴田清孝. 光の気象学. 朝倉書店, 1999.