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! [. Introduction.

§1.  The statical problem concerning an infinite elastic solid -
- bounded by a plane subjected to a given distribution of traction or
deformation has attracted the attention of numerous. eminent
elasticians. The first solution for the case of a purely normal lbad
was given by Lame axp Crarevyrox” by means of Fourier’s
theorem, through which an assigned function of two variables is.
expressed as a quadruple integral. The credit of first improvement
on this subject may well be claimed by J. BoussiNesq,” who'
introduced several kinds of potentials—direct, inverse and logari-
thmic with three variables—into the theory of elasticip}f, and
opened a new field of treatment in it. Almost all conceivable
cases have been solved by him, especially in relation to what takes
place at the boundary surface. Besides Boussinesq, many other
authors have touched on this problem, employing the method of
integration by Green’s functions. Not long ago, Prof. H. Lamus®
solved a special case of this problem, viz. that in which the
boundary condition is-a normal pressure symmetrically distributed
about a point on the surface, by making use of the integral theorem
of Fourier's type concerning Bessel function of the zeroth order;
and thus, Lamé and Clapeyron’s method, which was considered to

1) CrerLe’s Journal, vol. 7 (1831) p.p. 400-404.
2) Application des Potentiels, Pa,ljis, (18835;.
8) Lond. Math. Soc. Proc. vol. 34 (1902) p. 276.
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l 2 Art. 7.—K. Terazawa:
be extremely unsuited for obtaining physical results, seems now to
‘have gained practical importance.

§2.  The present paper deals with the problem in the case in
which the boundary is subjected to any given normal pressure, by
" generalizing the method adopted by Lawms.” In the first two
sections the general solution of the problem is obtained in the type
of the Bessel-Fourier expansion of a function. The third section
discusses several examples in the case of symmetry about an axis
normal to the boundary, and forms the main part of this communi-
-cation. Most of these special examples have been investigated by
the authors above cited: the behaviour at the surface especially;
and yet it may be worth while to discuss them again more closely,
referring especially to the behaviour inside the boundary.

The last section is added as an appendix, supplying the
general solutions corresponding to several boundary conditions,
excepting that of normal pressure, in the case of symmetry about
a normal to the boundary. ,

§3. The results of these special examples applied to find the -
limit of rupture of a foundation over which a heavy load is
distributed.  Strictly speaking, by applying the mathematical
theory of elasticity, we can treat of rupture only, for some kinds of
brittle solids like cast iron, in which the linear relation of stress
and strain holds and, moreover, the strains are so. small that their
squares are negligible up to the point where rupture takes place.
For'a ductile material, such as mild steel, ‘and for an imperfectly
elastic material, like cement or sandstone, we must bear in mind
that the theoretical results indicate only roughly the state of stress
~when, in the first case, it begins to take permanent set, and, in
the second case, when it breaks.

§4. Another application will be found in a problem of
geophysics. In-his elaborate observations on the lunar deflection
of gravity, Dr. O. Hecker has pointed out that the force acting on
the pendulum at Potsdam is a large fraction of the moon’s force
when it acts towards the east or west than when it acts towards the

1) Though the writer had not read his paper until the work was almost finished.
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north or south.” Various explanations of this anomaly have been
proposed, among them one; suggested by Prof. A.E.H. Love,”
is that a possible cause may perhaps be found in the effect of the
tide wave in the North Atlantic. Recently Prof. A.A. MicuELsox”
has found a similar result in his arduous task of measuring the
lunar perturbation of a very long water-level at Chicago. Prof.
Sir J. Laruvor kindly suggested to me a query whether the excess-
pressure of the tide in the North Atlantic would affect much the
measurement of the water-level at (Jhlcago owing to the depression
of the solid earth that it would produce. A calculation is under-
taken in order to ascertain to what extent the consideration of the-
tilting of the ground is important for the explanation of this
geodynamical discrepancy; we may in a first estimation neglect
the curvature of the earth.” : ‘

II. Solution of Equation of Equilibrium.

' §5.  The equation of equilibrium of an isotropic elastic body
free from the action.of a body force is -

- curlcurlw = Mﬁgrad 4, 1)
: “

- where » denotes the displacement, 2 and # Lamé’s constants which
specify the elastic nature of the body concerned, and 4 is the
amount of dilatation defined by the equation '

4= divu. - @)

Our first object is to find the solution of the equation of-
equilibrium, which is appropriate for the discussion of the problem
concerning a semi-infinite elastic body.

Since div. curl of any vector quantity vanishes, if we perform
the operation div on both sides of equation (1) we have simply

divgrad4 = 0, 3)

1) A similar result has been found by A. OrLorr at Dorpat and T. Shida at Kyoto.

2) Some Problems of Geodynamics, Cambridge, (1911) p. 8S.

3) The Astrophysical Journal, vol. 39 (1914) p. 105 —.

4) The geodynamical application will appear shortly in the Trans. Roy<Soc. London.
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which determyines the dilatation 4. If 4 is found from this
equation, the displacement «» can be determined by solving the
equation ’ :

gra,d 4. | (4)

grad dive — curlcurl w = —

The elastic body which we deal Wlth is supposed to be
bounded by an infinite (say) horizontal plane in its natural state
and to extend without limit both horizontally and downwards. Take
the cylindrical coordinates (», 8, z) such that the axis of z coincides
with an inward normal to the boundary and the origin lies on the
boundary surface of the body in its natural state, then we have,
for >0, the equations ‘

2 2 2
. )
Z‘ .

’

u? o 7?22
to determine 4, and
e, 4 1 %, P, 1 ((/_ d‘zu,)_ 2 e Ad+p 34 )

e _,,_ b’l‘ + YE - 77 262 7 Y] L o 2 '
du, B 7 Yu, 1 < “u, ) 2", CAp 1L
e T B b
A r dz? 7 Y . 30 poor ©)
1 s Yu, | 1w, __A+p M
'«)7’2 7 or 2 A Y ’ ’ J

where ur, 1, u. are the components of the vector w. The equation
(5) follows from (3), and (6) from (4).
§6. To solve these equations, assume

4=04). e 2?;'}771,5

“where £ is a positive constant so that there may be no dilatation at
z=w, and m is an integer, positive or negative, orzero so that the*
solution may be unique round the origin, then the equation (5) gives
2 2\

P+ By (w-""Yo=0,

r

ar? r o dr

of which the solution is
| o =0, J, (kr)"

!

1) The second solution is rejected for the reason of its singularity at the origin which
we exclude from our present investigation.
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where Jm (r) is the Bessel coefficient of order m;, and Cn is a
constant of integration. Thus we obtain

A = C,e~ " Jm(kr) Sm}mﬁ. )

§7. To find % corresponding to
4= Cne™ ¥, (kr)cosmb,
assume that '
u, = U, cosmb,
Uy = U,sinm, .

U, = U cosmﬂ

U, U, U, bemg functions_of » and z. Then equations (6) trans-
form into |

¥U, 1 30, ¥U, wi+ly 2m A p o gt
7 . r _ __ z ’ .8
Py T > + oy 5 U, 2 U, p kCne " (kr), (8)

9 2 2 ’ |
¥ Uqg 4= ]- AUB -+ d UB _ m -:I,_l UQ'— 277'!/ Ur l+{1 n Cm -sz-m(k7> (9)
St r 32* a r # "

2z + 1 aUz + a Uc} - 7"/‘: 2 X+[uk Cme_kz']-m(kr) ’ (10>
Y r ¥ 3z’ r )

in Whlch Jn' (x) means dJn (z)[dz as ucual
The last equation suggests that, U, has the form VJm (/cv)
where V' is a function of z only and satisfies the equation

av
daz?

ey =20,
M

’

=The solution of this equation is
— | — }.+‘{1 Y -kz
V= ( Q_P-cmzu_),,.)e :

Dn being an arbitrary constant. " Thus

‘ o = (D) () cosm. (11)
2p

To find T,, and Uy, write
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U, +Ue =, X
U,—-Uy=1Y,

then combining the equations (8) and (9) we have

n 2 :
13X ¥X  (m+lPy =’“; P10, e, (r),

2y 2 77
YY1 IV Wy o Mgt ().
¥ 7 \z B [z

These equations suggest that X and Y vary as Jm+1 (k) and
Jm-1 (kr) respectively with regard to », and they can be solved

in a manner similar to the equation (10), The result.is’

X -= (_“——#sz_l_-Em)e-kz m+1(k7.)’
2

Y = ( ‘e, +F,,,>e"‘sz_1( Fr),
2

En and Fn being arbitrary constants. Writing

E.+F,=24,,
Em_Fm = Q_Bm,

) !
and simplifying, we have

= LT ()t [ AT br) = BT i) |

v e-lz.
U, = _.__4_+# Coir 2T (o) + [B,,LﬂJm(kw-)—AmJ’,,.(kr) |
2 kr - kr
Thus we have a system of solutions: —
4.= C,J,(kr)e*2cosmb, :
U, = { [ Atp C,2— Bm:l J m(k1~)+f1m-";clJ,,,(kr) }e"“zcosmﬁ,
” ,
‘ ' 12
= _{ [.’Hlomz_ B, __<Z” T, )+ A, T, (Fr) }e""sinmﬂ, (12)
a . '
U = { Aty £ C,2—D, }ef,h(kf/;‘e"" cosmb.
2
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The constants Bm, Cw and Dn are not independent of one
"~ another, but are connected by the relation

KB.—D) =23, (18)
2p
which follows from the definition of 4.

§8.  Next, the solutions corresponding to 4 whlch has sin m0
in its factor can be found in a similar way. They are distinguished
from the above by placing a bar on every quantity.

= C,J,.(kr)e~"*sinm¥, - _ -
{[Ji;_a, z:]Jz(M)+A.ﬂLJ(kﬁ}-hmnm0

{[“ﬂ » an’”ﬁx)+¢J4m}*¢%ma (14},
w = —{ )‘[:):“ amz— m}J,,,(kfr)f“Sianﬁ;
wit_h-
KB.-D,)=lt3ug, o as)

.../,!

§9.  The stress can be calculated by using the formulae

zAz = ld+2lzé&, ) . \
SR
dz & )
) 1 du
20 = {— Bt B L },
. =k r A ¥
X (16)
Crr =442 '
. L/'
00—14}-}-2 {1 dueg L % },
7 cﬁ r '
) 2
= p et Sl
r H Y ” + Y )

Thus corresponding to the first solution (12), we obtain
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—

7 = { A+ wkC,z—pC,,— Q,ukD,,,} J, ,,,(ko-ae' k2cosm@,

;= _{ [+ 9 G 4 2L G pl(Bu+D,) | Tu(br).

4 A, J! k’l)} e " cosmd,

= { [(z+ 2YC— A;u Cy— (B4 D,.) ] A T (ler)
-
+ pkd, T k?)} e~"?sinm b,
etc. ;
and corresponding to the second solution (14), .

2 = {(X+y)k6mz—p6,,L¥2/zkE} I (kr)e~ "2 sinm 0,
= _{ [+ 0 "fzf/‘ Cu—ph(B+D,) | T (b

+ ,m.n /I,,J,,,(k?')} e~'*sinm 6,

! (18) -

8 =—{[ o+ WG4t k(B4 D) | T Ttk
. r

+ /lkzsz 1K) } e " cosmd,

etc.

IIl. Lamé and Clapeyron’s Problem.

§10. We will apply the solution obtained in the last article
to discuss the effect caused by a given normal pressure applied .
locally on the boundary. Suppose as a preliminary that a system
of stress of the-form '

J— {Z cosm O+ Z sinm 0} J(kr), l
(19)

ar =0, 2 =0 ‘
is given -at the surface z=0. Then we must have the following
relations between the arbitrary constants: —
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—pnC,—2pkD,, = Z,
AA Gt (Bt D) =0,

4, =0;
ML Gt i (Bt D) =0,
4,=0

From these equations, co111b111iﬁg (13) and (15), we have

Cm ‘= —_g— b} -, | ’ am = ~—’Z———‘ ’
N Idp ‘ o Atp
,Bn —_ Z R v ’ -_. — ’ Z_ '
k(A4 p) " 2k(2+ p)
D — - (¥27Z 5 (47
" Apk(A+ 1) ‘ " Quk(A+ p) ’
4, =0, S 4,=0

Putting these values in the formulse (12) and (14) and adding them
together, we have an exact solution of the form :

z 1 et . )
— — 7 /] P 0} 4 . -Az,
u, { 2 e }{ cosmO+ Zsinm 03 J7,, (kr)e ,
up = { _;‘u — Z(A-i:u)k } {_Z‘c.osmﬂ —Zsinm 0}%_—:77,,(7;7')6‘“, $ (20).
U, = —{ LA A+2p }{Z cdsmﬂ+Zsinm0}Jm(k7')e"’

. 2p 2uA+ Wk

" corresponding to the boundary conditions (19). The formule for
stress are '

= (1+kz){ZCOSm0+Z$inw7,(9}J,,,(kT)6"'z,

o= —ks {Zcos m O+ Zsinm B}J',,,(k'r)e“'z (@)
0= —kz {Zcosmﬁ —Zsinmﬁ}——;cn In(Fr)e™", »
. ”

etc. © )
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§11.  To generalize the above so that the solution may be
suitable to discuss the effect of any given normal pressure at the
boundary surface, suppose that Z and Z are functions of % of the
form Zn(k)dk and Zm(k)dk respectively, and superpose the
corresponding solutions for all positive values of %, then add them
together for all integral values of m. Thus, corresponding to the

boundary conditions

m= Y / {Zm(k«r) cosmb + 7, (k)sinm 0}Jw,(k7') dk,

m=0¢ -

or =0, 20 =0

at z=0, we have

“= 2@: 2 .{Z’"(k)cosmv'i‘Z_,}z(k)sinm(? e~ " J" . (kr)dk
= 2/1.
) @ N
) Zo(k)cosm 0+ Z 0}'2me% <
=2 ()+ )/{ (k)cosm b+ Z,,(k)sinm ( 7) :
2y mz

u, = —i‘ i / Z,,,,(k)cosmﬁ+Z,l(\k)sin;m0 e~* ., (kr)dk
O# ¢
V] .

[- T 0 7 7
o A+2p { Z,(k)cosmb+ Z,,(k)sinm 0} i

( ak
s m=0 2/1()‘_}_#)‘0

fer)— ;
k

and

iy

77 = L /El + kz){Zm(k) cosm 0+ Z,,(k)sinm 0 } ~* T er)dk )

m=0"

© @ —
S / { Z.(%) cosm0+Zm(k)sinmﬁ}e‘”J’m(kfr)dk,

m =0

20 = _Z mz {Zm(k)cosmt? Z,,,(k)smm(?} e, (kr)dk,

m=0

e#c.

27‘7/ (@m0 aysomsler oo 2

(22)

(23)

(24)
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* More generally, if the boundary conditions are given in the
form of an arbitrary function, e.g.

22 =.f(7': 0) , } | . (25)
r=0, =0 :

at z=0, the general solution can be obtained by making use of
the integral theorem

o) = [ :}m(k'r)kdk/ P T, (kdeds, (26)
0 : [ - :

provided the function f(r,6) can be expanded into a trigonometrical
series of the form

 fn ) = Z{fm(fr)cosm0+ (r)smmﬁ} @

m=0

where fn(r) and fu(r) are supposed to satisfy the above integral
theorem.

Comparing the expansion (27) with (22), which follows from
the first formula of (24) by putting 2=0, we see that the functions
" Zm(k) and Zm (k) which correspond to the boundary conditions (25). '
or'(27) are the solutions of the integral equations

) = [ BT,

Flry = [ G (0T )k

°

Looking at the integral theorem (26), the solutions of these integral
equations appear easily to be

Z,(k) =kf F (T, (ka)ada,
S (28)
Zn(k) = lf/fm(a)Jm(ka) ada.

Thus, substituting these values of Zn(k) and Zm(k) in the
formulee (23) and (24) we get the solution answering to the
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boundary condition (25). In his book of differential equations,
H. WEeBER" solves the same problem by using the Cartesian
* coordinates. But it seems that his mode of using Fourier's
theorem was anticipated by Lamé and Clapeyron.

IV. Examples in the Case of Symmetry.

§12.  The solution for the case of symmetry round the origin,
which is discussed by Boussryese with numerous examples, has
been afterwards obtained by Prof. Lame in the same way as
adopted ‘ here. This. case is implied, of course, in our solution.
Suppose

-
= 0, 20 =0 ‘
are given at the surface z=0. The corresponding solution will

then be obtained from (23) and (24), by taking only the first term
(m=0) in the summation. Thus

u, = — ; “'le(kT)dk
Z(k)e *J,(k
2(,+ )/ (R)e7,er)-
(
Uy = O, . ; (30)
U, = — ~kJ(kr)dk

A+ ® - dk
— = Z(k)e T (kr)—;
2p<z+/z>0/ (B)emt=T(0r) 5

and

"= —Z/'E(k)g‘kifo(k’r)kdk-*- —f—— /IE(k)g'kaJl(kfr) ak

> -lz _ ,u -kz npe ﬂ
+ / Z(k)e' =T (kr)dk ¢ T E

1) Part. Diff. Gleichungen, vol. 2 (1912) §76~. *
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66 = ———/Z(k)e"“’J, dk

Ye ¥ (k)

31)
+_*_ 'Z(k)e-wo(kr)(m,
At p -
==z / ZR)e =T (khdk+ [ Z(k e T(kr)dk,
: J

—

0z =

=z 'Z(k)e-*ZJl(kr)kczk,.
0

— >

0;

=S
1

where the anxiliary function Z is connected with the prescribed
condition by

Z06) =k / Fa)Iy(ka)ade. (32)
We shall now apply -the general theorem to a few special
examples. ‘ _ oot -
Example - |

§13. The first example, which is discussed by Prof. Lams, is
to find the effect of a given normal pressure concentrated at a
point.on'the boundary, on the supposition that f(») is zero for all
values of 7 except those in the immediate neighbourhood of the
origin, where it becomes infinitely great in such a manner that

. /'f?r) Oy dr = —1T, (33)

in which 17 is the total amount of the pressure applied, and is
finite. The function Z(k) now is

1
Zk)=———F
(%) o

Putting this in (30) and (31), and then integratiﬁg we get
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u, = U {;*Z_L____-L [i__zh—] } 1)
r 47[/1 (7“3-{-22)3/2 Z+,1 7 7.(7.2+22)1/2

SR
w = 1 { 2 i+ 2 . 1 }
; 44711 (T2+22)3’2 ).—l—‘u (7.‘._’_}_;)1/;/ ’
and ‘ L
= '/ { 3z [L_ z :I }
27[ <7.'2+Z'-’)5/2 . z_}_/[l 7.? ,).2(,',‘2_1_22)1,/2
gy =11 __/L_{M_'_l-} ,
27[ 2 +F ,,.'2 7.‘2+Z?)‘1/‘2 7.?
= __ I 8 ’ ' (35)
2 (P42 .
jon =' 11 3% . L
o2r  (r4+2)"’
=0 B=0.
At the surface (2=0) they reduce simply to
' n 1
W=~ (36)
(), = HO+2) 1
: Cdmp(At )
~, 1y 1
N
( 7)0 27_‘_(}\_*_#)\ 22 l
Gy = —— e 1 5 (37)
2a2+p)  o* : ,
(sz\f)o= 0.

§14. It is interesting fo show by gfaph the state of
deformation at different depths from the surface. For the sake of
simplicity we assume that the material satisfies the Poisson’s
relation A=y, and we take only one component of the displace-
ment u; for reference, which is now written in the simple form

" = /i { 2 i 3 1 }
2, 417/1 (7.2 + 22/3/2 9 (7;.» T Z?)l/‘.’

The attached diagram is drawn on the supposition that /7=4zpu

1) The integrations have bheen carried out by Lamb, and so it is unnecessary to recapitu-
late them here.
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/ 2 -3 4 & §

Fig. 1.
u, '

As seen from the diagram the state of affairs in the neighbour-
hood of the origin and even at a finite distance from it is an
impossible one, and the mathematical theory of elasticity does not
apply to such a case. The above argument must, if possible, be
amended by a suitable process of analysis. The general solution
found above is restricted to a special class of functions f{r) which
satisfy the integral theorem (26). The hypothesis of point con-
centration of given pressure does not, in a strictly mathematical
sense, satisfy this important condition, and the solution deduced
from it may not be looked upon as a legitimate one, at least in the
vicinity of the origin.?  What follows from the .assumption of
point-concentration of given pressure may, however, be considered,
except locally, as the limiting case of the effect of a pressure which

1) A quite similar failure of the solution will occur in the problem of the deep-sea
water-wave and allied problems which can be solved by the aid of Fourier’s Integral
Theorem:
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~acts on a slightly extended area of the boundary, which will be
discussed in the next example.

Example II.

§15. Suppose the normal pressure at z=0 is given in the

form

1 a .
fir) = — ey P T a=>=0, (38)

1T being its total amount. The function Z(k) is

_ /i aJO(ka)ada _ .
T

Thus the solution conespondmg to the boundaly condition (38)
will be glven by

w, = LA / Ae“”")"'Jl(kr)kdk
dmp ] .
17 ' .
— [y (), |
4@“#)[ | b (40)
u, =17 / - T (Ve
471'/;-0
H(;\+2/,L) -ob_( +a)r .
F = femEri T (e )dk
drp(A+ 1) / o)
and ‘ ,
- 1z - (ata)t 2 ”Z " (etay: ]
rr=-—- ST () KPdk — e~ J (kr)kdk
=/’ EZa
— " - (a+a): 1y .m-(zi-a)’f .
- / Jo(kr kdk+m J,(kr)dk,
Y _ HZ .w—(zf-a)k v " — ]l:u ) -(2+(')':\
=_~ / o R T (TR e / o= GHOST ()
] i 0
A [ eray (41)
— M [ g kd, -
oA+ ) {e o'fr) .
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-~ _ _ /]Z -(z+u)k _ ]I =(z+a) .
= / Tl el — / T ledl,
’T — [IZ =(z+a)k 2

i / J(kr)k2dk,

=0 07=

These integrals can be expressed in terms of zonal harmonies
and the associated functions. If P (%) denotes the zonal harmonic
of nth order and ' ‘

-\ LIRS E
Pl@) = (1—2)"% [ [ .. Pa)dan,

an( )_ (1— x)-—d l;(fv) ’
then
B ' 1 = 1)
W )ik = - AL e 2
J ek = s P, |
(42)
o0 )
kre = (kr)dk = =ML pr 2\ e '
.0/ ( ) (7,2_}_2'2?71;}—1/2 ( \/7‘2"}'22 ):
By mak—ing use of these formulee, we have
v =M { 2 o l_ z+a :’ }

T A VPGt I L et eta A ) 13)
17 { 2(z+a) + A+ 2u 1 } (
drp V(P4 (24 @) Atp (P (z+a)

and

= __f/_{ a(r+(z+a))+327 [ 1 z2+a ]}
B Gt T et
EZ):”{ z . ¢ [1__ z2+a ]
f_)ﬂ (7.2+(Z+a>2)3/2 2_'_/1 7.'1 7.2(,',.+(Z+a)2>1/2 .
4 z2+a
g (P4 (2t a)) } (44)
= Al . (Bz+a)z+a)+ar’

. 9% P+ (z+a)p)”?

1) See K. Terazawa, Proc. Roy. Soc. London, A. vol. 92 (1915) p. 57—.
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= — - 3zr(z+a)
T )
70=0, 0z=0.

If we proceed to the limit @ > 0, we have the same result as
that due to the pressure of point concentration. But this limiting
process is, in general, not permissible. A little examination -of

d . ..
_ the value of —;‘z—’ shows that the quantity « has a lower limit,

such that ,
1122+ 34)
dmpdtp)f

in order to avoid the ifnpossible state of affairs near the z-axis.

At a distance from the origin great compared with a, these solutions

reduce, in a first approximation, to those in Ex. 1., so that the
solution which follows from the assumption of point concentration

~of given pressure may be valid at a great distance from the origin,
though only approximately.

§16. It is desirable here also to see how the displacement
varies with the depth. On the same hypothesis as before, that
A=p, the variation of U is shown in the attached diagram, in
which the upper curve represents the distribution of applied pressure
(38) and the lower ones represent w: on a proper scale. a is put
equal to unity for the sake of simplicity.

27 a? > (45)

§17. At the surface, the expressions for displacement and
stress become
— n o f1 a
(’u’r)O - - _ }
dr(dtp) Ur o(r+a?)® (46
(= 042 )
4‘%’ +p) O+
~ { a _ [_L_ a }
(7‘ 7)o (7,2 +a )3/2 2 _|_ o 7 Tg(l)———_:, +af")‘ 7 ] ’
et [ e T
( )0 /1+# 7.2(7,2 + a?)l/? + 2 i (,'.2 + “2)3/2
(ZZ)O = - 21_: (7 +a)w ’
(@) =0,
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By integrating (u.), over the surface, it may be easily seen
that the total depression of the surface appears to be infinitely
great, though it is caused by a finite normal pressure of total
amount /1. This seems again to be paradoxical, but that is not the
case; if we calculate the work done by the given pressure, instead
of total depression, it will appear to be finite, equal to AT A+

8za " p(A+p)’
Inversely as a.

-§18.  Let us now proceed to apply the results of this example
to the theory of rupture of a foundation over which a heavy load is -
spread. There have been proposed several hypotheses concerning
" the conditions under which an elastic body is ruptured or nearly
s0. Among those hypotheses usually adopted there are two in
which a limitation on stress is taken as the measure of tendency to
rupture: the one which was introduced by Lams is that the
greatest tension should be less than a certain limit which is
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different for different materials; the other which was recommended
by G. H. Darwin asserts that, as mere hydrostatic pressure can
hardly affect the case, the maximum difference of the greatest and
the least principal stresses should be less than a certain limit.?
These two hypotheses lead, in general, to different results. IEither
-of them will give warning that danger is being approached, and in
any case a certain factor of safety must, in practice, be adopted.

Here we shall calculate the limits following from these two

hypotheses and compare corresponding results.

For this purpose we have, in the first place, to find the
distribution of principal stresses throughout the body concerned.
Let IV, V;, V; denote the values of principal stresses at the point
(r,0,2). Owing to the hypothesis of symmetry round the axis of
z, the component 86 is one of the principal stresses, say N, as is
to be seen from the formulae (31); and any plane passing'through
the z-axis is one of the principal planes of stress. The other two
principal stresses will be found by

Loy 1
N, = -5 ("""+ZZ)+?/(rr—zz)2+%'z‘,

1 | Y (48
N, = 5 (ﬁ+&)_—2—~/(ﬁ—2\z)2+4f§°

At the surface, since 72=0, the stress components 77, 06, 7 them-
selves are the principal stresses.

§19. - Now, to apply these formulae to this example, let us
assume” that the pressure modulus 2 is so great compared with the
rigidity # that the material may be considered to be incompressible.
Thus, substituting the values of the stress-components found in
(44) in the formulae (48) and making A=w, we have simply

1 3z+ta

2 " (P+(z+al)?

e/ a

o (Pt

N, =—
49)

1 Thereis another view often adopted, in which a limitation on strain is taken as the
measure. ’ o

2) This supposition is not at all necessary, but it makes the calculation extraordinarily .
simple. -
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N, being greater than N, and N, which are equal. Thus the
stress quadric at any point in the interior is a spheroid, of which
the axis of rotation lies in a plane passing through the z-axis.

If we denote by D the difference of the greatest and the least
principal stresses, then y '

D=N-N,=_1 3

. . 50
2 (P+(z+ap)” (50)

. . . a . .
D is a maximum at the point (»=0, 2=—-) and its value is
\ I 2

211
Ira’

D'maz. = — ) ' (51)
while &V, the greatest principal stress, is a maximum at the point
(r=0, z=0) and

7

2ma?

Nimaz = ~— (52)
Thus the latter maximum is greater than the. former, and, more-
over, the position where the rupture might occur is quite different
for the two hypotheses: it is at a certain distance below the surface
in the former, while it is at the surface in the latter.

In Fig. 3 it is shown how the greatest principal stress and the
greatest difference of principal stresses along the z-axis vary with
the depth from the surface.

Fig. 3.
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§20. To fix matters, suppose an isolated mountain or a high
tower of uniform density with a circular base standing on the
ground; the surface of the mountain or the other being given by
the other by the equation

, = m’ht ~
(mPh2 4 (nt— 1y

(53) -

This equation is so adjusted that the height at the centre is A
and that at the point »=mh is A/n. We shall make the rough
assumption that each point on the surface of the ground is pressed
normally downwards with a pressure given by the product of the
specific gravity and the height of the mountain at that point. The
quantity «, used in the above, is now

]
mh

N

a =

" In the annexed diagram, the upper curves are supposed to
represent the profiles of mountains and the inner ones those of
columnar buildings such as chimneys or monuments, the height
being taken as unity, and m and » chosen properly.

Curve n m a2
Cy 1-837 1 0-7071
¢, 1637 Y 03536
Cy 2828 1/3 01667
Cy ) 5196 ' 1/5 00707
c; 11180 1/10 00250

If we denote the specific gravity of the mountains or other
bodies by w, then the total amount of pressure will be

27 wn’h?
nt—1

Il =

The maximum of the greatest principal stress becomes

Nl max — —wh: _ (54)
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v

Fig. 4.

acting at the origin; and the maximum of the difference between
the greatest and the least principal stress is

Dps = —%wk, - (55)

acting at the point (7'=0, z=%> . The values of a/2 corresponding

to the curves are calculated in the last column of the above
table, and the positions of the critical points corresponding
to them are shown also in the figure by the points P, P, ......

It will be interesting to find the limiting height of mountains,
which stand on bases of several kinds of materials without crushing
the latter. In the following table a few examples are given: the
third column contains the greatest heights of a mountain given by
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the formula (54), and in the fourth column are given those
calculated by means of the formula (55); the value of w being
taken as 3 grammes weight per cubic centimetre.

Strength to resist Max. height Max. height

Material in the base crushing in in km. in km.-

kg. per cm.? by (54) by (55)

Cement . .. ........ 320 1-07 240
.Strong sand stone . . . . . . 800 2.67 . 600
Stronggranite. . . . . . . . 1600 © 533 12-00
Strongglass . . . . .. ... , 2100 800 18-00
Wroughtiron . . .. . ... 3200 1067 24.00

Example III.

§21. Next we will consider the case in which a uniform
normal pressure acts on the surface within a circular area of radius
a, outside of which the surface is free from traction.

Suppose

fir) = ——l_][’, fora >, |-
ma’ (56)

=0 9y <7

/1 being again the total amount of the given pressure. The
function Z(%) will be

n I
20 = =1L [T(ka)odo = — 1 (ka), (57)
T 'O aa

and the components of ch%p]acement can be computed from the

formulee e
U, = #(j/l,/'e-kz‘fl(klr)J1<k(b)dk

P C”i
Qma()+ 5 / T (k)7 (ka) = | 59
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u= 2 [ -5 T ()T () Bl
27ra‘u7 4

_HCHUD [ty 1)1, 1) B
+27m/z(l+p)-06 0 7')‘1( @) a

and those of stresg are given by

rr =

s e, ka,)kdk—_ﬂ / oI5 (o) T ()
0

"0

72+ par

P A _mp
== / o Jl(zw)Jl(ka)dg o i

;@1—)“ / e T )T (ke

22 = — e ~ta - — 1 ez A
w=—l / Tler) T (ea)ledl— 0/ T (T (ka)dk,
—_ ]] no- " .
= n'of ‘/e LJ‘(kT)JI(k“)kC.lk,
0 '
= 0z = 0. '

0

oo (k 7\J1\ka‘dk+—~@f—— / “‘le(kvr)Jl(ka)—dkk—

/ -f'J1<kr)J;(ka>—d]f—

25

(39)

0
§22. The integrals required here cannot be evaluated in a

very simple way. Some of them are closely connected to the
- magnetic potential due to a circular current, or to the velocity-
~ potential and stream function of a circular vortex and have been
discussed by various authors. In his paper on the inductance of
circular coils,” Prof. H. Nacaoxa has devised a comparatively
simple method which may he applied to evaluate all the integrals

needed here. Let us follow his method and describe it briefly.

Put
R = /@ —2arcost 4%,
then we have

1 =
T (ki) = — / J(kR)cos0d0,

Jo(ker) (ka) = — / J, kR)—'—@iﬁ- 10, (

1) Phil. Mag. VL 6 1903, p. 19—.
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kar

Jy(kr)J (ka) =

7

Art. 7.--X. Terazawa :

sin’ 0 a0

/J kR)

- (61)

which follow from Neumann’s addition theorem for the Bessel

function.
formulee (42), we obtain

and change the integration variable from 6 to s by putting

[ o3 (hajak = 2 [Z50_gg,
. o . T ’\/R-z_!_ 22 '
- g 2 [T a—rcosl
e~ (kr )T, (ka)dk = —— roOST _af— 2 [ “a—reosT
00/‘ 0( ) ( /. T .0/ RQJ\/R2+Z2
e ak ar 7 gin?f arz [T sin’0
e~ J (kr)J,(ka) = . - —
.{ 1 1 J 2 T .0/ R? T 'O/R‘Z\/RZ—FZ.‘)
/ =15 (ko )Jl(ka)—di =1 / «/R +7 (4 cos6)db
0 N
z [T a—rcosl
?0/ —a—resl g
To find these integrals, put
2 \3 @+ 2 A
a = —_— 3 = _—,
( ar ) f Gar
. = 26 _ a+r+s
' a Bara
o= 1=B_ _ @+r’+2—6ar
) a ' b6ara ’
o= — l_@ _a’+r7 4+ 6ar
K a bara
so that
. e << ey, << e,
e +e4e; =0,

cosf = as+f,

then we have

ds,

ae,

Making use of these formule and on referring to the

(62)

(63) -
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| - U /: (s+3e)ds
4 VE+Z «/4(8—61)(8—69)(8—63)

similarly for the others.
Put again

s =P

and denote by o, and ©, the real and imaginary half-period
respectively and w,=o,+w, then, since s or ¥(w) is real and lies
between e; and e, s=e¢;. and s=e, correspond to u=wo, and u=w,
respectively, if we take the sign of §'(u) to be positive.” Thus

T cosf g :
[Tt = e

N g 0 @3

= a2<-;—elwl—7yl). (64),

For the evaluation of the other integral, write

24 220,03 2,2\ ,2
(o) = & +°—2arf _ A&’ +17)—2 , (65)
2ara bara :

then we have

/’7T a—rcosf =% o — 'r?—az/’ﬁ’-z du
2 1 .2 - ! e N e N2
s BvE+7 - 2a da¥yr o, (v)— ()

‘ ete.
Now
/'m’ ¥/ (v)duw l: g' a(u+1)) —2ue() :I @

Yo, ¥(v)— K’(u) a(u— R (66)

=2 {v‘ql —of(v)+ mrwﬁ}
in which the term mm; enters because of the many-valued property

of alogarithm. The actual value of m and §'(v) will be determined
by the following consider ation.

1 If we assume ¥'(x) to be negative, then s—e, and s=e, correspond to u=0, and
1u=2w), + 3 respectively. But the same result will, as a matter of course, be obtained after
1ntegra.t10n
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From the definition of #(») and e, e,, e,, it follows immediately
that '

2

—_ 2
&(U)_el - Qara’
. i ( a ,,.)2
b)—e= Qara
e _ (atr)
8"(”) €3 = ——Qam s

accordingly

&< B) <e,.

‘The last inequality shows that the value of » must be one of the
following: : _
(i) v= (2n+1)w,+(2n'+l9)(93 , } 67)
i) v=(2n+1)w + 20 +2—0)o,
where n and n " denote any integers, positive or negatlve or Zero
and 6 a positive number less than unity.

To determine the value of m in the formula (66) for the value
of » given in (i) of (67), observe that the integral on the left hand
side of (66) and the function vg,—w,¢(w) change their values
continuously as § varies from 0 to 1, while m remains unchanged
during this variation. In the limit as 60, the value of the
integral is nil and

209, —2w,f(v) > 2n'i,

and therefore we have

(i) m= —n"

Similarly for. the value of » given in (ii) of (67), proceeding to the’
limit >0, we find

(ii) m = —(n'-}—l).
The value of ¥(v) will be obtained from

B2(0) = 4{F(0 —e} {§(0)— e} {£(0)—es).
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In the present case, we get
. _ - 2@ —r?) '
F) + ’b' 2ar '
It may easily be shown that the value of §'(v) is a pure imaginary
quantity for the values of » given in (67), with positive sign for (i)
and with negative sign for (ii). Therefore we have to take

1) — y 2(a®—1?)
') = +1 e ‘
m= —n', .
for v = 2+ D)o+ (20 +0)w,) ; -
' y ’ . 2a’—1") |
. and 8’(1)) = =i ,
m= —(n+1),
for ’ V= (‘2’)1—!—1)(1)1-}- (27z’+2—0)<u3 ’
in which 0<f<1.

Hereafter we shall, for the sake of simplicity, take into
account only the value of » which will be obtained by putting
n=o0, n'=o01in (i) of (67) viz.

Y= “)1+0‘”3

By th1s convention the telm mmi disappears and the value -of ¥'(v)
is to be taken as :

F(o) = +i M' o
- 2ar ) .
Thus
‘" g—rcosf ° P2
/ R2¢\/.R2+Z?’ 2(1, ()] 261127' &”(’U) 1/7]1 (Ul_ (1)) : ( )

Similarly we have

| V[R?jln%z'f ’= 2 l'”‘ [F@+a]-n

O[&('u)—e,][&(”)—eaj o0, —w,f (v »
F) et} 0
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/_,\*/_lf,i—_z_(a —rcosf)dl = —(77,—!—()1(01) Uf; w,
R ara

L 2r—a) F)— . ‘
e CANCOI NG

0

The other integrals in (62) are found without the knowledge
of elliptic functions.

/M—Sﬁdﬂzi_for r<<da, '
SR @ )
=90 n T>a; *
/'ﬂ.‘ Slr_:‘_ﬂ d0 = L' sy r<<da, ‘ )
J R _ 2a*
b (73)
T
= T o > )
D

$23.  Substituting these values of integrals in (58) we obtain .
the following expressions for the displacement:

w = 1o {Le o — }
' 2a7*p \ 2 1 ,
. \ .r'
r<<a
___ | 2“( ) @z "
2@71’(1-}—/1) @ + o [71—“’1( (v)+3r)]
—(r > a)
. 27‘
a’z

[F (=] - [F @] 2BL

) .
_ Iz —(r<a) wo, | A(r*—a’) op—wl(v)
e = 2amy “ e T 2arr  F'(v)
0 (r>a) i

2
0G0+2y) | | —0r<a) —a
+ 2@71’#().-!-/1) @ aan (771+31‘”1) —a C L

0 (r>a,)

R = ON W ()

Ta'ra? ¥'(v)
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§24. TFor purposes of calculation, it will be very convenient
to have the formule expressed in terms of Jacosr's.g-series. ¢ is
" defined by '

g =&, = @
. W,

After WEIERsTRASS, if we put

— (e1—es) —(e1—ey)'
(61'—65)*4'(31_62)' ’

then ¢ can be computed from

=_é_+2( ; )5+15(%)°+150(%)13+0(z"),

of which .the first two or three terms are usually sufficient. The
g-series of the functions needed here are as follows: —

2\ 2
__1 )
120, 3,(0) ’

x+r o _ 1 { H'(0) _ ?92"(0)}
B 6w, — 7, 8(01 191,(0) 1?2(0) ’

0, = L(L)*aﬁ@,

n=

) , - 1 ) qfn
7+ e :—“{—“4‘2 ——"})
/i 1Y) | o, 4 Z (l+q_"")"

n=1

and

Fy0) = 2¢'(L+ >+ ¢°+ g%+ ...... ),

o) = —2mgH(l — B+ 5" —Tigl 4 ... ), '

&/(0) = 2rgt(1—3¢>+ 5¢°—Tg+...... ),

8(0) = —27'gH(1+ 3G + 55+ T+ ...

§25. The calculation of the term vy, —w(v) requires a little

explanation. By the fermula

1 o, v
e 5 )
e - olv) = 2‘"‘&'—(0)’

1

we have
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Making use of the expansion formula of the right member, we get

— 2n
4

©
= l®) = —= {cot 2 ey L sin ”m’}. (76)

w, = 1—g™ w,

P

The quantity » may be calculated by utilizing the WEIERSTRASS'
~ formula to any degree of accuracy,” and therefore the value of the
function vy, —w,¢(v). The approximate value of this function can,
however, be found in the following way:
Put
. (e—e) (F{v)—e) — (e —e)' (F(v)—e) =t
(e —e)' (¥(v)—e)' + (e1—e3)' (Fl0) — )

A
2

and .
L (e,— 33)} g 2(7)) —(e,— 32)* ‘73(7))
2 (e—ey) 0x(v) +(6,— €)' 05(v)

T
qCcos —
@,

vz
w,

+¢°cos

4om
w,

1+2¢*cos 2om +2¢'®cos
w,

then, since ¢, < f(v) <e,, we shall have
Qv—w,) = t2
As ¢* is usually a very small quantity, we may take

a(v—w,)

cos A say
w; g

with a close approximation. Since v—wo, = o, purely imaginary,
we may put : ‘
alv—w,) _ .

e,
©,

1) This method has been adopted by Prof. Nagaoxa. Le.
2) HarpreN, Traité des Fonctions Elliptiques, L p. 274.
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x being a real quantity, then

coshz = s,
and we have
T . y fs—T1 1\ -
cot —2 =—7,1;aJnhi=—7,(g 1),
20, 2 s+1
. T . - s .
sin =% = —gsinhg = —i(s*—1)Y,
w,
270 -  0pf '
stn ——— = ¢sinh 2z = 2s(s’—1)},
w, : :

Substituting these values in the equation (76), we have

a

,y'_(ulm) - {( S+i>+4q\s 1)![1—gf(2s—1)]}.

This approximation iormu]a is recommended for the case in which
0<4.
For the case § > &, if we put-

(e,—e) (e, — ) —(e,— F()} _
(e,— 32)\} (e,—ey)t +(e,— bﬁ(’”))f

)

“then we shall have

Qw—aw,) = ¢,

and making use of this formula, we shall obtain an approximation
formula which is convenient for the case 6 > 1.

§26. The expressions obtained in §23 are rather comphcated
and the state of deformation can hardly be graaped at a glance.
The formula for the displacement at the surface is, however,
comparatively simple and can be calculated with any accuracy.

~ Putting =0 in the general formulee, we obtain

LAy
VN ot o
Uy = — 5 X 7
R 41L“(A+/l) ;f (f[‘ -~ a‘) .

and



34 Art. 7.—K. Terazawa :

/] A2 17 [ 2 N r—=d } :
W = o g 5 e O} (19
where ‘
< 2 )%
a = N
ar
_ at+rt B &+ —06ar . &+ r*+6ar
6 = s 6= ——F 63 = ——F ——
3ara 6 ara 6ara

At the surface the value of / becomes simply

] = (r+a)—ir—alt
(7.+a/)t+‘7.fali ’

so that the use of the g¢-series is \;ery advantageous for the calculat-

ion, especially at the points near the origin or at a distance from
it. For example, at the point » = 8a, we have
_21_ = 0-085786, ¢ = 0:085796 ;

thus, even for the value » =34, we may neglect the terms after [*

‘and ¢* in the series. For larger values of » the ¢-series converge of

course very rapidly.” , )

§27. The formula for (u:), can be transformed into the form

which is convenient for the use of LecExDRE’s table of elliptic
integrals. If we remember that

n+ew = /e,—e R,
. K
W =——
Ve —e;

K and E being the first and the second complete elliptic integrals
- with the moduli £ and %', and

p=le  B=(I)

the expression for (u:), becomes

1) For the point near the edge of the circle, the calculation may be undertaken by
using similar series, specified-by ¢; and I;.  See below.
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A42p B P s
() = vt {<r+¢)E—<7_—a> x}. (19)

At the centre of theloaded circle, since | -

" we get”

_ 1T 242 ‘ 80)
(’Mz)o T . 2(1+‘u)‘u ey ( )

and at the periphery of the circle (r=u), since

k=1, E=1, K;log%, (r—a) K >0,

we have S
1 A+2pu 2

(us)y = a 2(%#/)#— et . (81

The values of (), at the centre and at the periphery of the circle

bear the constant ratio /2, and this is independent of the elastic

constants and radius.

At the centre, as will be seen from the formula (80), .the
vertical displacement varies inversely as the radius, when the same
amount of total pressure is applied to different circular areas, while
it varies directly as the radius when the pressure of the same.
intensity is applied to different areas. The same relation holds at
the edge of the circle, with regard to both the components, radial
‘and vertical, of the displacement. | :

" By the aid of the LecExDRE table of X and E, we can trace
by a graph the general march of (uz),. The next diagram is drawn
in this way, where the radius ¢ is taken as unity and the pressure
11 is taken equal to 2zap(l+ 1)/ A+ 2u) 4

§28. To find the formule for stress we need two more
integrals which can be also carried out by the same method - as
before. We have, from (61), that

. ) @ . dk
1) This result may be obtained from (58) directly by using the formula f Jll_ka)T=1.
0
The result (80) and (81) agree with those given by Boussivesq. p. 140, lc.
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¢ 7 Z 3 4 & o
Cje—a ——): " v T >
f
]
t
i
:
;-
]
}
t
7
Fig. 5.
(e T /TN T AT _ P cosf
‘./6 ! Jl(ka)Jl(ka)kdk = —7[—, —(m s
° R (82)
T q—ycosl

‘ 0/ &I ()T (ke = L 0/ o
R being defined by (60). Of course we may find their values by
differentiation of the integrals already found with respect to z, but,
owing to the complexity of the ellip’t'ic functions, it avill be seen
that the direct method of integration is much easier. By the
same transformation of variables as before, we have B '

cosf ot [®: 3e/2 @t
S (B ; 4 / e,— P(w) “ 4 “

[N

and by the aid of the formula

1 — K‘(u-i—w,)—.-gl
K’(u)—_—el' (e;—es)(e,—e5) ’

the integral can be found to be

/'n cosf 20 = a{ 3e,(7,+¢,0)) —w}’ l(83)
J (B +2°)" - 2ar \ 2(e;—e,) (e, —e5) ' :

0
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Similarly the second integral in (82) is

T q—rcosf 1 f (2a—38e ra)(‘q +e0)) } |
af = { 1 1 1™ . 84
S (B 2 2ar 2(e,—e,) (e;—é3) e (84)

Substituting these values and those found before in the
formule (59), we have for the stress

rr= HZO; { (2a—3are,) (i, +e,,) + 27, —an(e,w, —27,)
Arar Qa(e,—e,) (e, —6;)

r—a®  op—ol®) o _aop [‘71—91101,—(01&’('0)

R R Y
9 [§(v)— $(v)—e5] vy, —w,{(v) |
+2[(0)—er] [6(0) —o] 2
1 " '
)| r=9 i |20
T ra T O4pr | g ’ (85)
0 (r>a) o (r>a)
gy _  1lz0? o, A _r—a’ v‘ql—fulr:(b) .
00 = Siar {e‘l(u1 29, + T s [7’(01 - 0
— T [ 1—ew—wb@+2050)—e). [50)—ed. L;Eevfﬂ }
r " \
1 2a Q <a)‘ : [7—("‘ <a) _
e U R “ , (86)
AT R > a) L 0 (r>a) |
‘ zr J
o /. {<2a—3a&-e,)<m+elw.> $ 2o omol))
27%a®r 2(e,—e) (6, —e5) Coa ¥ (v)
1, < | |
L {a, e “)}, - (87)
- ma :
0 (r = a)! :
o — — ]]Z‘"’é { Be(ptew) - ‘88
T ] 271'%%‘ 2(61—62)_(62-—83) @, } ’ (88)

0.

?0:0, 0z
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§29. At the surface these expressions for the stress reduce to
simpler ones. ‘

~ _ . 24pu Il
(r7)y = ) T+ v (r << a),
I SN A
204+y)  m* (r=>a):
= 21-{—# I/
00)y = —— = (p ;
(66), T r << a)
EEE A |
@ = —— (r<a),
wa* '
=0 (r>a);
(5')0 =0,

/

All the tractions acting on the boundary vanish, as they.
ought to, under the conditions of our problem, except a uniform
pressure on the circle of radius a. The state of stress just below
the surface is made up of a simple and beautiful scheme of the

) ! . . . 224 p _[1_ ..
pressure system with a radial .tenslon equal to BTy inside

. 11 . . .
the circle, and @Uﬁ_ﬁ? outside it; and a transverse tension

2241 In . . . . 7 -
equal to ~0+p) Rl inside the circle, and B er T

outside it. . 4

§80. Along the edge of the loaded . circle there occurs
a singularity of stress. We have seen already that as a rule the
component stress zr vanishes at the boundary surface. " But this is
not always the case. If we put r=a in (88) and then proceed to
the limit z > o, we shall have '

@h=— L =0 )

Thus the tangential traction (7), does not vanish at the. periphery
of the loaded area, whic¢h is contradictory to our assumed boundary
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condition. It appears that along the circumference of the loaded
circle a radial shearing stress of magnitude equal to the given
normal pressure, divided by =, should be applied. This was
also pointed out by Boussizesq.” But the area on the boundary
over which this shearing stress applies is infinitely small, so that it
is practically of no account at all. ~ This singularity possibly means
that the region in the interior of the body in which the stress
component 27 exists has a cuspidal edge, which touches the
boundary surface at the periphery of the circle. To avoid the
above difficulty, Boussixesq supposed that at the edge of the
" loaded area the pressure decreases more or less rapidly to zero,
instead of vanishing abruptly.” If, in the actual problem, there
were no singularity, this consideration might lead to legitimate
- results. ‘ ‘

§31. In this example, it is not easy to calculate the
maximum of the greatest principal stress or that of the difference
between the greatest and the least principal stresses, even when
the material is incompressible, consequently we shall abandon the .
general discussion concerning the conditions of ruptufe. But if
we confine our attention only to the condition which determines
how much load the body can sustain without breaking at the
surface, the problem becomes tractable.

The equation (89) gives

— — - 18
(7)y = (60), = "ET## s
~ 1
(22) = ——

Ta

for » <@, in which the elastic constants 2 and # are replaced by
Young’s modulus E and rigidity #. Since 3#> E in ordinary
materials the component (zz), is the greatest. The difference
between the greatest and the least principal stresses at the surface
is

1) BoussiNesq p- 148. l.c.

. ) 4
2) For example, we might take f(r) = TN

or a similar relation. But the analysis

might be very complicated.
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. The values of (%), and D, might give the condition of rupture of
the surface. : ‘

§32. Now we shall apply this solution to the geophysical
phenomena mentioned in -the introduction. Dr. C. Currr?
followed by Prof. Nacaoka® finds a formula, by using the solution
obtained by Boussivesq, to calculate the deviation of the direction
of gravity due to the attraction of a material loading on the
surface of the earth. The same result will.be attained of course
from our solution. The e\pressmn of the vertical displacement
at a point on the surface

)-{-2‘11 ,
(’Uz)o-‘ R / Jo(lw)dk / (") (Fer) 1 "

where p(r ) is the ple»me 1)10duced by the matellal load, can be
t1an%f01mod into

(AN _—1 . A2 /)_/ - 2)(7 7'dr'do

2 2 /1.(/ + /1)

by making use of Neumasn's addition theorem for the BrsseL
function, where R’ stands for

=/ 1" =29 cos ¢+ ")
. ¢ )

On the other hand, if we denote the attraction iconstant by 7, and
gravity, prior to the application of the load, by g, then the
gravitation- potentlal at a point on the surface due to tho load can

be expsessed by
V_._/ / p() ?'dr'de, ’

‘provided the height of the material load is negligibly small
compared with the distance of the point under consideration.from

1) Phil. Mag. {V) vol. 43 (1897) p. 177.
2) Tokyo, Sug. But. Kizi (VI) (1912) p. 208.
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any point in the loaded area. Comparing the above two ex-
pressions we have ~ :

V= 2y . ) ((7AN
g A4 2p T

Thus the direction of gravity becomes, in consequence of the
attraction of the load, inclined to the vertical at the angle ¢ which
will be determined by ' -

2y 2/1(7‘ +p) [ du 4 :
tan¢ = . z 91
].:1 ¢ g;' ‘ P + 2/‘ ( ¥ >0 R . ( )

while its tilting effect is expressed by

“tang = <&> ' (92)
/o : :
§33. In the present example, in which a'uniform material
loading is confined in the circle of radius @, we have, from the
formula (58),

d, \ _ M 242 [: ® T (T (% ] '
< I }0— T 2u(A4 p) .[e Ji(ler)d (ke)dk z=0.

Referring to the formulse (61), (62) and (64), we obtain

T 242 J1 S
§ = — . - ol —— -7 : 93
ane Cwat 2u(A+ p)w a,a< g “ 71>z=0. (98)
tand = —_”__) if_ . a,a?<——l—elwl—771) - (94)
et g 2 a0, ,

The function 4ew,—7; has been discussed already and.the
expression which is suitable for the calculation of its value at a
point not near to the edge of the circle has been éstablished in-
terms of ¢. Using the g-series in §24 we shall have

act( ——;—elwl—%> =9 \/_7“_ (3¢ — 4 —9g° +22g7+ ......). (95)

Tt is-equally interesting and important to find the value of ¢
at the point near the edge of the loaded area. This will be
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accomplished by uamg the quantity ¢, instead of ¢, which is
defined by

—_ T Ty — Dom— —
g =" P i

Now, by the aid of the relation

_"_91”(0) _ S 27;,’ 3
o) 8, T, TS,

)

o

the expression of e,w,—7, found in §24 may be transformed into

in E(%el““_”‘) = 02"’(10/1‘) { 39:,22;3 * f?gg;;g } '

Making use of the transformation formule of. Theta-functions it
will be easily shown that '

) _ i 4 10 90l
o) T gy
Kofr) _ g 8(ofr)
o) T R

2922(0/ T) = —7:71"902(0/ 7,),

conseéquently we have

(e )* : / 9ol (o/m T -

g, [ SOy M) T (96)

dyoft;) &y(of)

s
The ¢,-series for the functions needed here are asfollows:

¢ = —2°gN 1 + 82+ 5%, + TP+ ... ),
F= 3¢(l+g¢ +q¢ +¢"+......),

Jy = —8n%(q, + 2%, + 3%, + ... ),

&= 142¢,4+2¢ +2¢°+......,

do= 1—2¢,42¢*—2¢°+...... .

The quantity ¢, will be found from
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P
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A

e " N
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Fig. .

g =-bro( B Ya1s(L Y 150(-L) 00,
-k _ Jrra)—/@ar)

l, = —
 lVE VetV @Varn)

. Thus. the deviation of the direction of gravity at any point can
be caleulated with any accuracy.

In the next diagram the approximate course of ad’(3e,0,—7)
is exhibited as a function of the distance of the point of observation
from the centre of the loaded circle, the radius of which is taken as
unity. S
§34. If we liken the North Atlantic to a circular basin of a
large radius and determine the relative position of Potsdam or
Chicago referring to the centre of it, the attraction effect of the
periodic filling and emptying of tide, which might assist in
producing the extra east-west force in observations of the lunar.
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"disturbance of gravity, may be computed by our formula. If we
suppose the place of the observation not to-be very near to the
circular basin, the effect, as we see from the above diagram, is of
course small, but it increases repidly as the edge is approached.

FFor the water-level measurement, the effect of a material
loading will appear in the form ¢+¢, instead of ¢ only, where ¢ is
due to the attraction exerted by the material loading and ¢ to the
deformation caused by its weight.

For example, suppose the radius of the N01 th Atlantic basm
to be 2000 km, the position of Chicago to be 3000 km from the
centre, and the level of the watel in this area to be raised one

metre, then

Lo=15, 0 g = 000255

i (E;L—q ) — 08639,

Further assume that the density of sea water is unity and in c.g.s
7 =0665x1078, g = 980,

: _Zﬂfl_zi, /1#6)(]_0”,
22+ p) 4 .

then we shall have
¢ = 1-17 x 1078 = 0"-0024,
A(,o = 337Tx10"% = 0”'0069?
according]f the total effect amounts to
9’14;59 = 4-54x10-% = 0"7-009.

It will be noticed that the effect-of tilting is about three times

s great as that of the attraction; so far as the material constants
are assumed as above.  According to Lord Kgerviy,” who
initiated these investigations, the direct lunar effect on the
deviation of a plumbline is a maximum when the moon is at the

1) Natural Philosophy, Part IT. p. 333.



Elastic Equilibrium of Semi-Infinite Solid. | 45

altitude 45° and amounts to 0.7017 nearly. THe total effect of a
tide of amplitude one metre (which is possibly two or three times
the actual amount) found here is not small enough to be neglected
compared with the direct effect of the moon. As the tilting effect
and the attraction effect of the tide wave are directly proportional
to the height of the tide, the total effect oscillates in time in
accordance with, the law which the tide obeys. There is, in
general, a dlffelence in phase between the lunar effect and tidal
effect, which is worthy of closer investigation. But we must bear
in mind that the calculation adopted here is nothing but a rough
estimation of order of magnitude, since the north Atlantic is far
from circular, the tidal loading in it is never uniform. Neverthe-
less the above analysis shows that the tidal effect on the water-
level measurement, even at a point as far from the coast as
Chicago, plays an important role and cannot be regarded as a
small correction. '

: Example IV.

§35. Let us take another c\ample by assuming the normal
pressure of the form

Jr)=— 31 N/af"—v-"’ for r < a
. %na’

(97)

;0 w T>Q

~- to be given at z=0, /I being its total amount. Tn this case the
function Z(k) becomes : -

Z(k) = 3”
2/ { sin ka —kacoska } : (98)
2rza . . '

k:!a‘.'

Therefore the components ofdisplacement are given by
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__ 31z "”_,a{ sinka—ka,coska} \
®, = pr— o/ e e J (kr)dk
311 '“_k{ sin ka —ka cos ka }
——2 2 dk,
p e T Ji(kr)dk
° »(99)
", = 311z /’:_kz{ sinka — kacoska } T\ k) dk
drap ka® '
31](1+2p) { sin ka—kacoska }J rdk
4TW+#) / Ka’ offr)ak

The integrals contained in the above can be obtained by
-expanding the trigonometric functions into power series of k. and
making use of the formule (42). In this way we have

Y/ p o n(2n—2)! a A\
;= 1 n-1 P”_ B
“ Onap /P +7 ,,2‘( ( n+1)! < ¢73+z2> 1 ()
. 3u i\ el n(2n—3)! ( a )m-%l,,_._,(y)’n
2n(A+ p) ¢7 & @Cn+1)! N\ /22 ’
311 (2n—1)! -1 | (100)
— ol Y-t w(2n—1)! a "-"P_ )
e omapy \/'r‘+z 2‘( (2n+1)! ( \/7""+zz) in-i(¥)
311(1+2,u) -1 n(2n—2)! @ =2
+ " P, (v
Qup(A+p) P +z2 Z (2n+1)! ( VLt } ¢ )
where
Y = ——?— ,V
Worw

- These series converge for 4/7+z'>a, and are apphcable in thls :
region. :

At the boundary, we have to put z=0 and »=0. Since

PO-I(O) =1, P‘%n-?(o) =0,

n-1 13...... (277,—3)
P“n-? (0) = ( 1 9. 4(2”/—2)

1) Fof the first term (n=1) of the second series we have to take —31‘;— Po—l (y)
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we have

[

0

"00-
o

sinka—kacoska
- kRaﬂ

k“! a’R

=_1_{( L
2a 2. @
for ¢ < ». Consequently
=
(wnh = %’f%%zi“{( -
for a < 7.

Jl(k/l')dk = 3—7‘"

sinka—kacoskg 1 1 1 1 5 @
L J(kr)dk = —F
)l = - 7 )

1

2 )

2729 )

e i8]

47

' (101) -

§36.  To find the expressions for the displacement within the
loaded circle, we proceed as follows: -

Making use of the power series of the Bessel function,. we

have

sin ka — kacoska

Qe
- 2

n=0

0,
/e-kz{
A A

sin ka— ka cos ka

(~1)"
n! (n+

=

kf% a3
0

1 s (= (

a & (n!)?

whoere £ stands for

2.(z) = / :—).a;{

-0

By the aid of the formulse

°

}J}(kr)dk

() el 2,

}Jg(kw)dk

D!

27;1 ) mg?"(% ) o)

sinA—AcosZ

}zmdz.
)\3

(103)
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/"3 e SINA sind g, o b 1

.’9
i/e'*”co-s).d/l =__%
- 142

0 .

the evaluation of the function £, (2) can be under taken A little
calculation will give us

. L) = %—%{m+t&n“w—x‘*’tan“%},
2(z)= 1- ztan™! — 1
z
Oz) = t;a.ll"—m— _* s
(=) ' 1422
5 :
7) =
3( ) (l+x))_
and in general, : o .
.d,,z(.'z;) = ( 1)7” 1 a7 { 2 } , M= 2.
d UL +a®) )

Thus the integrals on the left hand side of (103) can be expanded
in accending power series of r/a which -probably converge for
limited values of = if the value of z is fixed. These series and
‘those found in (100) have a common region in which they are
both convergent and therefore they must be congruent to each
other in that region. On the proof of this proposition we shall
not enter; but we shall find the region of convergency of these
latter series at the boundly _Let us take the first series of (103).
Expand the function £.,,,(=2-) for » = 1 into a power series of z/a,
supposing z/a to be sufficiently small, then the first term of 1t will
be (—1§§;z(27z—2) . Thus if we put =0 in the first series of (103),
its general term will then be -

| . 271 ('272,—"2)‘ /-L>'2tn+1
n! (n41)! 27\ g '
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The series which has this expression as its general term converges

obviously for the value of » smaller than a. Similarly for the
second series. '

Since, for z=0,

2i(0) = —Z— ; 20y =1,
9y(0) = % , 240) = 2,
Q,,(0) = 0

" pn(0) = (=) 20(20—2) !, n>1,
we have, after surnmation,

0

? sinka—kacoska - _ 1 P2 \32
-/ " gk = o {1—-(1-2 )",

a/‘l

ik Facosk - - (104)
SN AA— KACOS Ka w r
Ty(kr)dls = *{1—_.~},
[ . ke n)dk = 4\ "5
for r 2 a.

Consequently we have

1] 1. { 72 3”} 3
=—— 2 Lh (1-Z)"
(’“r 0 . 47[(2_'_#) 7 . < a2 .

‘ ‘ | 105
o= ) 16 1 ) (109
SRS Y7 PR R R &
0 Z 2 3 ¢ £

v

. Fig. 7.



50 Art. 7.—K. Tera,za,wa,;

for r<a. In the annexed diagram the approximate course of the
vertical displacement is shown in proper scale.

§37. By a similar process the distribution of stress can be
found. Here we shall calculate the stress at the boundary. It
may be shown that

/°° sin ka— kacoska Jo(kr)dk = 0 for » = a,

k? 2
0 . (106)

1 2
= [1-"_ forr»=a,
a a’

and, therefore, as the expressions for the stress-components at the
surface we have -

. 1

(TT)O = 271'(2-'—#) . _‘,"2 )

2 Vi 1

00), = ——H (107)
(66 2n(2+ p or

(#2)y =0, (7)o = O

for r = a, and

=g\~ ) D- el
=~ ziy =5+ g (=)} (108)
o B2

(‘5;'/\0:0,

for r £ a.

The result of this' example may be looked upon as a special
case of what has becn discussed by H. Herrz in his papers’
concerning the contact of two elastic bodies. He assumed the area
on which pressure acts to be an ellipse instead of a circle. If we
put b=q in his results, we get exactly the same formuls for the
pressure and for the vertical displacement. And therefore this

1) Gesammelte Werke, I, p. 154—and p. 175.
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example may be applied to the discussion of contact of an elastic
body upon another with plane-surface. :

§38.  Another application will be considered here. Suppose
we have a" material loading of a semi-spheroidal form whose
equation is '

b2 + =1, (<0

and of hniform density p. This load may be likened to the tidal
mequahty in the North Atlantic ocean which affects the gravity

measurement. In this case 77 will be replaced by M As

before, "the deviation of the direction of gravity ploduced by the
attraction of this load is given by

31{) ' 27:)/ sin ka—kacoska J(kr)dk,
2ra’  g* ) ka

tan¢ =-—
and the level-change due to the deformation of the ground arisen
from the load by

tang = — 31]0 _ A+2u *® sinka—kacoska J (kr)dk.
© 2@’ 2p(Atp) ko

The evaluation of this integral can be undertaken in a manner
similar to those of (99) and will appear to be

/‘“’ sinka—kacoska T (kr)dk
ka .

. 1 2 .
e ] IV L S

3.
IN

Thus we have

_ 311 T -1 8 9.4 .
tang = — Pt 92 " {sm i Jl___}, (112) '
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: 311 ().+2/1) r { . oda a ai}
ta = — . S —_ “ ¢ _
e 2 dpat @ U 7 AT » ()

for the point 7 > a.

s

In the next diagram, the general march of the function

xsin'l—:?— J 1—% is exhibited, where z is the ratio of the distance

of the point under consideration from the centre of the loaded
circle to its radius. The course of the curve is very similar to that
of Fig. 6, except at the point very near to the edge of the loaded
area, where, in this case, it remains finite.

7 « ' 2 ' Jd
Fig. 8. |

For example, with the same assumption regarding the
material constants of the earth as in the former example, and

‘supposing that the total amount of the load is the same as before,

i.e. the mean height of the tide is one metre, and a=2x10% r=
x 10® em, we have ’
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¢ = 112x 10-* = 0-0023,
¢ = 321 % 108 = 070066,
and
J+¢ = 433x1078 = 07009 _

nearly the same as the results in the former example.
~ If we suppose the place of the observation to be very near to
the edge of the loaded area, then '

¢ = 50x10"%= (01,

¢ = 144x10"° = 0703,

and ,
J+¢ = 0"04

greater than the maximum of the direct effect of the moon.

Example V.

§39. Lastly, we shall take another example in-which the
normal pressure of the form

11 1

o2na A/ —17

Jr) = —

(112)

is applied to the boundary within a circle of radius a, which is
otherwise left free from traction. This problem has been discussed
also by Boussinesq and others, and the expression for the vertical
displacement at the boundary has been found. In this case the

function Z(k) becomes
0 Tkaada n . .
Z(k) =.— k L = — ) 113
( )/ 2ma -o/ JaE—a 2ra smkq (113)

Consequently we have

fz [ Grsinkad (kr)ak
g ’ (114)
® d

" Admap -

H ~-kz o1 k
dmai+ ) [ sinkad (hr) E
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u, = 11z / ea'“sinkaJo(kr)dk \ (114)
dnap J

HG42) [ dk

— sin kaJy kv .

Txait i) e~*?sin kaJ, kr) %

The integration-can be carried out by expanding sinke into a
power series and ‘making use of the formulze (42). Thus we

obtain

— 11 (—1)" a "n+})
Uy = drap \/7- +z ”Z:o 41 ( N E ) 3nra(v)

/) «_ (=L ¢ a )mﬂp}"‘(y)’l)
dza(l+p) £ 2@nt )\ ket

> (115) -

_ ” n+1
= e TR S () Poun?)

. © 1\ “n+t
NS DI SN VI
dna 2+ pip S+ 1 0\ P+

where

v=— 2
\/,,.8_*_22
These series apply for the region /2+2* > a.

As in the last example, the expressions which may be applied
for small values of » and z can be found by using the power
series of the Bessel function and the formula

/'k"e‘“sin ka . dk = __ﬁl__;_ sin [ (n+1)tan-1-%
-0 ( +a2)— z p

Thus

P-1(y).

- a
1) For n=o0 we have to take Brv]
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— H ¥4 (—- \271,-]-])‘ e 2041 9 o
“ 477@# «/z +a’ ! (n+1)! 2”*‘(vz?+a"> sin(2n+2)¢
N (— 1) (2n) ! ( r 2utl 011
4‘2‘@(1-}-#) 2‘ n! (n+1)' 2"-+1 \/Z2+a12‘) Sln( n—+ )¢,
‘ ,(116)
— 1 (— 1)"(2"7/)' r )?_" . Do
U, —lza,# »\/Z +a nZ=0 (’)’b |)222n ( '\/22 +.a2 sSin (2"7/"‘ )¢
HA+2p) < (—=1)"2n—D)! ” %;. .
n2n¢g,V

47a )+p)#z (n))22™ ( \/Zz_l_ag) n2ng )

where |
¢ = tan-1-%
Z
$40. At the surface (z=0) they reduce simply to”
- _ 1 a,——\/a—{’_—T’z
D)y = A2 ‘
2/} 8()‘ +‘u\#a

fdr r<a; and

| : '_ 1

(’Lbr)o = W . —,,—_ s . | (]18)
)= HO+2)  pr @
Az 2+ p)pa 7

for r = a.

As seen from the formula (117) the vertlcal displacement is
constant over the loaded area, and therefore this solution 1is
applicable when an absolutely rigid body of circular base is pressed
normally against an infinite elastic body; the problem has been
attacked by various writers from this point of view.

§41. Similarly the expressions for the stresses at the surface
will be found to be

1) For n=o0 we have to take ¢ instead of zero.
2) If we wish to know the expressions for displacement only at the surface, these can
be obtained with less calculation. See Lams lc.
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= Lt e ) )
2ra \ \/a’—r* At p P ’
= m 1 ST
80). = — { 2 a \/a, r}
(66, 2naisn) i +L . amva 4 (119)
@p=——L . L,

2ta @’ —r

for » < a; and

~ 1y 1 )
(rr)y = ity
@0, = —— e 1 3 (120)
rd+p) 9
(22)y = 0,

for r > a.

The stress at the periphery of the loaded area is infinitly
great, so that the elastic body would be ruptured at the edge. The
present problem may, therefore, throw considerable light upon the
explanation of the phénomena of punching.

§42. The expressions for the stress-components in the
interior of the body which, so far as I am aware, have not been
treated by any one can be found without using any special
functions. We shall take here a simple case, for example, in
which the material is incompressible.

Since the integral

co_o\ _
| 0/ TN = —

is valid for all values of ¢ and. €, real or complex, provided the
real part of ¢ is not smaller than the absolute value of the
imaginary part of £ putting ¢=2—ia, §=7 in this integral and
equating the imaginary parts in both members we have

/ ‘:' sinka. J, kr,dk = \/S':(z:’j—"f:a_) (121}
A /28?
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where S? stands for

Sﬂ — »\/k22+7'?_a/2 2+4a222
For z=o0, this formula is still applicable, if we take

S? = ¢r’—a’ for r > a, }

=a*—r* forr<a.
" Similarly, putting Q
we have ‘ '

als?—r +a2)Q+z(z +7? +a2)P

/ e Fsinka . Jy(kr)kdk =

o V2. 8¢
.O/e-k,zsin ka . J(kr)dk = ﬁz o

/'g”“’sinka, J(kn)kdk = 'r{(z +r _a")P+2WQ}
o’ N

Thus, for the case of incompressibihty, we have

"= — [ {£+ aQ——zP) Aa’s—r +02)Q+Z(z +7°+a’)P]
2/ 2na | 82 P8 T ge

60 = nn { _ #(a@Q—2zP) }
2«/2m rS?

= + Aa@=r+a)Q+2( +r'+a)P] !,
2\/2770, g6

7=z 7"Z“+7'?—»a‘3)13+2a.z62~}
24/ 2ma U S° o

for the stress components.

V. Boussinesq's Problem.

57

(122)

(123)

" (124)

(125)

(126)

b

> (127)

§43. The problem of Lamt and CLAPEYRON is a special case
of those known as Boussinesq’s, which can be stated as follows:
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A limited portion of the surface of a-large mass of elastic
material is subjected to local stress or to local deformation, it is
required to find the strain and stress in the body due to these local
_disturbances.

"In the case of symmetry about an axis perpendicular to the
surface of the body, this problem may be discussed, in a general
way, by applying our method of analysis. We shall sketch the
results here as an addendum. :

The typical solution of the equilibrium, in this special case, is

i, = —{ﬁ/Loz — B}J,(k-r)e"",
2p

wg = — Ad,(kr)e™*, ’ ‘ (128)

u, = —~{‘;‘;#Cz —D}Jo(k’r)e"‘z ;

/l

and

zz = {{(A+ p)kCz— pC—2ukDYJ (kr)e*,

20 = pkAJ,(kr)e ¥,

4 : (129)
7 =/{a+ wCe——EE o ,uk(B+D)}J1(kr)e"",
- ete. ; .

with the relation ’

KB—D) ='13¢ ¢
2p

in which the components w, and 2§ follow from the supposition

that 4 is nil.  Since these do not give very interesting results, we

shall not consider them here. , '
§44. Case in which all the surface tractions are given.
We suppose first of all that o

% = A0, } (130)

7 = RJ,(kr)
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.are given at z=o0, then we shall have the following values for the
arbitrary constants:

i+2% g 1

- Z
2p(2+mk | 24+ p)k
_ _ 2+ 2 Z4 1
2plh+ )k 24+pk
1~ .
C=— Z—R):
s (Z—R)

Puatting these in (128) and (129) we have the solution corre-
sponding to the boundary conditions (130). A
If the traction over the surface is given in the form

@ = p() } (131) -
zr = (r), ’
p and t being any preseribed functions of 7, theé corres'ponding
solution can be obtained by making use of the integral theorem
~(26), on the supposition that the functions p(») and z(r) do not
violate that theorem. - '

Thus
i 4 A4+ 2p \
w = — [ {200 —RO 1+ 2 R
{ 2p 2p(2+ p)k
1
Lz Verrkrar,
A }6 (4
| . \ (12)
= ({22 —RE)+—2F2 Z)
.u, ‘-O/ {2;1[ ! ( ]+ 9‘{1(2-!-/1)70 (%
1 . '
— e RO T ol
20+ mk (k) ge~*J o Fr )
and . ' ]
5= /a{okz’[Z(k)——R\k)]+Z(k)}e"“J0(kr)dk,
0 .
7 = [ k1208 — R(0)]+ R(W) o7 (o), (188)

etc. ;
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where the functions Z and R are determined by

20 =1 (T (ka)ada,
e (134)
R(k) = k [ w(a)J (ka)ada.

If we put (r)=0 in this solution, we get as a matter of course

the solution (30) and (31).
§45. Case in which the normal traction and radial displace-

ment at the surface are given.

It
u, = u(r),
|
zz = p(r)
are‘giVen at z=0, the corresponding solution is:
—_ ? 7()-}'#\ k Quk Tl B .}—7::
/ {Qp)—l—ﬂ ) [Z(k)+2ukU(k)] — Uk) te™"J,(kr)dk,
= — [0 g0y reumum)] ¢ 3 7k, (136)
U, / {2#<)+2#) [Z(k)+2pkU (k)] +2/1(2+2/4)A: k)
LU k } -1z e .
+ A+ (k e (kr)dk ; )
and
m= [ {20tmk 9 } .
“ / { T+2p [Z(k” “kU(R))+2 Jo(kf')dk
P f 2(A+ wk |
= S [ Z(k) + 2k U(R)] —- 7
/ { 242 [Z(k) ukU(k)]- +2# | \ (57

2p(2+pmk P
+)—+2———~U(k)} T, (),

etc. ;

in which U and 7 are given by
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vk =%/ ()T (ka)od,
. - 0 ‘

- (138)
Z(z) = k/ pla)J(ka)ada.

46. Case in which the tangential traction and normal
displacement at the surface are given.

If
e } (139)
=w(r) |} _
are given at z=o, then we obtain
/'+3/i_ R
2u(2+2u)k R(k)}e i)k, o
S A G 0 .
1‘1, = / { 2414 25) [R(k)+9,ukW(k)]
+ IV(k)}el.,.zJ()(k,'.)dk ;
a.n.d
5= _ [ [tk o et Pk
Z / { i+2u [R(k)2uk W (k)]+_+_2/‘_W(k)
- ).-fz R(k)}e_u"o(kr)dk,
( ‘(141)

7= —/{ » J()’j—g/;k [R(E) + 20 W(R))

R (k) }e"‘J,(kr)dk,

etc. ;

where
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R =k [ (@) (ka)ada, ‘
e (142)
W(k) =k / w(a)J (ka)ada.

’

§47. Case in which both the displacement components at
the boundary are given.

If
u, = u(r), } (143)
u, = w(r)
are given at z=o, we have
"y = / { Z(f:?f‘)’“ [W (k) —Uik)] + U(k)}e--erl(kr)dk,
| (144)
wy = / {W[W(k)— U]+ W(k)}e"zJo(kr)dk ;
and '
z= [ szj(j;;*‘)’f (V- W)~ e
22k )
WW(k)}e & (Fer) dle,
7= [ - wen- 2w (149
T?’#—U(k)}e J,(ln)dk,
etc. ; /
in which
U®) = & [u(a)d (ka)ada,
E (146)

W) =k [ w(@)J(ka)ada,

Cambridge, April 25, 1916.
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