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. Asymptotic Formulae for oscill'aﬁng Dﬂi‘riéhletl"s
~ Integrals and Coefiicients of Power Series*
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1. G. H. Hardy, in his: in»’ﬁerestin'g papei‘s"i" with fhe title

“ Oscillating Dirichlet's Integrals”™, has discussed almost: com- .
pfetel‘y the oscﬂlatmg nature of an mtegral of the form

/ fa )sm )w . ($>())
when 2 terids to inﬁnity. Hereby f (-’13) is of the form
| - ple) 6,

where p(z) and -9(@) are Togarithmico-exponential functions _
“(or L-functions) and o(z) tends to infinity as z->0. ‘ »
. As he remarks; the preblem is equivalent to that of investi-
gating the convergence or divergence of the Fourier's seriés
defined by a.funetionr which hasa. smgle osclllatmg dlscontmulty
of the type: spec1ﬁed by

| 9:) (s:?wi a(m).
1t is also closely related to that of determining asymptotlc
formulae for the: coefficients a, of & pewer series ‘

3 a, 2" .

* This paper was worked out at the suggestion of Mr: Hardy; to whom-I wish to express
my sincere thamks-for-valuable advices:
- =t Quarterly Journal; Vol. XLIV, pp. 1—40 and 242—263. 'We shsll refer to these papers a8
«“0.D. I 1.” and < 0. D. L. 2.” respectively. .
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convergent for |¢{<1, and representing a function f(¢) which has,
on the circle of convergence, one singular point only, at z=1. In
the investigation of this problem, we are often led to consider
integrals of the types

" ¢ 1 ¢ x
[, [ ) gy
2. In Part I of this paper, I consider the integrals
) st =/ F () ST g,
Jo z -
" 08 Az ¢>0)

: = io(z) C .

@) c@) = /o pla)ein= 252 gg

where, ¢ and ¢ denote L-functions and ¢>1% as >0, § being a.
positive number chosen sufficiently small so as to ensure that
p and o are monotonic and continuous in the interval O<z=§,
These integrals (1) and (2) will be called ‘‘the -sine-integral’’ and
“‘ the cosine-integral '’ respectively. -
-Hardy, following Du Bois-Reymond, dlstmgulshes the

following three cases

(4) a(z) < I(1/a),

(B) a(z) X U(1/z),

(C) a(z) > U(1/z).

The results arrived at concerning the sine-integral are designated
as theorems 4, B, €' in his papers. '
- As will be seen from these results, Hardy has principally
considered the cases in which the sine-integral oscillates as 2> ;.
but he did not went into a minute discussion of the cases in which
the integral tends to zero. It will be interesting to find asymptotic
formulae for S(4) in the latter cases; and it appears quite
natural that the formulae obtained by him are also available to a
certain extent in such cases. I have succeeded in extending the
range of validity of his formulae considerably—roughly speaking,

to all cases in which the order of §(4) is greater than —-.

* Throughout this paper, I will entirely adopt the symbols and notations defined in
Section I of “ 0. D. I 1.”
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“As for the cosine- integral ((2), it will be seen that, in the two |
cases (4) and (B) it always tends to zero as A>w, when conver-
gent, and, in Case (C), its behaviour is very similar to that of
, the sine-integral. I have.found for it asymptotic formulae
whose range of validity is the same as that of the formulae for S(2).

That the - formulae should cease to hold when the order
of the integrals sinks as low as } is to be expected. For, it
is easy to see that the parts of the integrals away from z=0 are in
general of the order %, so that in such cases the behaviour of §(2)
or.((4) is no longer dominated by the parts near z=0.

3. The principal results arrived at are as follows: Writing

. olz) = z-8(z), <6 {(1/.’6)“,
-in Case (4),

8(3) = = I'(~a) sin (ban) o1} (~1<a<0),
S(®) ~ drp(1/2)on (a=0, p<1).

Combining  these. results - with Theorem ‘4, we obtain  the
theorem: ' o

If 1<0<(1jz), p<d' and
p=e0(z), o <6<(Ysf, a=l,

then we have, as 2>,

s =ouy (ag-1), -
@) 18(2) & —~a) sin (3ax) p(IN)e D (—l<a<l),
S(2) = A T(1/2) i (a=1),
. where. : T(:v)'=' A ’.b(t)eé‘("dt.

In the particular case a=0, the factor —I'(—a) sin (dar) s to be
replaced by ts limiting value 3. . :
The corresponding formalae for 0(/1) are as follows
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ch=o0Q/) - (a<—lora= —1,20'<1, pﬂ' < 1)
o) & — @it R

(&= —1, 26 or po’ > 1)
C(2) & [{—a) cos (¥am) p(1/2ye“¥®  (—1<a<0),
- kow ~ Tap C @=0,
where 1) = oot

Tn Case (B),

SM) ~ —I{—a—bi)sin {}(a+bi)r} p(1/2)e
: ' (—l<a<Oora=0,p < 1).

©ORY

Combining thls result w1th Theorem B, we obtam the theorem:
If oo b(j) (b+0), p<%} and
| p—ac"’G(w <6<y,  a=l,
then, asl—>oo welwwe S |

5 {sw—oa-m)  a=-),
ONst) o —I1—ae bi)sin {h(a+bim) o) (~1<ag]).

The corresponding formulae for C(4) are

C(R) = I'(—a—bi)cos {3(a+Bi)r} p(1/3) w0

C(}) = O(1/A) . (@<—lora = —1, 6<1),
(6)
{ (—l<a=0ora=-1, 6>1).

In Case (C), Hardy gave formulae which were shewn to be
valid when. #z4/@’<p <2d. T have succeeded in proving that
they are valid for, :

X a/ 0" )6’ < p < zd, ‘
thus extending the range of validity of the formulae considerably.
It will be seen that this lower 11m1t of # (namely p =X x4/0"/0") cor-
Tesponds to our natulal hmlt - of the order of the integrals S(4)

and €(3).
Combining these results with Theorem C, we obtain the-

theorem LR



. Oscillating Dirichlet's Intégrals. . 5

- The -integrals - S(2) and C(2) are convergent when I(ljz) <e< (I/z)’
and p<zd'. : The behaviowr-of these mtegrals i A>e0., 18 determzmed
asymptotically as follows : 5 SRR

If @ <p=ey/dls, g
S =o0am, o =0am;
"_/f a:,\/a”/d’<p~<mo' ’ K

: | p(0) .(#—m‘. 7:
(M) . -'S()‘) ~ m;”(—a)-}—e VL

® AV C¥ () R |
where _ Bi=1044(0) |
and 0 13 determined as a function of 2 by the-equation- - . .
. S dO)+r=0. o

- In the course of the proof of this. theorem, We» are led to ‘thle"

comparison of the order of magnitude of the furictions
G o(a) ()
as 23w , when x<?<x«/d" or p = Az{l—p(=)}, where 4>0,7>0 and
5<1, « and 0 being functions of /1 detelmmed respeotlvely by t'he
equatlons .
@) (6)+1 = 0.
a{A—a'(a)}] 0, O+
It will be proved that
. | '¢(’@‘<¢(0) E
as 4> . The proof of this relation plays an 1mpo1t;ant role in,
the discussion of Case (). '
The integral S(2) is stlll convelgent when zo’ <.0<a’ Hardy

did not went into the discussion of -this case, h1s method ceasing :
to be applicable in this case. I have ‘succeeded: in proving that
formula (7). holds also in this ‘case genela.lly, “the’ proof bemg
left mcomplete only in a few special cases. i
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4. 1In Part II, I will give applications of the results, obtained
in- Part I, to the determination of the behaviour of the coefﬁments
a, of a power series

o
2 a, 2",

nm=Q

as n>o, whose radius of convergence is unity and which repre-
sents a function f(#) having, ‘on the circle of convergence, one
singular point only, at z=1.

‘As is well known, this problem was first systematically
treated by Darboux®.  Particularly he considered the case in
which f(2) has a singularity of the type '

f) = e

A= .
¢(2) being a function regular for z=1 and p denoting any real
constant other than zero or a-negative integer. His results were
extended by Hamyt who considered the case in which f(2) has a
singularity of the type

(1og— L Y

flz) = - ),\ g =

where ¢ is a positive integer. These two authors did not attack
-the case in which f(#) has an essential singularity for z=1. This
was first done by Fejer,] who considered the case where

flz) =

A
e z=1

3

1
: (L—2p
and shewed that
1 -t 19 3_
Ay ~ ——J(eﬂ) 7 .sm { J%+(§- p)r},
P bemg any real constant.

I have considered still more general cages in whlch the func-
tion f(2) has a singularity of the following types:

# Journal de Math. Série 3, 1. 4 (1878) pp. 5—57, 377—417.

t » Série 6, t. 4 (1908) pp. 203—283.

1 Comptes Rendus, 30 Nov., 1908; and <« Asymptotikus értékek megatdrozdsdrsl” (1909)
Budapest. : L
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( i ) f(z) — __Le.!/(l-.)'l ,

(1=z®
()0 = 1 Qz )
= 1 4 -‘;9 n 1 \a
(iii) f(Z)—me /(1= 3) _Z (l—z ...... (lhl_z), ’

A being a certain constant of the form 4=ae"

"My results in Case (i) are as follows: —

Let a>0 and p be any real constant, then the behaviour of @, as
n>o | is determined asymptotically as follows :

If ¢=1la=n

(9) a, ™ ‘\/i a“%ﬂ+4le-%n, niﬂ‘% sin {Zcﬁni—(é—p—’})ﬂ’}* ;

T

T

if O<g<l, a=(l+q)=

2’
(10) a,~ __1__(ga)--i% n‘f%f ozp [{knﬁ—(gp-g)n}i]
b V{4 | ’
where —(1+q)q_lgf_qaf%;
q;f O<q<1 a—(é q)__,
. . 1 | 23 pol-de s
)] - T+ q ?
0Dy g (g emp[ (™ =(p—bai |

k being the same as that in the above formula.
Similar results were obtained in Case (i) and Case (iii).
Now it may be remarked that, owing to the restricted
" applicability of the method, asymptotic formulae were obtamed
only in the following three cases:
I q9=1 “=n,

) O0<g<l, o= (1+g)%,

o 5 ; . T
(3) 0<g<l, a=(3—g):§.

* Observe that this becomes Fejér’s formula, if we p\ib a=1.
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While I was working out this paper atiCambridge, Hardy, being
struck with this fact, tried to attack ‘the problem with a quite
different method and. obtained ,.th:e following result™:

If f2) = (1 _ew-, >0, 0<g<l,
-ﬁwn . - »
=% &rz+p
12 e~ FETNS {9+ T q+1}
(12 o e ¢{2<1+g>}(q“) m ey g T

.. 1t is very probable that formula (12) also hO].db for complex
values of @. If, in this for mula, we replace a by

A = ae”,
where

=140 L o (3-9)L,

then we get (10) and (11). This shows that ( 12) holds also when'
a takes these specm,l comple\ \alues

PART Lt
Oscillating Dirichlel’s Integrals _
I.  Division of Z/Le Problem into three Cases.

'H. We have to consider the integrals

1) S(4) =/ ' E,‘,,(x‘) 6i1(m)_8iifm__ iz,
; . J 0 P
@ 4 :(1) = / fp(a:) ¢ de’
N - g .. 0 z 7

where p(z) and (z) are L-functions and o1 as z>0. As was already
mentioned, these integrals will be called ‘‘ the sine-integral ’’ anvd
““the cosine-integral ’’ respectively. It will be supposed that &

a positive number so small that the range of 1nteg1atlon does not

* Messenger of Math. Vol. XLVI (1916} pp 70-73.
+ A preliminary notice of th1s Part appealed in the Qum-te) ly Jom-nal Vol. XL/ VHI (1918)
pp. 113-135. : .
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include any point at which the subject of 'iﬁ’tégi'a't;idﬁ possesses any
nrrelevant discontinuity or-other. singularity. We distinguish
as'in Hardy’s papers, the following three cases: : ‘

@) <),
B eI
S

IT. ':Lémmd‘fo;': l‘\,\C’@we (A).

6. The proofs of the theorems A and'B of ““O. D. L. 1.”” are
principally earried out by méans of ‘H-lemma* 29. By exainining
the proof of this lemma, we can- ea,slly extend the range of validity
of the formula given there. ' '

In fact, the integrals . . . .

v 700 J et a2 .- e .
- cati-p [ SIDw \? .
/ w ¥ "’.( == )du,
Jo u

there considered, are absolutely convelgent also -in the case
—1l<a=0, Hence . the .argument of ‘“O. D. 1. 1.”” for the case
0<a<1 of this lemma holds also in the case ~1<as0, Thus we
easily obtain the following modification of this lemma.

Lemma 1, .Let

(13) T = [ame-s w(w) (S“; ‘m) s

where a=1 and
O(z) = 6(z)e*?,
£ <0<y,  $@)<ilz),

. ¥ The work of Mr. Hardy is chiefiy included in the proofs. of a great number of lemmas.
Naturally, in my paper, these lemmas will be used fredly, béing réferred as « H-lemma 17,
“H-lemma 2", ..... +usy in order to distinguish them from new lemmas which will be established
here. e T
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as z>0. Then, if a=-1,

J(A) = 0 A1),
qu —1<a<1,

(14)  J@) & I'(—1—a—bi)sin {§a+bi)r} +d(1/2),

except when a=b=0, in which case the right-hand side of (14) is to be
replaced by 3w P(1)3); of a=1, b+0, this result (14) still holds, provid-
ed that the integral N . :

T (z) = [) "t=1=4 @ (2) dt
is convergent ; and if a=1, b=0, and T(z) is still convergent,
T~ B T(12). ’

III.  Discussion of Case (A): o(z) < i(1/z).

7. At first we shall consider the sine-integral
8 —/E.o(m)e iow) 81D A2 g,
“Jo z ’

As is given in the paper ‘0. D. I. 1., the necessary and suffici-
ent condition for the convergence of this integral is

p(z) < o' (z)

as z>0. As in the same paper, by performing integration by
parts, we have - i

S = £8) g 1ot X 5

(15) ' = O(1)+J(2),
where

Y sin%ﬂz)'z!
W= / (R, zRg)e( ) vids
B =p—zp/,

Ry =z po';
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and hence . | . -
a. . IW=To@=de@,
where _ |
. _ [ &/ §in dz \?
- JO) = /o R,é ( 5—/12: )%/Ida:,
lro@ =[)wa« ( Si.gxi‘“{ )}uz. )

Now we can write

p=gz""6 (),

where a=1 and #'<8 <(1/zf' as z>0. Then, if a%—1,

R = p—ap = (1+a) 276 (z) [by H-lemma 4],

R, =zpd = z*° 8 (z),
where @ is a function of the same type as 6 and 6<6 as z->0%;
if a=—1,

.'Rl = —;1,‘26’ = "‘3591’ _R2 = m?,

where 6,=z6 is a function of the same type as 6 and 6,<86.

Hence we have: _ , -
(i) Let a=—1. Then, applying Lemma 1 to the integrals
(17), we obtain - ‘

JOQR) =0@), IO =0@1);
hence, by (15) and (16),
. S(A) —_ O(Z'H"),

(ii) Let —l1<a<0. Then, by Lemma 1, we obtain

* Since 1<<a<l(1/z), we easily see that ¢ isa function of the same type as ®. It can also
easily be proved that the function =@’ is a function of the same type as-® and a product of two
functions of this type is also of the same type. Hence it follows that ®(z)=20'8 is a function
of the type @ ; and since 26'<1, we have ®<8." ‘
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TIMQ) & —f (—a) sin (3am) 226(1/2) /D |
JOQR) & —I(~1—a)siny}an)i* G(1/3)eV ;
and since <6, we have | |
| I ~ TG,
and hence o o
S(2) & —T(—a) sin (3am) o (1/2) e,
for, in this case, p(1/4) > % as 2>,
(i) Let a=0 and 6<1.- Then ‘
 Bi~p=6,  R<p=6.
Applying. Lemma 1, we have also I < .J'U.) and
S@) = Fra@eom,
Combining these results with Theorem 4, we obtain
Theorem I. The fintego'al

S(/l) __/ p(w)eiu(z) sin /2.7; d 2,

where 1<0<{(1/z) and p<d’, s convmgent If p=2"0(z), where
2’ <<z}, so that a=1, the behaviour of S(2), as A=, is deter-
mined asymptotically by the followmy formulae

S()= 0(/1-1“) ‘ o " (as-1),
(8) {8(}) & —I'(—a)sin (Jax)p(1/2)e W (=l<a<l), .

sS@eaTR) (a=1),
where ‘

T (z) /p(t)e““) dt

In tke partwular case a=0," the factor -1 (—a) sin (‘Ldﬂ‘) 18 to
be freplaced by its lzmztmg value lfr vl : :

»
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8. Now we pass to the cosine-integral

)= / p(g:)e““’ﬂwhidx.

€ ey AT . '
is(x) X

$ PP ..o

is convelgent if, and only if,

The integral

4

a8 <

s z>0. This involves p<1, as a’<%. . As the factor ico_S iz of

the subject of integration of C(4 is ultimately monotonic, this

" condition” (18) is the necessary andsufficient condition for the

convergenee of the; eosine-integral C(4). -
Performmg integration by parts we obtam

e .
— f_“i(smlx)‘
C(A)..A 2 g L (S55) da

- (19) ) _ ,,(E’S) eia(;,; siij1 iE + JU) .
where |
I =Lew—irew),
| o< [ p s,
20 o o |

73 : : .
TR = / B, e“&;‘“i dz,
0

\R‘ = %—ﬂf”: ' ,R2 B £

The integrals J% and 7 are of the type of 8 (7)
As before we can write

p=06(a),
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where a=0 and 2°< 8 <(1/z)* as z>0.%

Then, if a=0 and a+—1,
Rl=%-—-p’ ~ (a+1)z g = (a,+1)%;

if a=~1,
R =—26=-6,

where 6, is a function of the same type as 8 and 6,<6. Hence
applying Theorem I, we obtain -

( T () =0(1) ‘ (a<—1),
 ’ L TD ()~ _(%,r/z)g, (1/4) gt (@=—1),
S JO )~ —(a+1) '(—a—1)sin {%(a+1)7;'}1{:(1/2)ef‘(V‘)
- A  (~l<a<0),
L SO D) = 2T 1/A) _ (a =0),

where
© dt
— 0 .
T(z) /o p(t)et® =,

Observing that R, = ps’ =z @tV§(z), where 8 is a function of
the same type as 8 and 6<86, similarly we obtain

J®A) =0(1) : (a<—1),
TO() ~ §ro(L2) o'(1/3) e (a=-1),
JON) & —I(—a—1)sin{{a+1)z}p(1/2)s’(1/2)e*¥) (—1 <a<O0),
JAQ) ~ 2T . ' (e = 0),

where _
— ® . dt

= 49(¢)
o) (76 (t) e <L

Hence we obtain the following results:

* Observe that, when a=0, ¢ LB<Lz0’'< 1.
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(i) Let a<—1.. Then, by (20),
=Ly =),
and *bgnce, by (19),
| oW =00,
(i) Let a=—1 Then

CT@ ™ —FrW {26 YD +ip(L2) o' (UN]esh
Hence, if z6'<1and po’'< 1, ’

T <1
and j o= oumy;
if 28 or pa'>1,
O = TW) = —FmD){A/NE L) +ip(LR) o' (L))o,
(111) Let —l<a<0. Since <6, we have
r@ye Lo <x> |
and. hence

C(A) = I'(=a) cos (%a,n') p(1/3) d*abr.

15

(n) Let a=0. :Since 6<6 by H-lemma 10 we. ha.ve' g

T (12) < T (1),
and. TJ®(2) < JO(2).
Hence C(A) = T(i/)lj. |
We can now state

Theorem II, The mtegral
) =l 222 a
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where 1<0<11/}) and o<ad/, s comvergent. If p=2""6(x), “where
2’ <0< (1/f, so {ﬁat a=0, the behaviour of C(A), as >, is deter-
mined asymptotically by the JSollowing Jormulde *

(cy=o00ap) (a<—lorg=1, a;@'i 1, po' < 1),
CU) o ~(a){(DOUR) +3p (Ui (D) e
' (a==1, 26 or pe’>1),

C()~ I'(—a) cos(}am) p(1/2) " (~1<a<0),
\C S TAR) . (@=0),

(4) ¢

where

T (z) =./:‘0 (t)gi}:u) %

IV.  Duscussion of Case (B) : o (z) = I(1/d).
9. In this case, we can write

(21) : q(z);b I(1/z)+0{z),

where 40 and s<i(1/z). Then

pe® = 7% @(g)eia)
Hence, as Hardy remarks in the paper ‘“O. D. I. 1., the
treatment of the sine-integral S(2) in Case (B) may be done by

precisely the same method as in Case (A), by applying Lemma L
Thus we can easily see: '

If as—1 v A
S(l) = O(]"H"’)‘;
if —<a<0, orif a=0 and p<1, '

S(A) & —I'(—a—b3)sin {%(a,.;.bq;)ﬂ}f,(l/x)em./n.

Combining these results with Theorem B, -we obtain

* Observe that here always C(\)=o(1) as \>00..
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Theorem III. The integral
SO = [ o(a)e in S0 A2 4
SO = [ pla)e o 2L g,

where a=bi(lfz) (0+0) and p<1jz, is convergent. If p=3"“6(x),
where ©°<60 <(Uz), so that a=1, the behaviowr of SQR), as 2>w, is
determined wsymptotically by the following formulae : '
sm=0(y (a=—1)
(5
S()) ~ —I{—a—10b) sm{ (a,+b@) }0(1/))3““/“ (—J<a<1)‘

10. We now,consider the cosine-integral
0= / (&)t ORI g,
Since the iunctlon 7 has the form (21) the condmon for the con-
s vergence of this 1ntegml C(2) is
<1
as z-> 0. S :

As in Case (A), we have
Cy=0 /1) + J(),

where

J()= / (B,~i Rg) o, SI0 2 da,

‘Rr:'%-T'noI’ R - IOG

+
r

If we Wnte ‘as before,
) p=z°6 (a:)
“where ' as0, 2*<O<L(1z)*
© we have : o
' B,—i B, ~.(a+14b3) 2-@ 8 (z).

* Observe that, when a==0, =% <0 <1..
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Hence, applying Theorem III, we obtain:
If a<—1 orif a=—1 and 6<1, -

J() =0 (1)2);

if. a=—1 and 6>1, orif —1l<a=0,
T(2) = —{a+1+bi) [{—a—1—bi)sin {(a+L+bi)x} p(1j2)ewom:.
Therefore we have the theorem.

Theorem IV, The intégml

3
cQ) = / p(x)emﬂ% dz,
J0

where ¢~ b1(1[z) (b+0) and p<1, is convergent. If p = z7"6(), where
<0<z}, so that a=0, the behaviour of C(A), as 2>, 4s deter-
mined asymplotically by the following formulae :*

c(2) = 0(12) <1 o a= _1, 6<1)
6 .
(6) C(2) ~ I{—a—b3)cos {4(a+ bi) W}(P(I/A)e"‘w‘*
' (—l<a=0ora= -1, 9>1)_

V. Examplest of the Cases (A) and (B).

11. As examples ofithe two cases(A) and (B), we shall give
some discussion about the behaviour of the integral

8~1
J(4) :/013“z A (log %) dx

as A>o, where
R(r)>0, R(s)>0.

At first, we consider the case in which

* Observe that, here also always C(3)=o0(1) as A->0. )
tIn-the-fellowings; I-have-given-examples-and- verifications; quite-similar-to-those-givem
- in Hardy's papers, for the purpose of parallelism.
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y = —a, —l<a<0;
s = a-4mi, O<a<l, Am:i:O.
Ty = [['e0% et (log LY gmiostoe 1)z

= I()+i I(2),

where . /lm_a (lc;g 1 )--lemnoglog (1jz) cos A dé,
Jo €T ’ x
- S 1. . ‘o
I(2) = A .z ( log-:-l—_)v, o™i toglog 1/ x)_S_{_I;:ﬁ ds.
Now _ ‘
= L()+1.2) | | |

say. Evidently the integral I,(4) is convergent, if a,<0 The
integral I,(A) may be written in the forin

L) = /0 %(1—x)‘“'1(logj_lx.)"lemi loglog {1/(1-2)} oo X1 —z)dz,

and, when z is small, we ha—v’e
. _ log —— 1 x f1+0(z)}. .

Hence the-integral:Ix(%) issconvergent if a=0.
The integral I,(4) may be divided into the two parts

' TS LA y ‘ ;
1,00 = (/e+/’}>x'"(log%)' i log log:(1/2) cg;fa;. dz
= L'(D)+1,"(4)

say, § bemg a sufficiently small p051t1ve number. Then

. é .
BOy= [ player L2 g
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- . o1 ‘ : .
where p= w‘“(log%) ', o = mloglog (1/x).

Applying Theorem II, we obtain
Iy (M)~ I(—a) cos (3a ) A*(log 2)*¢mi log lgh  (~1<a<0).

z

’ a-1 .
It we put  f(z) =9:‘“"(10g 1 ) 6m1‘1°g1°»g (=),
then, by performing integration by parts, we have
Lo . 1 .é , i ) : .
1/ () =00/)—+ /E £/(2) sin Ja da.

Evidently f'(%) has no singularity and is absolutely integrable in
the interval (§, 3). Hence by a well known theorem™

- /"’f'(x) sin iz de = o(1)
JE . )
as A>o. Hence we have
L) = 0(1/2),
Since —1<a<0, we have Il’j;-Il;"aé I>>.
Thus we obtain ‘

L(A)= I'(—a) cos (an)2*(log 2)*~temiloglog(1+4¢,;)
= I'(r) cos (3rm) " (log 2y~ (1 +2), ‘

where ' lime,=0.
A>w

The integral I,(4) may also be divided into the two parts
I,()= (/]e +/:1r ) (1—g)==? (10g1—i——a;l)“1:emi o8 IOg’{:-l/(_lnz)}COS/I(l—-x) dz
=L+ () o
say. As in the case of I7 (2), we easily see that

I()=0(1/A).

* Hobson, Theory of Functions of a Real Vafiéble, . 672.
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In considering the integral IJ(2), introduce the relations

log 1 = 2{1+0(2)},

(- =140(),
emilog {1+O(:::)} — 1+O(:1:)

Then we have

I = [0 01 4 0 () 2220=2) g
Jo
= CO0S )/ "mllog(llx){]_l_o( )} Lotz cos Az d
+sin/1/' ave B W) (140 (2)) S.E.ljzgd

=i +5(2)

say. Then Aby Theorems ITT and IV, we have, for O<a<<l,

oo 108 01 €802 gy ot cos {3 mi)e] 1o mitog,
J 0

re . '
/ gee~milog (1/-”)_8_1515/1&‘ dz ~ .F(a+mi)‘sin {%(a+mi)n-}f}\‘“e—mi log).
Jo .

Hence, we can easily see that
J (A) = cos 2 I{a+mi) cos {$(a+mi)z} i~ ¢ -milogh
7 (A) & sin 2-T{(a+mi) sin {}(a+mi)z} 1="¢—milog:
and ' A
J(A) @ I'le+mi) cos {A—4{a+mi)z} 2~¢—wilog).
Since O0<a<l, evidently we have I.'>I" as 2.
Thus we obtain ' ‘
I,(2) = I{a+mi) cos {A—}{«+ mijw} A="¢-milog) (1 +¢;)
= [’(s) cos (A—gsm) A7 (L+¢7),

where lim &' =0.
A>o
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Hence we have
I@2) = I'(r) cos (3rm) =" (log 2)*~' (1 +¢2)
+ () cos (I—}sm) (L&),
© Similarly we can prove that
T(2) = I'(r) sin 3rm) 2" (log 2)** (L +¢/")
+ T(s)sin A—psm)2~ (L+e").

Thus we obtain

J (%) =./0‘e"“ 21 <log%>s-ldx
= I'(r) edrni) (log )= (1 +¢)
+ I'(s) i g(&—&;ﬁ)i(l +¢'),

where

lim e=0 hm =0
P : A>

r and s having the values of (22).

12. This result may be verified as follows. -
Hardy proved® that, if E(r)>0 and E(s)>0, then, for pure
imaginary values of ¢, we have

¥ 1 S o 1\t
f,,,(t) = F(S) pa (u+7)‘ V! —.A ¢ (lot’?) de

= T() (— 1) {log (=)} (1+)
F )t et (e,

where _
(—t)" = exp{—rlog (—¢t)} = exp[—r{log|¢|—3emi}],
t* = exp{—slogt} = exp [—s{log|t|+%eme}],

*Proc. .London Math. Soc. Ser. 2, Vol. 2, pp. 401 et seq.
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' . t )
and €= +1 or ¢ = —1 according as >0 or %<0- :
Herein put t=1i. (2>0),
then’ _ (=87 = ebrmid, 7 = b
Therefore

1 - -1
(23) . .A e"’)\ﬂ?mr-l(log —i—) dr = I—'(/r)e%rni/"-r(log Z)l-l(l—}-e)
+ [18)2‘33().-§cn)i (1+€’),

where , lim €=0, lim ¢ =0.
' >0 >

This formula quite agrees with our result‘obtained for the casein
which ’ ‘

r=—a —l<a<0; s=a+mi, O<a<l, m+*0.

Thus eur result is verified.
13. Next consider the-case in which -

{;r: —a—bi, —l<a<0, b0,

S =‘(/-; O<a<1

‘In this case

T(%) %/(;lei“ a1 (log L) g

. . :‘/:1‘_;,./;:(71(./‘.)'4-:72(2)

say. Then
k «-1 bi log(1/4) cos /
RO)= [fame(log L) 7 E 0 080z g,

x -

3 a1 bilog (1e) sin
+’l:/ " (1og _1_) '8ln o (1/ )Sln AL d:z;
0 xT T -
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Applying Theorems III and IV, we can easily see that
Jy(D) = I{—a—bi) e-Hessrei jatti (log 2)==1 (1 +)
= I'\r)etr=i i~ (log 2)*=* (1 +¢),

where _ lim ¢ =0.
A>0

The integral J:(4) may be written in the form

. . 1 b log 11—
J,(4) =/o%e"”'”) (l—x)'“"(log 1iw> Qs (i )}dz.

If we make use of the equations -

( log 1—};: z{l+0(2)}, (1—z)""'=1+0(z),

ebilog {U=0} — 14 0(g),

0 X )
/ z*"t cos Az dz = [ta)2 " cos Larx
° C(0<a<l),

-0
{ / z* 1 sin Az dz = [(a)/™"sin §'an
. : ‘

we can easily prove that
Jy(2) = [{a) i-* e@-denri(l¢f)
— I(s) i-ea-tsmi(l +¢),

where Iim ¢ = 0.
. A> 0

Thus we obtain :
I (A) = H(D+J(A = I{r)eb=id~ (log 2)* 7} (1 +¢)
' ‘ + I(s) it e@-dmri(1 4 ¢), -

where lim e=0, lim ¢=0. "
A>0 A

Here again we have obtained the result Whlch quite agrees
with the formula (23) for f...(%).
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'14. Finally consider the case in which

3(% {q-;;a;bi, —1<a<0, b=0,

s = a+mi, 0<A‘a<1, m=0.. '

- In this case we. have
T =/ gtk ma-1 (10g 1 )“'16 {b lc‘jg (1/x)+m log log (l/L)'}L dx
IS S '
=/ + A = J()+ (%)
say. 'Then, proceeding as before, we easily see that the discussion

of the integral Jy(4) may be carried out by means of the integrals

/‘ ‘x'_., (lo gi)“'le {6 1og (1/z)+m log log (?./:c)‘}.?‘ltsin e iz,

/-em-(; (logi.)a-le {[z log (1jz)+m log log (l/x)}i' cos Az iz, .
and that of J,(2) by means of the integrals
. . /ng‘e_mi log ('1/?) sir;c Az I,
0 .

IE N : . . )

—mi w) COS A
/ %o~ log (1/x) T dr.
Jo 4 z

Thus by another application of Theorems ILl and IV, we obtain
J(A) = I'(r)e"™1" (log )~ (L+¢).
+1I(s)2® 00'5”')"(1 +€,

~ where ~ lime=0,  lim ¢=0,
T A> A>0

7 and s having the values of (24).
This result is nothing but the formula (23) for the case (24)
IV. Lemmas for C’ase (C’)

15. Among the lemmas given in the paper 0. D I.27,
the most important ones are H-lemmas 32 and 33. They glve
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important properties concerning the variations of the functions

) p(z)
z{A—d(z)}’  =z{i+d(z)} . . :

for sufficiently large values of 2, provided that
| ¢ > 1(1/z),
and z < p< z0' ¥

I will give two more lemmas of a similar nature, -concerning
the variations of these two functions, for the case in which

a > l(1/z),
and 3 o< p <Lz
16. Lemma 2. Le o> U(1ja);
(i) JIf p<w, orif  p=Az{l+p(2)},
where A s a positive constant .and .
»p=20, p<1,
then the function

li)

o= —=
! . x{l—d')

18 a steadily increasing function of v throughout the interval O<z<&.
(i) If L = de(l=p@),

where 4>0, p>0 and o<1, then the function ¢ has, for sufficiently
large fized values of 1, one and only one stationary value in the range
0<z <&, which is @ mavimum and tends to zero as > .

Progf. In the case (i), —‘:;—.is evidently a steadily increasing
function of = (or a constant when p=0) in the interval (0, €) and
so also is the function :

* Tn the following investigation of Case (C), we shall assume that .
’ p >0, > 0.
‘We can easily see that, by this assumption, no loss of generality will be introduced.
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I
I—d(z)’

~ since /<0, o’ >1, Hence:tbe’ﬁrst':;part of the lemma follows im-
mediately. ‘
Now consider the second case (ii) of the lemma, in which

p = 4z (1—i(@)},

where A4>0, p>0, p<l
Then we have .
| _ A(1—p)
¢ i—a
L R
and —— = OIglyes
25) . = i’fﬁlﬁ/‘ﬁﬁ—a’.
Let us write ’ E = o'7,
so that " or<0, . o<1
RUS B " 12,1
" Then 2A=p) |y SEY
\ P 0
and from the relation ¢/7<1, we obtain 7<—;—and, by differentia-
tion, _ . BN
‘YVO'I“?T"<'6'"'
Hence (25) becomes _
) o.ll_'_o.'? / 17
(26) A= = 7~ %,

Here we have
0‘”>~—1—
-
since o>1(1/z); and, since p<1, we have zp<« and, by differentia-
tion, ' ~ :

zp!+p < L
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But p>0, p<1, >0,
and hence ap/ < 1.
1
Therefore = - - A BN R
P z%p z

whence it follows that, for sufficiently large fixed values of 2, the
equation (25) has one, and only one, root. - Thus the function ¢
has one stationary value; and as ¢ is positive and ¢<1, this value
is plainly a maximum.

If the root of the equation (25) is z=a, then the value of ¢(a)
is given by -

. —_4p(2) _ p(a)—ap’(a)
(27) So(a) o'"((l.) pE a”(a)
For o(0) = - p(a) _ A{l—ji(a)}
For i | ‘/( ) a{z_(’/(a)} ‘ )‘_\a/(a) »
and, by (25), r—ol(a) = L(W
e = AR@)

Hence » Cg(a) = =a%
wi o)

“which ploves the equation (27).

Since {3' >1, we see that ¢(«) tend% to zero as A>ow
The proof of the lemma is thus completed.

17. Lemma 3. Let o > 1(1/z).
(1) Ife<zorif p = Az{1+p(z)},

where A is a positive constant and
p=>0, v<1

then the function

=__Fr
¢ = 2+
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has, for sufficiently large fized values of 4, one and only one stationary
value in the range 0<z<§&, which 1s a minimum and tends to zero as
A>w .. The value @ of m corresponding lo this minimum s greater
than the value 0 of x for which the, function. ¢: becomes in ﬁmte, 0 being
given by the equatzon —a'(6) =1; so that the Junction ¢ is continuous,
except for this value z=0, and 1s a steadily decreasing functwn of % in

the interval O<z<a and a steadzly increasing function wmn_the interval
<< C

G) If - p=4s(l-i(@)

where A>0, p=0 and p<1, then the function ¢ has no stationary
value in the interval 0<z <. It becomes infinite for one value 6 of x,
- given by —d'(0)=12 and otherwise it is continuous and is a steadily
décreasing function of x throughout the interval 0<z<§.

" Proof. We observe that.

and hence - o _ >0,
if >0, 6 being the root of the equation 2+4'(6) — 0.

(i) At first, consider the case in which™ =~~~ = v

o< x,
and write ' p =27,
so that ‘ r>0, r<1L
. o _ 7
Then _ Sl
and % =0 gives
/7
28 1=27 g
@& =7

Now <0, o'>0,

J

so that we have
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/)

Lo T,

whence it follows that, for sufficiently large fixed values of 2 the

equation (28)has ote; and only one, root . Thus the function

¢ lias one stationary value. '
By (28), we'have

1+ a’(a) = M >0

r'(a) ’
which proves that - >0
Also we have.
. (o = () _ _ pla)—ap'(a)

(29) p(@) = (@) %o (d)
Since r <1, we have zr! <1,
and, from the property of o, 6”>—%;,
whence it follows that g,,i% <2y (z)<z<L

so that ¢ () tends to zero as A>w.
Next consider the case in which

p= Az {l+7@),

where 7 4=>0, p>0, p<L
S _ A(l+p)
Then ¢ = e
and- g% =0 gives
(30) p=20tp)
P

Now <0, ¢'>0, p=>0, p'>0,
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M—g’>.

7 —0o' >1,

whence it follows that, for sufﬁciently‘]arge fixed values of" 4, the

equation (30) has one, and only one, root a.
¢ has one stationary value.

Thus the function ‘

By (30), we have

A4 (a) =

which proves that

Also we have

(81)

Easily: we. seezthat

= 4@ _

@ tp@} o,
(@)

a>-0.

_ p@)—ap/(a)

a? a”(a)

(@)

-
o T
w7 <b

so that go,'(qi),tends to zero. as A->wo.

(if) Let"
where

Then

& .
and =-=0 gives

If*we’ write
so that

then we have:

p=da{l=Fo),

450, 5>0, p<L.

oo AL=D)

Mgt ?

)‘ _ —,O_H(l_EI)_l_a.l;[/ .

P:
p=a'r;

r<0, o'r<1I,
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(32) - p= _

o
From the relation ¢/y <1, we.obtain
o.ll > O.I) l

) P +o‘“ . o'’
Hence —7 —— > 0,

"I . 14

since ¢” >0 and p'>0. Therefore the right-hand side of (32) is
ultimately negative and hence there is no stationary value of ¢.

A

If ﬁ= Q, then L= m:

and evidently there is no stationary value of ¢.

We easily see that, as z>0, ¢ tends to zero by negative
- values, and that, as w—>0 from below, ¢>—o and, as z->6 from
above, ¢>+®. Thus in the case (i), the function ¢ is a steadily
decreasing function of z in the interval 0 <z <a, except for the
value z=90, and it is a steadily increasing function of z in the
interval ¢ <z <§, the stationary value for z =« being plainly a
minimum:. In the case (ii), ¢ is a steadily decreasing function of
& throughout the interval 0 <z <&, except for the value z = 6:

Evigenty ¢ is continuous throughout the mterva] O<z<§,
except for z=¢.

The proof of the lemma is thus completed.
18. I will give other lemmas of a different type.
Lemma 4. Letf(y) and fily) be L-functions such that
¥ @) > AP, v >fly) > (A/yY,
My) = fy) >0
as y> . - If y=0 and y=6 cw*e‘ respectively tﬁe roots of the equations

yf@) =24 yfily) =¢4 . '

Jor large values of 2, ¢ being a positive constant independent of 2, then
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0, ~ch
as 2>o. _ ‘ B |
Proof. Evidently ¢/(¥) and v/i(y) are ultimately monotonic
and tend to infinity as y>=». Hence each of the equations

yf(y) =4 ?/ﬁ(?/) =c

has, for sufficiently lafge values of 2, oneand only one root which
tends to infinity as 4>wx. :
By hypothesis, we have -

0f0) =12 10,f(6)=c2;

~and, since ﬂ(y) ~ f(y), we have

| £(0) = 70) (1+¢)

where e>0 a's.'(il—»co or Ao H:ance we obtain
C0f(8) = 0,7(0) (1+9).

Let 7 be a fu’n'c\tion of 2 such that

0, =8y
Then we have
(33) O =270 (A +e),
where €>0 as i>w.
We have to prove that
70
as A>w .. N

Evidently 7 is positive and continuous for all sufficiently
large values of 2, and it might tend to infinity or zero, or might
oscillate finitely or infinitely as 4>». -

If we suppose that -1 or 7 oscillates in an infinite range of
.'values, then, corresponding to any prescribed positive number P,
however great, there will exist a sequence (£) of values of 1 tend-
ing to infinity, namely,



34 Art. 4—M. Kuniyeda :

such that, for every 2,, we have
y > P,

all values of 2 in () being greater than a certain positive number
% which can be determined corresponding to each given P.

Since 0 = ﬁ > 1 as 2 tends to infinity, taking the values of

the sequence (/), we can always choose a number a such that

l<a<p<bla

N

‘Easily we can see that H-lemma 24 is available in our case.
.Hence we have ‘

f6) =f(0./7) < (6, (f > 1),
< Kf0)If() (fF<D.
Therefore, by (33), we have
7f0)A+e) <cf) (>
<cKf(0)f(n) (f<1)

or \
7(1+€) <¢ >
(34) ,
2/(7) (1+e) < cK (f <1
Bat 7> P, 9f() >7""> P

and the value of P may be chosen as large as we please. Hence
neither of the inequalities of (34) can be true. ‘

Thus 7 cannot take values which become indefinitely great
as A>w.

Next, if we suppose that 7<1, or 7 oscillates in such a manner
that it takes indefinitely small values as 2o, then, corresponding
to any prescribed positive number p, however small, there will-
exist a sequence (E) of values of 4 tending to infinity such that,
for every value of 2 of this sequence, we have
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7 <D
: . . . 1
In this case, if we write 7, .for 7 then

n= ]/p.= P

for every value of-4 in the sequence (). Hence we can proceed
qu1te similarly as in. the above case, observing that

i=01_> 1
/N

as 2>wo. Thus we see that 7 cannot take values whlch become -
‘indefinitely small as 2> .

Therefore there must exist two certaln positive constantsp
and P such that

p<np<P.
But in this case we have ‘
f(07) ~ f(6) , . .
as 0>w (or i>w), since y° > fly) > (Ly) as y>w.*
Hence, by (33), we obtain

(@) = 770),

whence it follows that '
. ye

as />o. Thus the lemma is proved.

Let /() fi(y) and ¢ be the same as in our Lemma 4, then we
have the following corollary, n denoting any positive constant:

Corollary. If y=94, y= 0, are Tespectwely the roots of
Yy fly) =2 "fl('.l/) =cA

Jor large values of 4, then

* This can be easily shown by means of H-lemma 18.
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1
0, ~cnd
-as i>w.,

The truth of this cmol]ary can be inferred 1mmed1ately by' .
wntmg our equations in the forms

y{f@Y =1 ylA@)}® =ovin.

19. Lemma 5, Let f(@) zm_dv fi(z) be L-functions such
that :

=0, f£i=0,  fi>f>1
asz>0. I f =0, =0, are respectwely the roots of the equations
f@=h  fil@ =1
for large values of 2, then, ' _ |
0 =>46,

Jor every sufficiently large value; of A .
If we notice that f and f; are ultimately monotonic and f< f;
for every sufficiently small value of 2, then our lemma follows im-
" mediately-

VII Discdssion of Case (C) : o(x) > Z(l/aé).

20. We now pass to the discussion of the behaviour of the
integrals®

)= / ()6 B0 g,
58 ' . .
N — wo(zy SN A%
S (A /0 pl)ee @ S22 da,
as A>wo, when I (1/z) < ¢ < (1/z)%. It will in this case be conve-

nient to' separate the real and imaginary parts of the’ integrals.
Thus we have to consider

Cx Although the sine-integral S() has already been treated by Hardy, we shall discuss it
again, reproducing briefly his analysis, because, for the purpose of this paper, it is necessary to
modify his argument and to extend it to the case 28<Lp< z, while the same 'ugument applies
to the discussion of the cosine-integral C(3).
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() = / o) cos o(z) COZ"x do, L) = / () sin a(x)ﬁ%@_dx,

J : . . . . £ . . .
I,() = / (@) cos (@) S8 ag, L) = / o(z) sin o(z) SBAZ 4.
Jo Z . Jo : xz .

All these integrals are convergent if

(35) , z'< p(z) < @0’ ().

Hence we shall suppose that this is satisfied. Then, if we put
50 = /0 %ﬂ”) cos (ot ol@)} e, T0) = / e@ cos {Az—o(z)} da,

E J; ()) / @) gin {%z + o(z)}dz,  J,(2) —/ ‘O(z) sin {iz—o(z)} dz,
we have | | . A :

= L) =HLW+5@) LA = {0~ L@}
LO=3T@+5,0}) LA =H-7.0 + 50},

and , o .
C(A) =32+ Jo(2) + 1{J2(A) = J,(V}],

(36) { T
: S(A).= 32 + J,(H) — i{J, () — T (D} ]-
21. Integrals J.and Js. At first we shall consider the integral
;Tq(l)=/'€£@lcbsydw |
B Jo s

where ¥ =4z—a(z). As x increases from 0 to £, ¥ increases from
—o to 7=4 ~0(€), and 7 tends to infinity with z  Also

J3(2) _/ ;x'{—)‘%cosydy.

' —_ pm) -
Let Ty

then, by H-lemma 32 and Lemma 2, we have to sepalate the
following cases.
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(i) Let o<z or #=4e(l+7), where 4>0, =0, p<1. Then
¢ is a steadily increasing function of x throughout the interval
O<z<{.  Hence, by the Second Mean Value Theorem,

: L(Z)%E—{;ﬁ%_ ;:cosz/dy (—o <7 <7)

Therefore J,(2) = O(1)2).

(1) Leta<p<uwzd' or p=4xz(l—p), where 4>0, p>0, g<1.
Then ¢ has one stationary value in the interval 0 <z <§, which is
a maximum given by z=ga, « being the root of the equation

de _
Tw =0

We now write

Jy(2) = (/_; + _/{;,I)x{)f_(—aj(mcosf’/dﬂ =J/+J,"

say, where f =2a—as(2). Then, by another application of the
Second Mean Value Theorem,

l’ﬂ .
S = cosydy -~ (—w <f,<p).

’ P( )
i 7 {).—0'(6!)} £

Therefore J) = u—{ii(—;’)(—r;)}— o) = Q{¢(a)}-

Similarly we obtain

"— o(a) — o

Hence we have

7.(0) = s 0(1) = 0fs(e)}.

The same argument applies to the integral J,(1). Hence,
if p<az or p=d=z(l+p), where 4>0, p=0, p <1,
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T = 0(U3);
if z<p<azo’ or p=Aax(l—p), where 4>0, p>0, p<1,

___pl4) - s
J4(}‘) - ”{/__O./(,/)}O(l) 0{¢( )}

29. Integrals J, and J, The same methods apply to both of
the integrals J;, J3, <0 that we shall consider, the integral

(37) J, (%) '=/; @ cos 1 dz,

where y =2z +o(z). This function # has one stationary value,
which is a minimum given by

24d'(x) =0,
or, say, z = 0(2) =4,

0 being a positive function of A which tends steadily to zero
as A>m. '

o

As in the paper ‘0. D. 1. 2, in the following discussion,
we shall use an auxiliary function ¢ of 2 such that -

(38) e>0, . e<6, p(@)< ea'(6), ‘ eo’'(6)>-1.
Since zo” ~ Ad’ in our case (C), the last condition of (38) is
equivalent to
2> 0/a’(0).
Let o'(z) = ﬁ%)—, so that u(z)>1, and let p(z).= zo'(z)v(z), so that
v@@)< 1. Then the above conditions (38) for ¢ are equivalent to

‘ . 0
38’ - e>0, <4, e>-0v(0), E> ———y
(5%) <6 00 V(0)
and evidently such a choice of the function ¢ is always possible.
It is convenient to divide the discussion into the following
two cases (i) and (ii). ~
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() The case in which z< p<go, or p=Az(l— p) where
A=0, P 0 =0, p <1
In this case, by H-lemma 33 and Lemma 3, the function

, _ _ n(x)
) o
is a steadily decreasing function of x, except for the value = 0,

throughout the interval 0 <z < c, and we divide the integral (37)
into the three parts '

"=z W ,- 3 : .
(40) J1(4) ='/0 +./0_A + /-‘H-“ = Jl(l)+ J O+ JI(B)'

(i) . The case in which z'<p<=, or p= dz(l+3), where
A4 =0, p >0, p<L

In this case, by Lemma 3, the functlon ¢ has one stationary
value, which is a minimum given by z =a, « being the root of

the equationili—z= 0. Hereby « is greater than §, so that the.
function ¢ is a steadily decreasing function of = in the interval
0 <z <a, except only for the value z =6, and it is a steadily
Increasing function of a4 in the interval e<z<é. As it will be

proved presently, we have
0+é<a'

Hence we dlvlde the mtevla] J, into the four par ts

(41)  J,(2) _/ +‘/ﬂ_€ + s +/— =JWL JTO ¢ JO 4 W,

Joa

23. Integrals J," and J,*°.  As x increases from 0 to 6—c¢, the
function y = 2z + o(z) decreases from @ to A(§—¢)+o(f—¢), which
1s large and positive when 8 is small and ¢ smaller. Also

v ..
IO = _ o=@ :
Jl AE=e)+o(0-¢; [ 1-{) +0"(£c)} cos ¥ d?j.

T R | C) B g v is vositive and -
The factor yET e which multiplies cosy is positive and.

monotonic, as we have already seen. Hence, by the Second Mean
Value Theorem, we obtain



Oscillating Dirichlet's Integrals.

,,(0—'5\ '
| J,‘ml < K[“ O—e{i+a(0—¢)} ] :

: p(ﬁ——-—s)
<7 K[ (0—c¢).€a"(0—¢,) ]\ ’

where 0 < € <e.
- Now p, o and all their derivatives saﬁisfy the condition
e F< ) |
“and so each of them satisfies the relation
SOEg) = f(0)

if ¢<6, in virtue of H-lemma 11.
~ Hence we have '

m _ - P(ﬁ) .
I = 566”(0)'0.(1)'

Simﬂaﬂy, in both of the cases (i) and (ii), we obtain

3) — 00(0) .
50 = G 0.

R O N, N )
A OV O MOV NN VA T (I

since, by (38), o 5‘2'0.//('0)‘\’> 1

~ Therefore, in both of the cases (1) and (ii), we have

) _‘n(ﬂ‘) ]
NV 7 1)1 N

o o0
IO =< Gy

24. In the case (ii), we have assumed the relation
0+¢<a,

which may be proved as follows.
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When p <z, « =« is the positive root of the equémtion

_ (@)1 ()

fa) = 5L

—o'(x)—2 =0,

where o =z r(z).

This equation has, for sufficiently large fixed values of 4, one and
only one positive root «. Hence the function f(z) changes its sign
when « passes through the value «.

Now, since = ¢”(0)>0, 7#6)=>0, .8)>0, o'(6)+2=0,

we have :

F(0) =208 g,

7'(0)
, _ oo +e)(0+e) _
And f@+e¢) = <) a'(0+¢€)—2
g rh4+e) .
— a(;{*(;)_i/:sﬁ)'i‘) — co(0+¢) .(0<s|<‘s)
0//(0) 7(6) _ 7
~ 0 ea’(6)
_ 'O {r(0)—=r'(6)}
7'(0)
. Since <1, we have . -
0 7/(#)<78),
and, since £< 46, e (0 < 7(9).
Hence ultimately 7(0)—e7'(6) >0,
and therefore f(0+¢)>0.

Thus f(6) and f(6+¢) have ultimately the same sign.
Therefore it follows that f<0+e<a

Next, when p = dz(1—p), z =« is the positive root of the
equation ‘

£@) = QL+ @) 55 — @) —2 =0.
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Now S0 = (450) >
since  o0)>0, #0)>0, HO<L oB)+2=0.
And f((?+5)={1+.:7(0+8_)}%:(%}_:'—8)€)—a’(0+e)—1
= {1+.3(0+e>}"—(‘g—f—)‘ co04e) (0= <)

~ a''(0) +a//(0) o 0)—ep’ (0) > 0

70) UM
since  g(0)>0, F(B)>0, ep(B) < p(b).
Theréfore it follows that <0+ec<a.

25. Integral J,”. We now consider the integral -

v 04 .
- J1m~=/ L(w_)_cosyda: =J/+J/", .

x

| 3 /I(ﬂ+¢)+6(ﬂ+‘,$) of ) 0 ‘
where 7! =/ {p’\x _cosy _ }dJ,
. x Atd(z)

_ A(6-2)+6(0~8) o(w) cos y } ,
/ { z Atd(z) %,

Now let.us consider the following difference of intégrals

. . --/I(Ii+a)+a(0‘+e) of:(:)
(A )
(42) g _./ﬂ . —_a:{2+0’(m)} cos y dy

_/uv+e)+"(”+‘> ~ p(0) cos y dy
s RO G—R

which may be written in the form

) . g v x=045 ’)'(m)"‘T(o ‘)(0 . .
(43) J —'/ho —Wcosydv + /,;:o (y) cos y dy,

o) = P@ ey L ]
(z) z i) T+0(z). ~ {257(0) =)

where
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By the analysis of §§ 33—350f “0..D. I. 2.7, we see that

x=0+82 R 1
./m=a+el #y) cosy dy =< /a"'(8)’

/""="+82 cos y dy - K
e=0ter Ato'(z) - A/d"{0)’

where : O0=¢ =s¢, se¢

Hence we have

. (0) z=0+s . ;0(0) )
(w L / 1) 008y dy < e

. .w.=a+8 e 0
If we put ¥ =./m=0 %a,z—;))cos ydy,

then asin ‘0. D. 1. 2.”’, we obtain

z=0+s  (;og ' :
B o= ,\9\0—1-5)—7(0)} petre, ﬁ;%dy (0<e <€),

' ’ If (0
and hence L H ] < jo—’f,((d));

and, if z<p<azd,
e2(0) < 2(0).

If o <p<z we have <1 and we casﬂy see that @' <+ whence
it also follows that :

e 2(0) < r(0).
Therefore, in both of the cases (i) and (ii), we have

7(0)

W= Jomar

. , (6)
or N VP
Introducing (44) and this result into (43), we obtain

Y ()]
ANV 120"(0)}
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Hence, by (42), we have

- * A(0-+8)+0(0+e);
_J1/=w%{,/ﬂ“+)+(+.)%,dy+0(l)}~
Similarly we obtain | |

= GG, i vy OO}
Now 2(0+¢) +'aéﬁ +e) =B+ 46"(0+¢),
where 0 <¢ <, s-o that a0 +¢€) ~ o'(0);
and, by (38), eg’"(0) > 1.

Hence we have

/' Mo+e)ral0t+e) g _cosy
2

"® cos'y
a8 VTS T YW

But "©  cosy

Jo VB y“““*@“/’?‘
Therefore we obtain

: / '(0)
J, 0«{20"(0); {oos (8 + 1) ¢r+o<1)}

Similarly o
" /’(0) v L . /
J” 0\/{2 ,,(0)} {cos (B+1m)/7 + o(1)].
Hence, in both of the cases (i) and (ii), we obtain

J(?) — _0_\/27207 {cos (8 + dm)/m + 0(1)].

26. Integral J “, Flnally we consider the 1ntegral '

L e=F
J(n_/ “p) cosyda:— . x{x_-'_(?@cosydy.

In this integral, {T-I-(%_)}_ s a steadlly increasing function of z

in the interval a<z <€ Hence, by the Second Mean Value
Theorem, we obtain ' : '
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P& oa)= 0(1/;)

T = T

27. Introducing the results of §§ 23, 25 and 26 into (40) and
" (41), we obtain: \

In the case (i)

in the case (ii) | _
2 ‘0

J1(4) = {cos (B+3m)a/m+ o(L)} + 0(1/1)

O/ {20" 0)}

Similarly we obtain :
In the case (i)

2 p(6) } {sin (B+1in) /m+o(1)};

’Jﬂ()‘) = 0'\/{2””(0)

in the case (ii)
Iy () = % {sin (B+37) v/7+0(1)} +' O(IM)

Now we can state’

Theorem V. If z'<p<zorp= Az{l+p()}, where A>0,
p=>0 and p<1, then ‘

T = g oy {608 (B4 1) a-+o(W]+ 01, 0= 0(1)

T2 =—07%gff—>@}— (sin (8+17) v/r+0 (D} + O(1),  J() = O(A);

if z<p<zo’ or p=A:l‘.{1—E(x)}., where A>0, p=>0 and p<1, then

0/ (207(0)} (DN (=)}

2
[2%¢

L(/t)— 2000 toon (g gt o (1)), A= {”("‘ _oq),

= ( ) sin T T = ( )
JiO) /(0)} { (ﬂ+4 )\/ +0(1)} ;L(X) {) a(a)} 0(1)
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finally, +f p = Az, where A>0, then
' 2p(0 M T
W= {gg % gy Leos (B+imv/to(D), T = 011
2 0(0 ;
1,0) = g el tsin (B+47) /4o ). Ti0) = O(UD);
“cmd, wn these formulae, 0 (md a are functions of 7 determined respec-

tively by the equations

, B - o(a)
6(0)‘*‘)“"_()’ ﬁ;[ ,,{;_{_(o-(a)}

and | ‘ B =20 + o(0).

Corollary 1. If *<p<z or p=Az{l4+p(2)}, where 4>0,
p=0 and p<1, then ' ‘

c() = 0—;/—{‘[#2(9(0—)}{.8(#+%")i\/ﬁ+ 0(1)} +0(1/4),
5% = W("w)}“{e‘ﬂ ia/mt o(1)} +O(L/A)

if e<p<zd’ or p= Az{l—p(x)}, where 4>0, p>0 and o<1, then

0 = gy o o) 40,

8(2) = W{g—(;g%@?{e‘ﬁ'%”"Jﬁ"‘ 0(1)} +;{Z—i%‘ O(l);_

0, u, B being the same as in the theorem.
By H-lemma 32 and Lemma 2, we know that

o(a)
a{A—d'(a)} <1

as ).—>o§, and evidentl i+0 as Z>o. But L,),—nevel
Y 0+/{25"(0)}

" tends to zero as A>w, if p>z+/0”. . Hence we have
Corollary 2. If zve'<p<ad, then -
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. 0) y

) C(A) = _L_ eBHAmY /T,

. 0/ §26"(6
(15) v/ {26"(0)}
‘ o(0) “1a)  Jo
S ~ Geamay IV
8, B having the meanings defined in the theorem. |
This formula for S(1) is nothing but the one obtained in
“0. D. 1. 2. In the followings we are going to prove that the
formulae (45) hold also when p< z4/d” s0 long as C(A)>1/2 and
S()>1/2 as i>wo.

28. TFor the purpose of this paper, it is necessary to compare

the order of magnitude of

1 o(a) £(0)
77 a(=d(0)]’  O{257(0)}

as 2>, when p<z4/d".

At first, we consider the first and the last of these functions.
Now, since 2+ 4'(8) =0, we have

(0 /1 _ _ p®)d0)
MOV OT,

.Hence, if p < w«/v"/ﬂ’ then

) < L.
G/ {207(0)] > T
if p > xs/0"[s', then

,__.(";)_' 1

07 {2670
We know that, if ¢ > I(1/z), then

6" > A/d". ‘ [H-lemma 31]

Hence, if p >z, then

9(0). 1 |
T2 0] T T

Therefore we obtain :
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If p < a/o"lo', then
L em=00m),  SH=00m;

if aa/d"ld’ < p < z or if p= Az{1+p(x)}, where A>0 p>0 and
o <1, then the formulae (45) hold, i.e.,

pld) +hx i‘ :
.mD“WVEFEWép)V% -

S() = PELVY

p(0)
0/125"(0)§
29. It now remains to compare the order of magnitude of

a I P 0
“”=zv§%m”:4“”=vv%%@ﬁ

as A>w, when w<p<x¢a” or p = Am{l—p(x)}, where 4>0, p>0
and p< 1. o
When z< p< w\/o", we write, as before
(46) @)= 6),
where a=—1 and 2*< 6<(1/z)’ as z>0. We obser\%e that 6 >1,
if a=—1 ' |
Under thesupposition that I(1/z) < ¢ < (1/z)!, we can write
(7). P@) =~ a0),

where =0 and #°< 6,< (1jz)’ as z>0. We observe that 6,>1, if '
- b =0, since ¢ > 1/z. ' '
From the condition p< z+/¢”, We obtain

a<3ib,
or a,=§—b, < 6?.

We have to separate the discussion into several cases as follows.

30. (i) Let a>—1.

At first we consider the case in which

b=>0 or b=0, _1<a<0. .
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Then we have

a < b, )
since a = 3b.
Let us write % = d'y(x),
so that o r=—a0/6,.%
Then <0, r<1 4 '

since a<b. Now

. _ 14 _ O"r i
So(x) T z(l—=d) T A1=d"’
dy =0 o
and 7= =0 gives
12 .1
8 =_9%7
(48) 1=l

From (47) and the above expression for 7, we obtain

zy' = (b—a)y, zo” ~ — (140)d,
and T;T'ifl:l’«;—"r ade Z—:_C-('f a'.
Hence (48) becomes Ao — [;16{’ o,

or —o'{l+ez)} = ‘Zti A,

where ¢e<1 as 2z>0. Now z =« is the root of this

equation,
while z = 6 is that of the equation -

—o' =/

Therefore, by.the corollary to Lemma 4, we obtain

a~cl, c=(u)‘1ﬁ

a+1
as A>wm.’

Now  ¢()=700 o — 40,

*# Observe that ® >0 and ®,>0, which follow from the assumption p >0 and ¢ >0.
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6(a)
,(2)

~and : 7(@)=—do""

e e B0 _ pal

. ah—a -~ (GHYI-& .

since : .

8(a) ~ 6(cl) ~ 6(0),
0.(a) = 91(c0.)r~ 0,(0).

Hence we have

ola) > — L ome5(0) = K0

—_ (¢) g ~/1207(0)
Therefore ‘5}(0) ~~K {a’(ﬂ) } <1

" since +/¢”<¢". Thus we obtain
(@) < ¢(6)
as A>wo. v

Next consider the case in which
=0 a=0.
Then we have - ,

= 6(z), o = — 27! Oy(),

6< g/@;, 6, > 1.
~ In this case o

o ,

= :c(l.(ia’) - )f’—;;”‘

47,';__2_’ wT’<T} _a//p,_x-.l&/'
1 .

Hence

12 .1

ey
o.(rl_i_a.//'r

]

'
z
~a'—L<o',

51
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and the equation (48) takes the form

—a’(@) t(z) = 2,

B ) N . . 7 >
‘where te mrr <1

as z->0.

As z = « is the root of this equation, ‘we have -

EoRiakCASS
whence _
A=~ - r(a) = 6(2)/6,(x);
and
| a<0
by Lemma 5. :
Now RGP O —_ )

0+/{26"(0)}  +/{26,(0)}°
and hence we have ‘

o@) 5 s9. 6(a) /6,0)
$(0) 6,(a)" " 6(0)

- We may write

Bla) 60 Oa) 60 1
" 6(a) 9(0) 0(0) 6,(a) +/6,0)

= Y {91(0)}_’} 1.
T VO T\ 6(a)) 60)°

and we have

6@) 1 6,0)
Vo < Tem <t aw

For 6 < +/6, 6,>1and a<0; and

<1.

it 6<1, <1
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. N C) ,
lf 9[~ 4, —9(0) ~ 1?
it 6> 1 L
oL () R

Hence it follows that in all cases we have

_ 9(a) -
Y@ ™ b

Thus we obtain gp(a)‘ < ¢(0)

as A>w . .
31: (i) Let a=—=1 and 6 > 1
In this case we have

.
p = z6, ¢ =70
. d i
and E—% =0 gives
A= fi@ll_?_ +
) :
Now ~2P o (140) o RANY

since 6 > z6'. Hence the equation'fof o = a takes the form
— @) t(@) =4

where te~ — (1+b);%7 > 1. Hence-we have -

—oa) _ 1
| 7 T b
whence o )
a, a
o(0) = gy S

‘and - a>40

by Lemma 5.

Now 90) = 54D =0

T/270) T RO
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and hence

o(@)  6a) /{2"(0)}
9(8) = 9(0) 7

_6@) /20

o0) " J(0).

. "o 6(a) '
since 40" < g andW<1, as 61 and > 6.
Thus we obtain ¢(a) < ¢(0)
as A>w. V

“(iii) Let p = Az{l—p(z)}, where 4 >0, p>0 and 5 < 1.
In this case : ' ‘

= A(l—p)
Z )

d .
and a5 = 0 gives

= ””(},—P) +
In § 16, we have seen that

b

nl_= 7 _
"_(1‘5,*:")4-0’ ~ % zp' < 1.

Hence, observing that zo” ~ — (148)d’, we have

/ 1 /7
. =5 a .

Therefore the equation for z = « takes the form
—d@)t() =2

where ¢t & —— 1+b > 1; and hence

—a'(n) _
e e Rk
whence ¢(a) = —A—{l—%ﬁn— —z—}
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o() " A
Now 400 =550y = mrmy
and hence, observing that 2 = — o'(f), we have
w(a) 20”(0)} J{Qo”(ﬁ)}
#(0) 7 2O

" since /¢ < 6. Thus we obtain

(@) < 9(6)

as A>wo. X

Thus we have completely proved the following proposition.
Let x<p<zafa”" or. p= Aw{l?ﬁ(x)}, where A >0, p>0 and
o<1 Then ‘

we L, e®)
= @] ~ T2 )

as A>w, a and 0 being Junctions of 1 determmed 9espectwely by the
. equatwns

a
a ﬁ- =v0, o'(ﬁl).-‘l-} = 0.

33. In the above arguments, except in a few special cases,
the whole thing depends on the fundamental Lemma 4. We can
also prove the same proposition, with exception of a few special
cases, by a more direct method without recourse to this lemma.
The principal object of the method is to find such aSymptotic
expressions in terms of 2 for the functions ¢(«) and ¢(8), which are
of convenient forms for the purpese of comparing their order of
magnitude as 2>w. The analysis is not very difficult and . I
content myself with giving only the following results.

Du Bois-Reymond proved* that, if vy be. the root of the
equation '

* Math. Annalen Bd. VIII (1875), pp. 394 ¢t seq. Du Bois-Reymond does not state clearly
the conditions to which his functions are subjected. . - ’
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) =1,

where f (y) is an L-function such that ¥~ Fy) > gy as y>w, t/aén,
Jor large values of 2, we have

y=2g@y
where v 1s o certain ﬁaﬁcﬁon of 4 tending to zero as A>w .
Easily we can prove that |
R {FF = ()
as 2>o. Hence we have ' L
Lemma 6. Let f(y) be an L-function such that
o ) > (Al
as y>wo. If y'=0 s the root of the equation
| yfly) =4
' fo%; lcirge valu_eé of 2, then 0 can be expressed in the form
b =19,
where g 18 a certaf;n fdnction of the same Zype as f, namely,

¥ >g@) > Yy
As before, write

p=z"6(x), o =—z VO (z).
Then, applying Lemma 6, we arrive at the following result.

Let z < p < z/0" 0or p= Az{1~p(z)}, where 4 >0, ﬁ >0 and
o<1 Then,if b >0, we have, for large values of 2,

. p(a) = ?{7%)’}" =" g(4),

— - p(0) . je-% .
5—,/(0) = “5:/-{)‘2%,‘,(6‘)—}‘ =4 h()‘l)i
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wheae =14 T , and g, h are certain functions satisfying the condztwn

> ) > ()

\

as y->w.
Henee we have

O p@) _,-w o)
oo =N iy <

as 4>, since b>0. Thus we obtaih .

- e(2) < ¢(0)

as A>w.

34. We can now state
Theorem VI The 'mteg1 als

mnﬁ/pmwmsm”d

A .
C(/l) = /; o(z) e¥ —Cgi—)‘x— dfl;,

where 1(z) <o < (Uz)t and p<zd', are convergent. The behaviour
o these integrals, as 2>, is determined - asymptotically as follows.
If o' < p<as/o"[d', then

S =001,  C@) =01/2);
if aa/0"[0' < p< a0, then

) S@) ~ Wﬁ%ﬁ““vf
® Uw“iﬁ%%ﬁ“”““,
whére ' , B =20+ a(0), |

and 0 15 determined as a function of 2 by the eQu,ah’on
o'(6)+2=0.
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Corollary. If

, ‘ )
1=/ o(z) cosa(@) X az, I = [ @) sin o(2) 1 g,

T Z

=/ o() cosa(z) DR qn 142) =/ "u(z) sino(z) Si’;"m_ dz,

€T
then o N
L()=0(/), LK =00,
{ Ly=0/3),  L(®=0(/,
or ‘ .

L)~ gy o (B + 3R

L) ~ 7,\/—{2@-(0—)? sn (8 + )/,

S —

(49) o
T,(d) W{Pé(g)—(ﬁ_ﬁ s B+ dm)v'm,

L) ~ ;m“;(_z)w—)} cos (B + 1m)v/7,

under conditions the same-as those of Theorem VI

It may be remarked that all the integrals S(2), C(2), I,(4),
I,2), I(2) and I,(2) tend to zero as 2->w', when p < z4/0". \
~ 85. In Case (C), the sine-integral S(4) is still ponifergent when

mo’§p<a’

as z>0. Hardy has not proceeded to the: discussion in this case,
his method ceasing to be applicable, as he remarks.* I have suc-
ceeded in proving that the formula (7) of Theorem VI holds also
in this case generally. :

The following proof is not complete, having some inaccuracy
in a few special cases. At first it will be shown that the proof
may be carried out in its full generality if we make.an assumption

¥4 0.D. 127 p. 260.
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which appears to be quite probable ; and. after that, a rigorous
proof will be given, with exception of a few special cases.
" Let : - . '

S() = / o(z) 9@ ﬂr%cﬁ_w iz,
\ Jo
(50) _ R A |
S(4) :/ o(z) eia(z)_Slnx_/w dz,
J 0

where a, p, p are L-functions such that
A(51)  Ule) <o < (1/2:)’2 L owelp<d, p<p

as z->0. :
Now we shall assume that, for all sufﬁ(nent]y large values of 4,

C’JI

(52) ) J < K, ) L . -

IS )
'K being a certain positive constant, independent_of 2.

We observe that this relation (52) evidently holds when o, o
are the functions treated -in Theorems I, III and VI; namely
‘when they belong to each one of the cases ’

) o<, p<en S@O>1n
(ii) o~ Al(1)z), p< a’, S(2) > 1/2;
@) o > 1(1z), . xa/0"l6' < p <z zo's

In the followings it will be seen that the same 1elat10n holds also
in our case (51), except in a few special cases. Hence the above
assumption seems very likely to be admissiblé. ‘ )
36. With the above assumption, we can prove the lemma.
“Lemma 7. If S(), 8(2) ave the integrals of (50), then

S() < 84

as )—>oo

Proof. It is convement to separate our integrals into the
real and imaginary parts; the _same methods apply to both parts.
Thus we consider i
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. I(i) —/0 o(w) cosa(x) sar;)a; dz,

1) = / (@) cosa(x) sin ’x dz
These integrals are convergent if p < a'.

Put ox) = P2
} ( )= plz),

Then e(z) is ultimately monotonic and tends to zero s z>0; and

we assume that ¢. is chosen.sufficiently small to eénsure that ¢(z) is

monotonic in the interval 0 <z <&,

" 'We may write

I(2) = / e(z) p(w) cos a(w) sin )x dxz

= /0 e(z) f(z) sin dz da,

where L
_f(x) _ o(z) cos a(a;) ’
€T
so that I = / f@) sin 2z da.

Now, corresponding to any prescribed positive number J, however
small, there always exists a positive number &, independent of )
such that

/ 0<e@) <o, 0<&<8).
We have. | ‘
I =( / G'J,_ / ,‘) e(z) () sin 4z de
= TOQ) + JO )

say. Then, in the integral

T =/ * e(z) f(2) sin 42 da,
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"the coéfﬁqient of sin iz in the'jsub'ject of integrat;ion'is' absolutely
integrable in the range of integration &=<z=<§¢. Hence, by a
well-known t-heorem,* we have

J®(2) = o(L)
as A>w. . _ .
In the integral
N - el ) . o i,
TN = [ e(a) f(a) sin 20 da,
. . o . . 7
¢(z) is monotonic and, being" an L;functidn, has a differential

coefficient with a constant sign in the rTange of integration.
Hence, by the Second Mean Value Theorem, we have

TO@ =) [ “f(@)sindzda - (0<& <)

= (&) ( A" _AE‘)f(z) sin 2z do
= {E)GO—7D)
say. Then - - o 4
. v e _
i) = / ' f(z) sin Az dz = I(2)— / F(=) sin Az dz,
. 0 g & :
. . . s - .
and ' / f(z)sin iz dz = o(1)
‘ . ¢
as 2>, by the same reasoh as in the case of J®¥(2). Hence
i) = 1) # o(L).
As to the integral 4
7)) = A " (@) sin 2z da 0 <& <& <8),
we observe that the upper 'l_imit'fl of integration is a function of
4, and it may be inferred that '

|71 < K|1(2)]

¥ Hobson, Theory of Functions of a Real Variable, p. 672.
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for all sufficiently large values of 2, K being a constant. independ-
.ent of 2. For, if not, corresponding to any given K, there would
exist some large values of 2 for which

Ij’(l)l > K|I(2)},
and

IJ“’())I—I EVGR)~7 D} | > &)
Hence . |TO@) | > | K|12)

and we obtain

(K— 1>|I<x>1—|o(1>l

|I(2)] > K|I(2)].
-Therefore it follows that

|S@) > E[S®)1,

contrary to our assumption (52).
Thus we have

17| < K |I(2)]
for all sufficiently large values of 2. Hence we have
|TOW0) | < 8 K| I(2)] +o(L),
and o .
[ I(2)| < d K |I(2)| +o(1),
whence it follows that-
|8(2)| < 6 KE|S()| + o(D).

As will be seen presently, ‘{’S(/) does not tend to zero as A>w.
Therefoxe '

S (4)

- by choosing 2 sufficiently large. Now K is a constant independ-
ent of 2 and ¢ may be chosen as small as we please. Hence

; s ) <K +o(l) < (E+1)3

* Here K is written for ¢(f) (K—1) and, as ¢(¢) is a constant independent of ), K in this
expression may take any large value as we please.
t See the next paragraph 37.
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K +1)0 may be made as small as we pléase. Hence it follows that

| "S() < S@)
as A>w. o

37. Now we consider the integral

" e’ ‘ -.
S(2) = /o o(z) 4@ de.

x

Performing integration by parts, we have

L wd [p sindz)
0_+z./oe—jw—{-— z }dw.

O s sin Az
54 —1 %

Since p < o/, we obtain
- (33) , 5(3) = 0_(1) + Ci(2) + 4 8,(%),
where ' '

(0,0 = u/ ""COS}xdw,

, - sin Az
(50 1 8@ =/"pe S“; 2 da,

7 d F’) __‘U— [‘,. pa”
= dw( 2o ¥ TR

Then, in the integral ¢,(4), we have

z <~ -~ < zd',

since o, p satisfy the first two conditions of (51). Hence Theorem
VI may be applied to this integral. Thus we have

Cy(4) =12

o(0)
—irmEey © VEr oW g
where . d0)y+4=0, - p=20+s(0).
Hence we obtain

6 60 = gl gy Y o).
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‘We observe that = C(AH>1

as A>w, since zo’ < p.

Now take the. integral

8,0 = / PR RLLT
Jo Z »

where
"

- o + :0, oo

i
za’ a (¢')

o= -

If we write _
. p=z0, a=0, z'< 6< (),
(56) ' ‘
o = — g4, p=0, 2*< 6, < (lz),

we have, by the condition zo’'< p < o/,

6 bsas1l44,
and, if a = b, 6, <.6;
if a=14+10, 6,6,

And . we observe that, if =0,

91 > 1:
since ¢ > I(1/z). _
' From (56), we have 2o & — (1 +b)d,
and { wp ~ —ap (a > 0), -
zp' < p - (a=0).

Hence

_ zp' _ p za'

0= z0” + ze’  zd’ o
~ = (a’_b) pa.l <p

X

. since zo’ > 1.
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Now S(?) eannot tend to zero as.Asw.. For, if S(&)'<‘i, then, by

the relation (52),* we have R -
| B TORSH
and, by (53), ' G +01) < 1,

contradictory to the above result Cy(?) > 1. ',Thus'S(l)'doés‘ not
tend to zero as A>wo. Hence, by Lemma 7, we have

1

(58 8y(%) < SQ)

as:A>w. Hence, from (53) and (55), we obtain
. , DA

o O e
SO = gy Ve

which is nothing but the formula (7) in .our case.- Thus we may
“state, by combining this result with theorem VI, :

Y Theorem VII, The wntegral
S@) = /" pla) oo H22T. g,

“where 1(1/z) < o' < (1z)* and- p -< o', 18 convergent. The behaviour of
" 8(4), as 2>, 1s determined asymptotically as follows : :
- If x‘<‘p,-_<_ x/d"]a’, then

8(2) = 01/2);

’é/.vx’\/a”/a/<p< U’, then

) : SQ) = m%(f/_),__w)}_e(ﬂ-gn)i 7
wkewé B=120+ o(0),

- and 0 s determined as a function of 2 by the equatfimi

o'(0)+ 2 =0.

* Here 8)()) is replaced for S(2). -
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’

38. We now pass to another proof which. is quite indépendent
of the assumption (52). :
We have to prove the relation (58), or

83(2) < Cy(%)
as A>wm, :
At first we consider the case in which

b=>0.
Now in the integral

g -‘ .
&w=ﬁpmwmﬂ¥£m

we have |
o~ —(a—0b) ;;, (@ > ),
n< oz  @=0)
By (56); @ =—z76, | _g‘:o,' = -—"a;-(a-b)%l )

Hence, if a —b<b, we have

7 .
a‘:;/,o- <m< % < zd';

and Theorem VI may be applied to the integral S,(3). - Thué we
have

qQ | m(0) (A-2myi _,.‘
SI(Z) o~ —W”(ﬁ)} (A ,\/z. H .

and, as p < p, we obtain
814 < Cy(A).

If @ —0=b, then, by performing integration by parts, we
obtain . ' o

§y(4) = O\l) + Cz(l) T isﬁ(z))

where ' i



( o [F s COS Az o (0) ,
z=z/_ﬂJ¢ ot
02( ) 2 Jo o (2 Tz dr ~ 0«/{20,’(0)} .\/ s
P
{ S8,2) = / py e S02Z g
. Jo - z
B = — [} pl, ‘010'”
\ 22 .’L'O', g’ (0_/}2
Now
“’—(“_%)% (a > 2b)
g2 < x/:/ . (a, = Zb),
[} _ = (a-2b) o
and e (q, b)a" g

Oscillating Dirichlet’s Integrals.

If a—2b < b, then

and, by another a

since Sy(4) < Cy(4)
If a—2b6=0,

Since b >0 and b =a =

integer n such th

£ — < z0’,

(
£2 xXo

pplication of Theorem VI, we obtain
Si(2) < ),
<0 as dvo.

then repeat a similar process.

at
(n—1)b = a < nb.

b7

N

1+ by (57), there exists a positive

Hence, after repeating » times the above process, we are led to

the equation

where

Cu2) =

T2 ¢
3 8.(2) =/.S.‘on ei“—Si]‘;)’x dz,

on < ‘0""~——fa b)(a,—Qb) (a—n—lb)z"“""”

Sn-l()‘) = 0(1) + Cn()‘) + @ Sn()‘)’

Pn- 1(0) PEEEEID 7

C

o
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Since a <'nb, Theorem VI may be applied to the integral S,,(/I),i'
and we obtain ' '

Su(2) < Cn() @ Spa(D). -
Since p > p k> o+ > paoy, We have |
GO > C) > - > C(2),
and hence we obtain
81(4) < Gy(4).

Thus, in the case b > 0, always we have

Thus the proof is completed for the case & > 0.
39. Next we consider the case in which’

. b=0.
Thus o =—.a;A’l o, 6, >1,
A ' o= ‘x‘“ 6. |
We observe that, if a =1, 6 < 6,; |
if a =0, ‘ ‘ 0> 6,

In this case aa_a" =—6,.
(i) If « >0, we have

’ o'’
O == P’ + 5/ - L

~—az ﬁ-,
20 (') 6,
and, for any positive integer =,

6

Pn ~ (_a’> z™* 01,‘

>' "-01 = xal.

Hence, if >0, then the method of the last paragraph fails.
(ii) Now consider the case in which

a=0.
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First, let A~ A40,.
Then . 0 =46,{1 +'s’x\}

where ¢(z) is an L-function such that S(w) < 1 as z>0; and we
have

S\ ¢ wsindz € i Sin Az
S(A)-—-A[; 018 sz’*" 14./0v 5016 Tdm
= A{L,(A) + L,(A)} _
.say. 'I"hen, performing integration by parts, we have

e
L) = 0(1)—32 / ¢ cos Iz dz
i Jo

= AO(l')—M—Ml,,—,((,)}{ew+%*wm+ o)} [by Theorem 'vz]f

6,(0) #-imi /-
OV R
In the integral I (2), we have
) €6, < 6, = —zd'.
Hence, by Theorem VI, '

6(0)640)  gupn
LA = gy & v
or . Ly =001M;

and we have
L) < ().

Therefore

s p0) oy s
S()n) o~ 0,\/{20‘"(0)} [ »\/:L,
since p~ A46,.

Thus, in the case When a=0 and 6~A01, the t1uth of the
formula (7) is proved. ' :

Next let 0> 6,



70 © Art.4—M. Kuniyeda: "

Then in the integral

. '5."."d 7 .
) = w4 ) .
S0 = [, ¢ g (L) in e do.

we have [ > 1.
zo Y

Let us write

so that 9(%1)=0{m91, _ 29 }<9 ‘
0, 2]

since z6’ < 0 and z6, < 6,. We observe that, since %— >1 we
) 1

have 6(z,1) >0, and 6(z,1) is a function of the same type as 6,

namely -

@’ < O(z, 1) < (1/z).

Thus we have ' e

g :
i SIN A
$id) = [ ;e S22 o,
J O 4

where - 0= i(:g_l) .
1

If 6(z,1) <.0f, then ‘o,<_x&’ and, as before, applying Theorem
VI, we see that .

10(0) -3n)
8x(A) < Cy4) = Ww_)f-e(p .) /7.

It 6(z,1) = 46, then, by proceeding as in the case 6 ~ 46, we
easily arrive at the same result. , '

If Oz, 1) > 6y, ‘then repeat a similar process.

Thus we have to consider successively the functions 6(z, 1),
6(x,2), ......, 8(z,n) defined by the equations
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(6@ _ 4 {i} '
o, az \ 6, )

6(r:2) _ _ o4 { 6(z, 1)},

: (59) : < 912 R (Z:,C' . (’)1
Oz, n) _ le_d_.{e)(x,n—l)}
\ 6, dz o, e

where ; )
O(z, n—1) > 6,
We easily see that ‘
_ . 6> 6(x,1) > O(z,2) > > 6(z, n).
There are two different cases.
' (a) For a certain integer n, we have

n+l

O(z, n) < 6,

In this case, applying Theorem VI, we obtain
Su(A) < Spr (A) < e < 8i(A) < Gi(A):
Thus, in this case, the formula (7) holds also. h
(b) For any integer n, however great, we have always
O(z, n) > 6" ." |

‘In this case the above method again fails.
We have thus proved that the formula (7) holds also when
za’ < p < o', with-the exception of the following special cases.

@) b=0,  O<asl;
(ii) b=0, a=0, . B(m,n)>—61,

for any integer =, 6(z,n) oemg the function defined by the

equations (59).
-I have already got a certain proof for some of these special
cases, but not yet completed it. Perhaps I may return to this
problem on another occasion. : .
40. Here I will give another lemma which wﬂl be useful in
Part II. :
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Lemma 8, Let p(@) und o(z) be the L-functions which are,
treated in Theorem VI, andlet w(z) be a real function, not necessarily
an L-function, but continuous and, d?;ﬁ”erentiqble"énf; the wnterval (0,8)
save for © =0, satisfifing'the relation w(z) =~ p(z) wn such a way that

- @(2) = p(x) {1 + ()],

where ¢(x) s ulh,matalc/ monotonic (md tends to zero as z>0. If there
exsts an L-function r(m) ‘such that

¥(z) = 1(@),

then, under the conditions the same as those of Theorem VI, the same

asymptotic formulae (7), (8) and (49) hold respectively for the integrals

obtained by replacing w(z) for p(m) . S )) C(4), Il(/l) I(%), I(2) and
L(%).

Proof. 1If e(z) be an IL-function, then the leinma follows
1mmedlately from Theorem VI and its corollary.

It ¢(z) is not an L- functlon still it behaves like an L- functlon
under our hypothesis and hénce the truth of the lemma may be
conjectured from Theorem VI.

Take the integral

W=/ " w(2) c0s o(2) _"O_i’_"” dz

Ve A C L pE B . 2 .
=.A p(w) QQS o(x) CO:sn L dz +./0 e(z) p(af;) coé g(@ % dz.
Let 7(z) be an L-function such that
r(z) < 7(z) < 1*

as z->0; and write

p(@) = p(z) 7(z), S(w) (w))
éo tha.’q o p<Lp, ELL

since €~ 7. Then we have

* For instance, we may take y= { Y(:c)}%‘
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T0) = 1) + [ "&(z) ie) cos o(z) LE12 az,
where, by the corollary to Theotem V;I, .we have
LH=001) (o< o)
L) = %@W cos (84 4%) w (@l < p<ad)

- 6, 8 being the same as those in Theorem VI.
Since p < p, the integral

. 13 L yp— .
/ () cos a(z) cosAz 4
Jo z

is evidently convergent when p < z¢’; and since, by. hypothesis; .
. . . - . . . de ' . ’ '
@ is differentiable, ¢ is also differentiable and e has.a constant

‘sign in the interval (0,€), £. being chosen .sufficiently small,
Hence by the Second Mean V ,a_lue;Theorem,.we obtain .

J(2) =L s(a:) o(z) cos o-(:c) cos )m — dx

=) /E " B(z) cos o(z) ﬂz—’ﬂ de = (0<&<¥)
J e, ‘

— E(E)( / f / E1) 7(z) cos a(z)ﬂ;’iud_.m
T =) {J()) - J’(’)}
say “Then, by the cmollaly t(j Theoren VI ‘we have
| o Sin=00m),
1f o < < -'13«/0"/0 ; and 1f zy/o"lo’ < p <z, '
TR W@)T» cos 6+ 1)/

b, 8 being the same as those in the above formila for L.
Therefore, from the relation p < p, it follows that

JA) <L)
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as 2>, when z/a"jd’ < p < zd'. -

In the integral

7 = /0 k o(z) cos o(x) cosxlx dx 0<é <9,

we observe that & varies with 2; _still, if we examine the proof of
‘Theorem VI, we can see without difficulty that ‘
< K50
Hence ‘
T (@) = &E) [N —7'(2)} < L),
if z4/6"j6' < p < za’. Therefore we have: o
If # < 2+/3"|s", then S IA)=04/4); .
if za/d"6' < p < zd’, then J(A) = I(A). ~

The same argument applies to the other integrals.
Thus the lemma is completely proved. '

VIIT Ezamples of Case’(C)

41. Let us consider the case in which .

-a m
o=z G = —),
L

where m 1s positive, so that

N 3 H
1) — - m \ cos Az (2 =/ s (m)cos)w
RG] . A x™%Cos (_x )_—w dz, I(%) =/, &t sin(—— dz,

z
e . . '
I(4) =/ 2% Cos (K)de, 1% =/ 2% sin (_’m__) sin Az iz,
) P T /. p =
e ) . o
S(2) = / g glnieyi SID Az iz, o) = / = glmlari. €S Az i
70 &L Jo z

- Since o =,%' > i(1/z), Theorems VI and VII are applicable.
Now , _
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The conditions p< z+/6"[d", p<ad’, p<d give 1‘e3pectivei)r
| a=—% . a<l, a < 2.
The equation 2+ a’(d) =0 gives |
(7
and we have |
B = 10+ o(8) = 2mA)t,

: 0\6)' g

— %m—%u—} )ﬁa—,{ ’

W{zawa)} ~ 2m

Hence we have:
If —¢ <a<1 then
L) ~ 27:*77@'*“’*/1%"‘ cos (2m3 A + 1m),
I,(2) ~ yadm-te-i )34 gin (2m? A4in),
C(A) ~ dabm-te-t ikt exp {(2mid+1x)i};
if —2 <a<2?2, then |
| I,(2) e Lmdm-¥e-tabe=t cos (2md 23 —}n),
I(A) ~ —ném'%"' it¥sin (2777}})\’} 37),

5(2) e~ yrdmde-t M-t exp {(2md2E —37)}.

75

We observe that all these integrals tend to zero as 2> if @ <,

and they oscillate if a=$%

492. These results may besverified as follows.
" Hardy proved® that

vo0 d
u
/ cosucos(ﬂ —=
w

70 w

L = rep+Tres et Aif) + A= T2iB)}.

4sindve

- * Messenger of mathematics Vol. XL; pp. 44 et seq.
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From this we can easily deduce
o ¢] 2
/ cos u sin< i ) ‘?”u
Jo u o

T (90B) + T2+ ¥ T(2if) — AT 4 2i8).

" 4dcosivr
These formulae hold respectively for
—l<v<l,

and for o —l<v<y,.

it being understood that, in certain special cases, the expression
of the right-hand side must be replaced by its limits. For v =141
they assume the forms

.00 .
/ COS % COS ( B du _ 3V/(37) (—sin 28 + cos 28 + e~ %),
Jo .\/u, = o

e dw _ _1_—,- ; -8 .
[) cosvusm(——)w 2\/(2,.)(51112/3+cos2ﬂ e *);

and their values are e\ples&lble in terms of elemen‘mry funetlons
also when E

_— -3 -
v=—44

(the last value, of course, only in the second integral).
Now write lm for ﬂ, and put u =1z n the integrals. We
obtain '

S, oot cos (M) e = m () [er{z¢<,nx>}

T 4 sin v

T {2/ ()} — e ¥ T (20 ) ()} + 647 J'"{ZiJ(ml)}] :

-‘chos Az sin (l::*) ‘%iﬂy =__ 7 (i';—t—)év [J“{Q\/(m,l)}

x .4.cos ivr

U4 {20/ (mA)} + 6737 T {240/ (md) }: "6~""’J'”{21,\/(m/l)}]

Now, when 3 is large,
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J2p) = 1?_;‘)cos (25— %1+2u)7}

) Al

where B ‘ Jeg] < -I‘Bf_

Hence, when 8 is laige, —J*(28)+J-%(28) and J*2B)+J-*2f)
behave respectively like

_ 2an Z; sin (28 — ix), .. ' , \ :
: © Qcos tvz
and ' VR ) cos (219

On the other hand
_iym J (22‘3)_8&»7:1, J’ (22‘8)

e’l’"’“ Hy (28)

tends exponentially to zero as f>» ie., as i>w, so that this
term is negligible in comparing with the remaining terms. Hence
- we obtain the results: — '

.- The integral

© .: . .
A =/ z” cos (ﬂ) sS4z g,
) J o Z

x
is convergent if —l<v<l, and, as A>wm, we have -
A(}) = — intmd 323 (sin (2mdB —}m) +o(1)}.
‘The integral | -
B(2) =/0°°a, sin (’”7) L0842 g

z
is convergent if —1<v<2, and, as 2>», we have
- B(?) = imdmd 3 i {coé (2mA2t —3n)+0(1)}.

43. Now put » = —a and write

: A(A)_:( +/ ) "cos )'COS"‘”’ dx. ’ (;A1<.a<Al),

Z

= I(4) + Ji(4)
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say. Then, by writing f(z) = 7~ eos ( %), we have

Dk Lo
Ji(A) =— Jig).__im_ — 7/; S(z) sin 2z da:

and LS = —(1+a) z cos( = >+ma:'(”‘+“’ sin (’; )-,‘
whence .
lth ' » 00 )
\/ fl(z) sin Az dx ' =|a+1] / 2~ dy +m/ -G+ dp
J g . § J g
< K,

since a> —1. Therefore we obtair} .

J\(4) = 0(14%),
and evidently .
| T() < et (~l<a<l),

whence it follows that .
, A(A) = Iy(2) | i 1)
Similarly
moern (it
Therefore we obtain _
I,(2) e Lzbmded J3e-% cos (2mb b + 4 7) (—l<a<l),
I(2) ~ tadm-3e-3280-3gin (2mi 3 4 17) (=l<a<ly,

C(2) ~ dntm-de-4)8-3 exp {(2’”7/’“)"-1-2‘:”)%‘} (=l<a<l),

which agree with the results obtained from our general Theorem
VI, only the difference be‘in'g that the lower limit of ¢ is —1
instead of —3, this limitation being introduced from the condition
for convergence of the integral 4(2).

As Hardy gives in ‘0. D. I. 2.7, from the values of the

integrals
’) du
) u=r

Jo o] 3 d » 00 2
. e, . .
/ sin # cos (i> 2L, / sin w sin ( B
Jo w / w Jo u

we can infer that
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L) ~ %ﬂ%m"«""%ﬁ“‘% cos (2mAi3 —1x) (-l<a<?)
I(2) = Yatm-¥-2d=sin 2milt— 1z (—l<a<?),
S(2) ~ atm ¥-ddedexp {(2171‘5'2%;%ﬂ)'i} (—l<a<?),

which also agree with the results obtainéd from Theorem VII,
~ only the difference being that the lower limit of « is —1 instead
of —3. . o
Thus our theorems VI and VII are verified.

PART Il

Coefficients of Power Series

1. Preliminaries.

44. Consider a power series
(60) ' a, 2

whose radius of convergence is unity, representing a function
F(z) which has, on the circle of convergence, one singular point
only at z =1, being regular at every ‘other point on it.

Let ABCD be the circle of convergence of the series (60),
A being the point. z = 1 and O the centre.
Draw a circular arc BPD inside the circle
of convergence, cutting it at the points
B and D, with the centre at 4 and the .G
radius », < L. - '

Let I(r) denote the integral

Ly (I

2w ) DPB. 2T

(61) v Im) =

s

where the path of integration is the arc DPB, starting at the point
D, turning round the point 4 in the .clock-wise direction along
this arc and ending at the point 5.
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“Lemma 9', If
(62) im I () = 0

71_>O

1 o),

7 Coa, =
t/ze o T % © Fa ’_,

provided that this integral is comvergent, the contowr (C)-of integration

_being-the circle of convergence. . _ :
Proof. Since the function f(z) is regular at every point on

the circle of convergence except only at the pomt A, the integral

f(@
/BC.D Zu-}-l élz’
where the path of integration is the arc BCD, is convergent and
so also is the integral I(n) for every », such that 0 <n, < 1. Hence,
by means of-Cauchy’s Theorem, we hav e

— 1 7/ f(z)
= o BopPE d

_ f(z)
= 2m BCD T dz+I(¢)

Now let 7 tend to zero. Then the arc BCD tends to the Whole
circle of convergence and we have

2m1 Sy Zm © 2!

,/

71—>0

since, by hypothesis, lim I(»y) =0 and. the last integral is
, A 10 )
convergent.

45, Lemma 10. Let ¢ be a small jositive constant and
K { 1 d i vi »=n0i . ~
©3) IVL):%(.A +/2K?E.)f(-e’,’ &% 40 (0<&<n).
Then, «f the conditions of Lemma 9 are satisfied, the behaviour of the

coefficient a, of the power series (60), as n>w®, s asymptotically
determined ds follows : :
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If I < L then @, = 0(1n);
of I(n) > —7-; , then @, I(n).
Proof. By Lemma 9, we have
AN Y . °
_ 1 " Z) _ L T 0dy -nti .
ay = 27‘% © ! dz - 27?/0 f(e )8 dad .
¢ ‘ 2
—_ 8\ ,=noi il 01, -ndg
e (LSl Jreemane g [ e ema
O<é<m)
= I(n) + I'(n)
say. Then
) 1 2§ A —nbi
o) =g [ 7 fle e
1 ot ) T
=_ (U+4V) (cos nfl —< sin nf) db,
27/ ¢ : :
where - _ fle = U+ iV,
U and V denoting real functions of . Since f(é) is regular on the
circle of convergence, except at z =1, the functions -
' au av
v v ag ’ ad

have no singularities and are integrable in the interval (£, 2z—&).
Hence '

/7,,_ U cos nd d0 IM e 1/%-£dU sin nf 40
JE

= O(1/n).
Similarly the integrals

= p cos
/s U sin nf d6, / nl do
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have values of the same type. Therefore we obtain

I'(n) = O(1/n).

Thus we have

a, = I(n) + O (1/n).

Hence, if I(n) < %, then
an = O(1/n);
. 1 '
~if I(m) > —-, then
A a, = I(n).
46. Now wc may write
' (64) I(n) = J(n) + J(n);
where A
N O D
J(n) =—Q;/ f(em) e df,

(65)
Tn) = %/fwfmw—l/fW”UW

n being a positive integer.
' If, in the neighbourhood of 6 =0, hoth of the functions
f(e") and f{e®="} take the form

90(0) L) s

/

where ¢(z) and ¢(z) are real functions of » such that
/
d@) 82 g@) ~ o)
as z>0, p and ¢ denoting cer tain L- functions, then the behaviour

of J(n) and J(n), as m>o0, may be determined by applying the
results of Part I of this paper.
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II  Case in which the Singularity is of

eA,I(l—Z)q .

the Type a !

—zy

47. Let us consider the case in which the functlon f(2) has a
singularity of the type ‘

_ 1 Al(1—3)"
Sflz).= = )

where 4 = a e
and p, ¢, a, « are real constants such that
1

p>=,<0, >0, ¢>0, 0sa<2n

It is to be understood that, when p and ¢ are not mtegem, '
(1—zp and (1—z)‘l assume 1espect1vely the values

o log (1-2) , ol log (1-2)

)

where log (1—z) assumes its principal value.
At first we consider the integral

1 f(Z) dz

DPB Zn-(-l v

Let P be any point z = r¢% on the ar¢ DPPB and let ¢ denote the
angle between the radius 04 and the straight line AP, namely

¢ = L OAP-
Then 1—2 = 1—7 cos 6 —ir sin 0: 1, COS 90——73’/'1'sin o
. =9 e'.”‘,i
I SRR S
A=y~
—(T—[-lTJ"‘_ - ;f e(f”r = ”7%7 fcos (a+qg)+isin (2+g@)}, -
: f2) = e“ cos (a+49)n? _ g {po+asin (x+ga)n?}i

dz = 11 e " do.
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Hence
(66)

I(r) 1 /T—e g0~ ? cos (a+qo) e{.(p—l)cp+arl'q sin (oc+qcp)}i. de

- 27[.,,.11;—1 _(§_5> ' (1_,,.18—w ntl?

where ¢ denotes the difference of the angle OAB and a right-
angle, namely

—e= L 0AB = £ 04D,

ISE)

and we observe that lim e =0.
1‘1—)6

Now, if cos («+g¢)>0 in any part of the range
_(%—E) = ¢ = %—-E,

then e s+ tends exponentially to infinity as 70, so that
I(r,) does not necessarily tend to zero. Hence. we shall put aside
this case and confine ourselves to the case in which
‘ cos (z+q¢) = 0,
or _
(67) (4m+1)-% = atqo = (4m+3) % (—3+e=9p=3—¢),

'm being a positive integer or zero.
If we observe that, by hypothesis,

0=a< 2,

and that the condition (67) is to be satisfied by all values of ¢ in
the interval —f+e=g¢=2-¢ where ¢ takes any value corres-
ponding to » which tends to zero, it can easily be inferred that

0<gq=1,

o] 3

y [(1+g>§§a§<3—g>
Now we:can prove the lemma. |
Lemma 11. If O<g=1, (l+95 =e¢=(3—9) 5 and
p <1l4gq, then .
. - lim I(r) = 0.

>0
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Proof. By hypothesis
(A+q)g=as=3-q5 O<gs1).
Hence, if we put o= % + qo’,
we obtain
T<sgys™_ =&
- g == q 2’
cos (2 + ) = cos {zm+q(«' + ¢)} = — sin g(«'+ @),
and ge=qd+9¢) =g,
. ’ T 7T - o,
since — 5 +tesg¢ =5 —¢ Hence we have

sin g(o/ + ¢) > 0
as €> 0. ’ '

Now, by (66),

l I('rl) i < _*1___—/‘ 7-364,(.7‘1"!1 sin ¢« +¢) dsp

P -1 . . \n+l
2/L 7‘11’ —%-&-5 (1—7 1)"+1
1 . /.,; —
< e~ 0ryL " sin t dt
2qm rP(L—r)"* Jo ’

and /xe—“"l_qSi“‘dt'= 2/' ot gy
Jo _ Jo

_ 2y / on' e du
B a Jo ,,.12q 9 )
=

The last integral is convergent and tends to

" .Awe'" du=1

as n>0. Hence

[ —ar,"sin ¢
/ e Tt dt < K 4,

Jo

and we obtain
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K¢ K preer ‘
Zq T ’).lp—l(]_ ——?‘l)ﬂ'}‘l - an_ (]_ _,',1 yitl

| I(my) | <. >0

as ‘¢1—>0,'provided that p < 1+ q-
Thus the lemma is proved.

48. We now consider the integral I(sn) under the supposition
68) O<g=1, (1+q)%§a§(3—q)—72r-, p<lig.
We have -

L1 oy
(L—e%)p (2sin 16)? 7

4 __ a at+dg(n-0)}i
(I1—e%) ~ (2sin 46) ot J.

Hence we may write :
(69) - J(e") = ¢(6) e*,

where A
_ 1 “ cos{a+§t/(7r~— 6)}/(2 sin %B)q
SCE o S
(70)
. ' ‘asin (a4 Lo(m—0
(0) = yp(z—0)+ 4 (E sinz%qé)” )i Do
and \
(1) ey = 5(0) o5,
where _
— _ 1 a cos{a—:}q(‘n:—e)j/(Z sin 38)*
)= ’
(72) ‘

asin {a—iqg(z—0)}
(2 sin 30)” ’

¢(0) = —3p(r—0;+
so that we have, by (64) and (65),

1 /. o o1 8 —m8li
J(n) =5 A f(g'h)e-"“da = %/0 (p(g)e{.(a) 8}4 e,
(73) < e 1 } i
. L j(n) = 2%:/, F gm0 gn0i g — 2'7[]‘ E(ﬁ)e{ql(e).;.ne}zdﬁ,
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(64) I(n)=Jn)+ j(n)..

49. Integral J(n) First of all, we shall consider the

integral J(n).
Observe that, when 6 is very small, we have

1 1
2 sin 16 —ot 1+O(0 )}
cos{a+ ,,q(n——ﬁ)} = cos (@ + 3qm) {1 + O(6*)}
v + sin (a + l—qn) 140{1 + 06},
sin {a + 3q(z — 0)} = sin (2 + 3gm){1 + 0(0 )3
- — cos (+ bgm). 4g0{1 + O(F)].

Hence the equations (70) may be written in the forms

50(0) = l{l + 0(02) } eae"’{cos (a+%qm)+%¢8 sin (“+%’1ﬂ)} + 0(62"1)’
. i T ‘

(10) | . ‘

$(0) = 3p(z—0) + %{Si_n (a+ Lqm)—%q0 cos (2 + qm) + 06",

Under the conditions:(68), the discussion may be divided

into the four cases

(1) q#l, % =7, p<2,4

(i) . 0<g<1, a=(+q)s  p<lte
-(iii).‘ O0<g<l, : a=(3—g)_;i, p < 14y,
(i O<g<Ll  (l+gg<e<@-ag p<l+g

5O. (i) The,case in which ¢=1, a==x p<2
In this case

o+3qn = $m.

Hence bv ((0) ‘
o0) = 55 e ML+, $(0) = — —g-+pm+0(0),
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and, if we write

oz) = 2=*, 5 2) = az

then .
J(n) = —ﬂ —&aﬁh’”/ olx) {1 +e(x)+aez) e {"““"(‘”)}i%
= e BT ) iTm),

where

;T,(n) =./:‘p£cﬁ{1+sl(x)+i€2(m)} cos {nx+o(z)} da:,:
T(n) =/ E%@{i +e(a)+is(a)) sin {ne+o(2)) d,

e(z) and ez) being real functions such that
a(z) = 0@, &) = O(a).
. We easily see® that there . e\lgt certain L-functions, y(z) and
n(a:) such that .

, & =7, &7,

as z>0, and also that % and %'have ultimately constant

signs.

* From ,69) and (70), we see that

2 sin 4

1 o - a p
gt ) oo {(1—2*‘2')“"‘}‘1’
T

e (z) = (;Y) cos (%w%a cot;; —,%px)——
1

2 sin i

= (1+2—14x =+~ ) sin {(12 %)x+}

Hence ¢, and ¢, may be expressed as power series of z, which are uniformly convergent for
sufficiently small values of . Thus the first terms of these series may respectively be taken

ey(w) = (\) sin (}—f;la cot% —-—21—1):5)

; 1 d
asy) and v, and it immediately follows that L{l and —;2_ have ultimately constant signs.
aun ax
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The integrals Jy(n), Jy(n) and J(n) are all convergent, if -
. o < zo’
as x;>0. Introducing the above expressins of p and o, this con-
dition becomes
p < 2,
which is nothing but our hypothesis.

Thus, ¢ and ¢, having the above properties, Lemma 8 of
Part I may be applied to our integrals, and we obtain

. . ’ »
Jy(n) ~ /0 Z™P cos (n:r-:-{— %) dz,

J(n) ~/ “Psin (n:z:+ ) dw

+

as n>co, and hence we have
Jy(n) = ntgdrinte=% cos (2atnt +4x) (—l<p<2)

- Jyfn) ~ g trrindr-3sin (2adnd +1n) (— Lap<?).

Hence _wé have
. . J(n) ~ %ﬂ'%a’ép'}‘i"g-’}"nép‘% exp{——(za,%tn’} — %“pn—‘l‘—iﬂ)%}’
(74) . .
(—i<p<?)
B1. (ii) The case in which 0<¢g<l1, o= (1+g)%, p<ldiq.

In this case

and this lies between iz and ir, since 0<g<1 By ((O) we
have: -
o0) = e "I (140,00,

9(6) = - cos gz +3pT+0(07) ;
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if ¢ =14,

Hence we have

T

J(n) = Qleh?mj /'f @ (z) o~ {no+ G(.u)}j dz,
Jo }

where

{ o(x) = az™" cos g,

w(z) = 7P e'—aw‘“ sin gn {1+ &(z)+ 1e(z)},

&, and & being real, continuous and differentiable functions of «
in the interval (0, §), such that

lime(z) =0, lime(z) = 0.
x>0 x>0 ’ :

Since sin gz>0, w(z) tends exponentially to zero as z->0. There-

fore the integral J(n) is absolutely convergent. . Now

(75) /.EW(:E) ¢— Lnrrolo)i g =/'£m(x) cos g(z) cos nz dz
J o Jo

- / @ (z) sin ¢(z) sin nx dz
o

——4,/ w(xz) cos o(z) sin nx dx
J 0 )

Lo &
—73/ w () sin 6(z) cos nz dz.
v W0 .

First we consider the integral
g3 . .
/ @ () cos 'a(x) cos nx dz
J 0

_w()cosa(§)sinné 1 r¢d - .
=2 ~ A Zv/o W {w(z) C?S o(z)} sin nz dz,

and / "i{w(m) cos o(z)] sin na dw ’ ;/()'E{Lw’(w}l + @ (z)o'(x)| }dx

Jo dx
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But |w'(z)|+] w(z)d'(z)| tends exponentially to zero-as z->0.
Hence the last integral is convergent. Therefore we have:

AE w(z) cos o(z) Gos nx dz = O(1/n).

. - J - ) .
Similarly the other three integrals on the right-hand side of (75)
assume values of the same type.
Thus we obtain

4

- (78) o " J(n) = O(1fn).

We observe that, in this case, p may take a'ny value, positive or
negative. :

5. (iii) The case in which 0<g¢g<l, a= (3—q)%, p<1+q.
In this case 4 o

it

(S

o+ 37 =
Hence, by (70"),
o) = (L +0@},  9(0) = = -+ e +000)

and, if we write

olx) = 277D, olz) = az™%

o

then
1

J(n) = %_gélmi'/o t_o(xw_) {]+51(50)+1152(CE)} 6—{71m+6(x)}idx .

= —217; A Jy(n)—1dy(n)},

" where

Jy(n) =.[) E—‘D—ﬁﬁ {14¢(x) +ies(z)} cos {nz+a(2)} dz,

Iy(n) =‘/;ep_gj)—{1+elf;x)+iez(x)} sin {nz+0(z)} dz,

&(z) and ‘¢(z) being real functions such that

. e(z) = O(z'"9), &(x) = O(a;i"!),
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We easily see® that there exist certain L-functions r,(z) and
7.(z) such that

L R S TR A €

*< . de de, ' . . '
as z>0, and also that 4 and 4., have ultimately constant

signs.
By hypothesis p<l+g,
hence the condition p<zo'

is satisfied, so that the integrals Ji(n), Jy(n) and J (n) are convergent.
Thus, applying Lemma 8 of Part I, we obtain

¥ '
Ji(n) ~/ z~? cos {nz+az 1} du,
J 0
E ‘-
Jo(n) ~/ z7?sin {nz+az~?} dx
J O
as n>w. Hence, we have
o -3 p-l-%¢ e
Jy(n) = ( +q> (qa) W T cos ' kntti4Lr),

27 \# r3 pel-de a
Jo(n) = (1+q) (ga) TFm” T sin (knt7 4 Lx),
and hence _

Ty~ {1 T ki1
(77) (97/ 2(1+(_])7f (Q“) ‘n ¢ eXp { ( n =3P Tﬂ.)'b}

g 1 '
k= (14¢" ¢ ™ a2 —dg<p<l+yg).

* The exact forms of ¢; and e, are

: . . . ) N
51(7’) (E——)pe_a sin & qz/(2 S.III _&-’C)Icos { @ ,_Los%.q%_—épx}—l,
sin 4 ¢ (2sin da)?

.”,-—asin:}qa:/(2sin§n;" ; {j__ acosfqr } .
a:f0) = (Zmn du ) K /' sin wl (2 sin )t ips

These functions are continuous and differentiable when = is sufficiently small, including the
value x=0. And we can easily obtain the said result.
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. Q
' B53. (iv) The case in which 0<g¢ <1, (1+q)% <a <(3—g)—g-,
p<1l4gq. In this case
irdgr<atdgr<in
Hence cos (a+4gn) <0,

and therefore, by (70'), we see that ¢(6) tends exponentially to
zero as 6->0, so that, by proceeding as in the case (11) we easﬂy
obtain

(78) " T(n) = O(Un)..

Thus we have established the following results.
(i) If g=1, a =, p <2, then

J(n) @ dn b= +ie—dpdr—texp { —(2atnt — ipn +1n)i},
—i<p<?);
(i) if 0<g<l, e=(4q) 5 p<l+q, then .
- Tm) = 0(n);
(iti) if O<g<l. e=(@-q)5, p<l+q then

1 \ p=%3 p-l-3g g L Ly
700~ g a0 0 et i),

e 1
k= (14+q)q " a'", (=3g<p<l+q);
(iv)- if 0<g<1, <1.+g)%<a<(3-£j)%’ p<1l+q, then

A.J(n) = 0(/n).

B54. Integral J(n). The discussion is quite similar as in the -
case of J(n).
We have

- ) . - '_;—q
Zg—(a) — —01;-{1-{-0(02)}6“5 ’{cos (x—3qm) j—%qe sin (a—i}q“)} +09 )!_
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9(0) = —4p(z—0)+—go-{sin (1—g7) + 4g0 cos (n—}gm)} + 0(6*);

and, without difficulty, we obtain the following results.
Q) If q=1, a=m=m p<?2 then

{ T(n) 3 40+ g3030 % axpy (0¥t — Ly 4 dm3d),
(—i<p<?);
(i) if O<g<l, a= (1+q)%, p<1l+q, then

% p-% P‘l-%q
qa)” TFep TFe exp {(kn”"-—— n+zl )3,

- 1
T~ {ggam)
I N
k=0+g)q " a'. . (=lg<p<l+q);
(i) if O<q<l a=@-q)g p<l+q, then
f(n) = O(l/n);
(iv) if'0<q<l, (1+q\—— <u<(8—gq % p<l+q, then

J (n) = 0(1/n).
55. Hence, by (64) and Lemma 10, we obtain :
If =1, a== and —t<p<2, then

(19) a,~ria ety i i gin {Qadnt—(Ip— )7}
af O<qg<l, a= (1+q).%, and —3q<p <l4gq, then '

1 3, 27k el N
(80) @W{W} (qa) ¥een ¥ exp [{]“’ ==Y |,

e 1.
k= (1+g)q'l+qa’1+q;

qj O<g<l, @ =§3—q)%, and —ig<p<l+gq, then
p-% »p-l-4¢
~{‘—, ! _}%\q) e T ekp[ {kw ~(p 17 }]

e 1
E=(l+q)q ™ al*e;

(81)
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O<g<l, (1+Q)—g- <0< (3—9)%, and p<l+q, then
(82) : a, = 0(/n) .

56. We have thus obtdined asymptotic formulae for «, as
n>w, in the three cases®

(i) . (]=1, a=ﬂ"'
(i) o 0<9_<1‘: a,=.(1+Aq)—72;
(ii1) 0<g<l, o = '(3_(_,)%,

always with the condition
' —tg<p<l+g,
which is introduced from the conditions that the integral I(n) is
convergent and I(n) > 1/n as n>c0 . But, by proceeding as follows,
it will be seen that this restriction.about the value of p may
be removed. .

Now, in a certain 1eg1ou near thc point z =1 and interior to
the circle of convergence, we may put

1 [(1=2)?
(l_zlp Z @, 7",

and we may differentiate this equation with respect to z, since our

N e o . . . \
series ) a,z" is uniformly convergent in the said region. Thus
we obtain -

~ 4/(1—2)? A -z _ X .
e T = L D

Observing that «, is a function of » and », we write
ty = aln, p).
Then we have

P Z a(n, p+ 1)z”+qA Ya(n, ptq+1)n = 2, (n+ 1)a(az+] p) 2",

11—0

* Our method fails to deterﬁxine the a.lsympt;otic formulae in other cases.

1
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‘whence :
(83)  pa(n, p+1)+qdan, p+qg+1) = (m+1)an+1,p)

Hence

n+
qA

(84) aln, p+q+1) = 1 a(n+1,p)— EB/I a(n,p +1).

For instance, take the case
0<_g‘<1, aé (1+Q)—72r—.
Then, by (80), we have V (
[ a(n, p) = C(qa)—(p-%)/(lw),,}p-l-éq)/(-1+g) exp {(°kn?%+9 —Lpz4in)i},

—3q<p<l+y),

.' o 1 }% __4 1
" C = . k=(1 Tig T+
whel§ {——2(1+§Z)ﬂ' E=1+q)q a

are independent of 7 and p.
Let us suppose that
- P<q
so that l+p<l+g,
and we have

©a(n, p+1) ~C(ga) PrHOOpe-30/040) oxp [{knd3+0 —1(p 4 Vx4 37}d],
whence ‘ .
laln, p+1)| = 0{71(2)—éq)/(1+4)} )
We have also . .
|(+1) a(n+1,p)| = Of(n+1) (p+3)/(1+0) } = ofutr+i0ia+n)
Hence we have '
(n+1)a(n+1,p) > aln, p+1).

Thus we obtain, by (84),
| a(’n,p—l-q-l-l)~§}T(n+1)a(n+1,p).
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Now

q4 = ga'e(1+§;%i,

a(n+1, p)~C (gq)"""})"”g)(n+ 1)(p—l-iv?/(l+u)exp [{k(n+ Dq/mq) —Lprm+ 47},

and
‘ q I
1k('l»+ 1)q/(1+1) = exp [’l/ k{n en +0(n ' }]

'1/(1+'1)

= {1 + O(n T )}

7/(1+9)
o~ e ikn . .

® : C ) .
Hence, writing p, = p+g¢+1, we obtain

an, py) ~ C(ga)»r~BIE+0p@1-1-30/049) exp [ kno/uw)_%pln_*._l{ﬁ}'i],
where . p<1+42g.

Thus, in the formula (80), the upper limit of p is increased
by ¢. By repeating this process m times, the upper limit of p in .
(80) may be increased by mg. Thus we see that, in the formula
(80), p may take any positive value, whatever. '

Next, by (83), we have

94 o, p+q+1).

w(n+1 p) = +1

a(n,p +1)+

By repeated applications of this formula, the lower limit of p in
the formula (80), may be decreased as much as we please. Thus
‘we see that, in the formula (80), p may takeé any negative value,
whatever. '

Therefore the formula (80) holds for all real values of p.

The same argument apphes to the other two formulae.
Hence we can state

Theorem VIII, Iet 3 a.2" be o power series, whose
radius of convergence 1s unity, represent/mg a function f(z) which has
on the circle of convergence, one singular point only at z =1, being
reqular at every other point on it.  LIf the singularity s of the type

1 zl
fO =g e A =ae
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where p 1s any real constant, a >0 and g, a are cerfain constants,
then the behaviour of the coefficient a, as n->w, 15 determined
asymptotically as. follows :

@ If q= 1, a ==, or the smgulamty 18 of the type

= M@= (p>, =, <0;)
(1_z)p a>0 ’
then ) .
() v oo irrie dmirtsin (abnt—(kp— 1))
T .

Gi) If 0<g<l, a= (1+q5%, or the singularity s of the type

—a( sin 3qm—1i cos qm)/(1 —2)° p=, =, <.0;
flz) = Z)p € a (a,>0,0<q<1).'

Lhen

1 3 _p-} p-i-i¢ 1+
(10) ap~ W} ((la) Tre ;. 1+¢ exp {k"' q_( P — ;)rr}]

' A
where k=(+q¢)q¢ ™a 1+q'
(iii) If 0<g<l o= (3—11)%, or the singularity s of the type

—a(sin gm +7 cos 3qm)/(1 —2)7 p>. =, <0;
f&) == @ =y (Z602521)

then
=% p-1-3¢ -

A1) a,~ {2(1+q)_{}%(qa) Trep 1+¢  exp [—{k nm—(%p—-‘;)r:}i] ,

k being the same as in the case (m{).

“III Case in which the Singularity s of the Type

14—z 1\
=y (log 1= )"

B7. We now pass to the case in which f(z) has a singularity
of the type

R S/ e L1y
16 = =5 (los =)
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where A=ae“‘,a>0,0§a<27r,g>0,
and p,r denote arbitrary real constants.
First of all, in considering the integral I(r), we observe that

1
1—z

= log (L g'f‘) = log %+¢i."‘
_ 1

71

log

Hence, without difficulty, we can prove that Lerilma 11 holds
also in this case; namely, if O0<gs=1, (1+q)%§a§(3—9)7} and
p <1l+4gq, then

lim I(r;) =0.

7'1%0
Next, when @ is small, we have

log’ L _ log 1
1—e% 2 sin 30

+(r—10)i

=log %+ smi+ 0(0)

:log—;—{l_+0(1/log%>},
whence . o |
(10g 1i601 ) = éog%>r{1+0(l/log %)}
Similarly |

(10g T_%W> — (1og %) {1+ Ov(l/log %)} .

Hence the dicussion may be carried out quite similarly as in the
preceding case, the presence of the logarithmic factor producing
no great change in the analysis, and we content ourselves with
giving only the following results. .

) : L@ ‘
N hl . .
Theorem 1X,  Le 2 a2 be a power series, whose radius
TS m=n )
of convergence s wunily, representing o function f(z) which has, on
the circle of comvergence, ome singular point only at =z =1, being

reqular at every other point on it.  If the singularity +s of the type
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_ 1 .'A/(l-.—z)g 1 1 T — ‘ai
S& = qp (°g1_z>’A—“’
where a>0, ¢ and o denote certasn constants, and p,r arbitrary
real constants, then the behaviour of the coefficient a. as n->co, is
determined asymplotically as follows. .
() If =1, a ==, or the singulurity is of the type

T flz) = (=1) (log 1 >’,.’

1
(1=2) A=z

then
a,~ 27 da i e deyde-1 (log my sin {2atnt —(p—)7).

i) If 0<q<1, a=(+q)~ or the singularity is of the type
&) Y yp

. — 1 | —a(sin §gm—i cos 3qx)/(1 —2)7 1 yr-.
f(z) = (l—z)PG (o 1_Z> )
then v
Pp——— (14¢) "+ (ga)™ "jn 11‘:} (log n)r exp [{k n‘i—”-(%p—%)ﬂ} b:l
n | »\/(271’) 1 .
' e 1
where - ) k= (1+g) g T g,

(i) If 0<g< 1,. “= (3—2)%, or the singularity is of tlzerty_pe

—a(sin 3gn+1 cos iqn’)/(l—z)"( 1
J&) == z)"e logy—,) -
then
=% p-l-4g
\/(4 )(1+Q) ) (ga) e T+ (log n) e\p[ {kn‘*"—(~p n}e :|

k being the same as in the case (44).

IV Cuse in which the Singularity s of the Type

" (o e ()

58. More generally we obtain the following theorem, the
argument being quite similar as in the plecedlng case.

Theorem X. Let Z a, 2 be a power series, whose radius of

comergence 18 unity, representmg a function f(z) whach has, on the
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circle of convergence, one singular point only at z =1, being 9~egulaf
at every other point on it. I f the singularity is of the type

f@) == Z),,e 40-27 ( l}z ),

where 9(z) = {h(@)}" {B@)}™ - {W@)}™ A =ae, a>0, ¢ and « de-
note certain constants, and p and all ¥'s arbitrary real constants,
then the behaviour of the coefficient a,. as n>w, 1s determined
asymptotically as follows.

(1) If q = 1,‘ a = m, or the singularity is of the type
1 aje—1) 1
(1—2p .e g.( I—2z )’

a,~ Q=Tigp—3, 8P+~ dp-3} g(n) sin {Qa%na—(%p—%)ﬂ}.

&) =

then

(i) If 0<g<l a= (1+q)%, or the sin_gylamﬁty 18 of the type

—a(sin &g —1 cos 4gm)/(1—2)" 1
e g (=)

1) = g L
then
1 -& 1-1-%q .
W, S —5— V(27) 1 +{1)=<n+%)(qa,) Ttep H¢ g(n) exp “an_(%p D :l,
' e 1
where k= (]_+q) q‘ Tty o THe

(i) If 0<g<l, a= (3—9)%, or the singularity s of the type
1 —- in.iqm 41 a)/(1—2)7 . 1
f) = a(sin:dgn+icosfem)/(1-2)" ( — )

D
_then

-} p-i-dy ‘
an{ \/(2 ) (1+g) (”"'é)(ga) 1+q n e g(n) exp[ {knl+/ %ZJ :';)ﬂ}z] ,

k being the same as in the case (12).
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