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Introduction.

" The theory of dilute solutious, with which the name of
vax THorr is most prominently associated, has been one of the
chief agencies in the rapid development of physical chemistry in
the last two decades. But its applicability is by its very nature
limited, and for further progress a more gemeral theory, such as
~ will enable us to treat quantitatively problems of solutions of
any composition, must be worked out.- This want has been
generally felt, and attempts to meet it have been made by
various physicists and chemists.

| Among these the elaborate molecular theory of binary mixt- .
ures by vAN DER WAALs stands preéminent, and has led to
many investigations theoretical as well as experimental. But
his theory is bound up with' the equation that bears his name,
and requires complicated mathematical apparatus in solving even
apparently simple problems. - For systems in which chemical
reactions take place, or in which the number of components
exceeds‘ two, the difficulties become so gfeat that no noteworthy
progress has as yet been achieved in these directions.

A simpler method of procedure might perhaps lead to the
goal more quickly. Tt has been demonstrated by the investigations
of ‘Damms, HARTMANN, LECHATELIER, LINEBARGER, SCHROEDER,
vaN Laar, Youne, Zawipzkl, and others, that there are some
" solutions in” which the quantitative relations of the heterogeneous
equilibi'ia are remarkably simple. These approximate pretty
closely to what has been called the « ideal solusion.” But the
majority of the solutions hitherto studied show more or less
marked deviations from these simple relations. Are we to con-
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sider these- simple cases as accidental and try to establish. a’
theory which would embrace the manifoldness of the phenomena
in one ‘gener.al consideration ? - Or are we to look at -these
simplest relations as normal and try  to account for the devia--
‘tions by -introducing appropriate hypotheses? The teaching of
the .history of chemistry leaves us no doubt on this point. The
anomalous - behaviour ‘ of vapours, which appeared at first to en-
danger the universal validity of the gas laws, led to the establish-
ment of the chemical hypothesis of association and dissociation,:
a hyf;othesis which has proved so fruitful ‘and assisted in no
small degree in the development of rational views on chemical
affinity. Again the anomalies of the salt solutions “with respect
to -the theory of the dilute ‘solution have found their natural
explanation in the chemical hypothesis of electrolytic’ dissociation,
under whose banner physical chemistry has achieved so many-
conquests. "What then could be . more natural than to assume
the simple and regular behaviour of. certain solutions as normal
and to consider the deviations from such as ‘due ‘to . reversible
chemical reactions taking place in the solution ? ~ And as the
manifoldness of chemical ‘redctions is inexhaustible, the .resources
of this hypothesis must be so too. It is indeed not difficalt to
~imagine that most of the .complex relations actually “observed:
could be accounted for in this way. The theory of solution
based on such a hypothesis may. be called chemical in contrast'
~ to such ‘a physical theory as that -of vAN DER WAAIS.

“In working out the consequences of particular hypothesis
. there i3 always danger of becoming one-sided and losing sight
of other possibilities. Yet-for the first attempts it would be
better not to be too circamspect, lest ‘one should be lost in the
maze-of the variety of. things which must be taken into considers-
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tion at the same time. Had the propounder of the theory of
electrolytic dissociation sought for all the various factors which
might have some bearing upon the ‘deviations from the simple
laws of the dilute solution- and attempted to interweave these
into his fundamental conceptions, he would certainly have pro-
duced a more general theory, but it is very doubtful whether
he could have achieved so much for the real progress of the
science. The present studies have been prosecuted in' the same.
- spirit, directness and sinﬁplicity of treatment having been striven
for rather than generality and rigour. The deviations from the
ideal behaviour are considered to be caused by chemical changes
alone. In this way it is hoped that the general behaviour of
solutions may be made comprehenéible, and more particularly
that the quantitative relations of heterogeneous equilibria "'may
be elucidated. Conversely it may also be expected that the state
of chemical equilibrium in concentrated solutions will be deduced
from the study of heterogeneous equilibria. This application,
~when it can really be made, will prove to be of considerable.
importance to various. branches of chemistry.

It may, however, be urged that in the liquid state the in-
dividual properties of the components and the influences of their .
mutual  actions, which are also of a specific nature, are .pre-
dominant, and that the .deviations from the ideal behaviour
caused by these factors may be much more considerable than is
the case with rarefied gases or dilute .solutioné,,' so that quite
anomalous relations may ‘obtain without any chemical change
taking i)iace. This objection is of course irrefutable. But in a
great many cases where chemical reactions are avowedly exéluded,A
close approximation to the ideal - behaviour has been - observed.
We have therefore some reason’ to suppose that the deviations
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caused by the physical. factors are in general not so great that
the deviations called forth by considerable chemical ‘changes be-
- come entirely indistinguishable. At any rate we may deduce
various types of homogeneous and heterogeneous ‘equilibria by
assuming various chemical reactions in the solution, and compare
‘them with observed éase_s._ Exact numerical agreement is of
course not to be looked for, but more or less close approximation
should be found in many cases, especially when the components
are not of a too divergent nature. ‘

When the chemical theory has been worked out to a certain
extent ‘and established on the sure,foundation of observation, it
will be time to take the physical factors into consldelatlon and
construct a more complete theory of soluuon

| CHAPTER 1.

TrE IpEAL SOLUTION.

§'1. The General Nature of »the Ideal Solution.

The behaviour of the ideal solution in various relations must

" be investigated in the first place because it forms the foundation

of the present study. "By the ideal solution is meant a homo-

.geneous liquid mixture in which the following two condltlons
are fulfilled : o o

1. The volume of the solution is the sum of the volumes’

of -the components (in the hqmd state) under the same

pressure and at the same temperature.
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2. The energy.of the ‘solution is the sum of the energies
of the components (in the liquid state) under the: same
‘pressure and at the same temperature.

These conditions may be expressed by the following equations :

V= 4 gyt eeeeeenes s eerneerereenernens (1)
E = e 4 ngepteeeeern, tiiiiiiniieiniinenn. @)

where V' and E are thé volume and energy of the solution, #,,

Tgyeeeerores are the number of mols (gramme-molecules), vy, vy,eeeee....
the so-called molecular volumes, and ¢, eyeeererees energies per mol
of the components &, &y,eevvenee, These conditions must hold

at all temperatures and pressures.

The first condition is what is called by vaw DER WAALS
- the law of Amacar. While the law of DarroN is a so-called
“ QGrenzgesetz ”’ to which the gas mixtures approximate the more
closely the greater the rarefaction, the law of Amacar has a
‘wide range of application, gases under high pressures being known
to obey 1t in some cases. It is qﬁite probable that it would
hold, at least approximately, for most gaseous mixtures in which
chemical reaction is excluded, because even liquids form solutions
with extremely - ‘small change of volume when -they are unas-
sociated.

The second condition is also fulfilled at least approximately
by these liquid mixtures, because the heat disturbances observed
‘on mixing are mostly quite small, being in some cases apparently
nil. “ Hence it is also highly probable that gases under pressures,
high or low, should fulfill the condition more or less closely.‘
= 'When these conditions are satisfied, the chemical potentials
‘of the components have a very simple form. just as in a mlxture
of ideal gases:
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pi =2+ RT W C,
po =20+t BTCyt wivvinennannns (3

R R R R N

where Hs /12,...;-....'. are the fheleeul_ar. _che_mi_eal; pb’.ceﬁtials,r 2y, %,
......... the molecular thermodyna'inic potentials in’ the iéolated
state, and Ci, G,eeervneee the molar fra,ctmns (the thermodynamic -
or numerical concentratlons) of the components G, Syyeeneeenens

- 7 The relation expressed by " (3) can be readily deduced ‘from (1)
and (2). From the latter we see that the work. gained by mixing
must be proportional to absolute temperature, and from (1).that it is

" independent of pressure. When the temperature is ‘sufficiently raised
‘and the. pressure sufficiently lowered the mixture as well as the com-
ponents is in a state approaching that of ideal gases and ‘the work
obtainable by reversible mixing of the components-is equal to

—anTan—w2 BT ln Cy—eeecenenn s

which is proportlonal to the absolute temperatuxe ‘The work obtain-
E “able by the .formation of the solution can’ therefore be represented by :
the same expression.  Z, the thermodynamic potential (or the. available
energy at constant temperature and pressure) of the solution must be
equal to the sum of the available energies of the components minus

the work obtainable during the formation of the solution. Hénce

Z =m0t oot 0 RT I Cy+1g BT I Oyt vveeee R
which on differentiation with respect to my, mg,sresreees giyes: o
BZ , '
M= o —— =+ RTInC,
_ 8z T |
o= g —z2+R1’lnC_ '

----- @stereanstsessrssnsinconere

\

In the foregoing deductions it is not .necessary to make any assump-

.tion as to the molecular weights of the components in the liquid state.



3 .. .ABT. 10.—K. IKEDA : STUDIES. ON THE" .

It is enough to use those in the gaseous state. But the molecular
weight. of a.gaseous substance is determined theoretically by the amount
of work obtainable by its diffusion or expansion. As substances ‘can -
be made to pass continuously from the gaseous to the liquid state,
“and as the work obtainable by the int_erdi_ﬁ'usioﬁ of the _yéqmponents
is identical in both, the molecular weights of the compdn_eﬁts in the
liquid -state must be considered to remain ‘the same as in the gaseous
" state. In fact all the components which mix with one another with
very small changes of volume and énergy are without exception unas-
sociated. liquids. : '
" From the amount of work obtainable by reversible mixing we can
’ readi‘ly calculate the strength- of -the osmotic pressureexerted on a
:ser'niperrneable septum if we assume the liquids to be incompressible.
- When the mixing is accomplished by means of an osmotic apparatus
having as many . semipermeablé pistons as there. are components, then

the work must be

TVt NeTTyVg b veever = — 0y RTn Ci—ny BT In Cy— -+ -+

where 7, Tyyeerereees < are the osmotic pressures exerted by the solution

on the pistons allowing the passage of &, Sy,---+++ respectively. As

Ty, Ngyreereees can be varied independently of one another, it follows
T, = —RTWn 01. 
—RTa C,

or T =
(5

which of course gives vaN 1’Horr’s relation for the cases in which C;

approaches un'i'ty.' ' - .

The physical properties of the ideal solutions are mostly of
an additive nature. That the heat capacity and the compressi-
bility must belong to this category follows from conditions (1)
and (2). Refraction of light calculated according to the formula -
of GrapstoNE and DALE or that 'of LoreENz and LORENTZ agrees
.in some cases almost exactly with the supposition.. Other optical
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L

properties such as the absorption of light or the rotation of the -
plane of polarisation are probably also additive. The: molecular
surface tension of such solutions has been shown ,to be of the .
samhe nature by Ramsay and AstoN (Zeits. physik. Chem., '15,_.? ,
89; 1894). No doubt with the ext,en‘s'i(v)ﬂ of exact measurements

of various properties such examples would be greatly increased. -

S 2 The Equlhbrlum between Gaseous and
' Liquid Phases

(@) Vapour Pressure at a C’onstant Tempemture

Inﬂie/felilowaing the gas phases are assumed to be so - rare-
fied. that the gas laws are applicable without restriction. In
such case the relations obtaining are remarkably simple..

The chemical potential of the components in the liquid
phase may, under the circumstances, be ‘considered as constant
at a constant temperature and indépe‘ndent‘ of pressure ‘The
" chemical potential of the components in the gas phase varies of
comse with pressure. TFor the component @1 it is - o

! = '+ RT P+RTZn Oy ovevveniioeneen(8)
where z, is the molecular thermodynamlc potentlal of the isolated
component in the gaseous state at the temperature T and under
the unit pressure, while (/' is the molar fraction of the com-
ponent in the gas phase. _
| If the isolated component &, has the vapour pressule P1 at
the temperatme T then we have

) 2, _zl’+PTlnP _ :
When' the solution is in equilibrium with its-vapour

—_ gy ! . LT ..
M= M '
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hence v
2+ BT in P+ RT InC; = 2/ +RTin P+ RTIn C/

or (JIP1 = (O/P = Provvrrreerinnens STST (5)

in which p, denotes the partial pressure of &, in"the gas phase.
A similar consideration applies to other components. This im-
portant relation can be expressed in the following words:’

At a given temperature the partial pressure of a com-
ponent in the gas phase is equal to the V-apo-ilr tension of
the component in the pure state multiplied by the molar
'fraétion of the component in the liquid phase.-

The total pressure P is of course equal to the sum of the

°

partial pressurés.
In a binary system we have
C,=1-C,
and pitpr = P.
If we take the -molar fraction
Ci. as abscissa and the pressure
as ordinate Wejget the diagram
shown in Fig 1. As the curves
of the partlal pressures p; and
. are straight lines, that of the -

" total pressure is also a stralght ‘

"~ line. ' ' S ' F
. ig. _1-.
The fact that the composi- -

tion-pressure curve is a straight line for a bmarv 1deal solution
was first established by F. Gurarie (Phil. Mag., V 18, 517;
1884). He found that contraction on mixing of two llqulds is
generally accompanied by the evolution of heat, -and expansmn
of volume by the absorption of heat. He also observed that in
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the former case the curves of total vapour pressure are convex
to the axis of composition, while in the latter case they are
"concave. He reasoned from these facts that for a mixture in
the formation of which neither a change of volume nor of heat
takes place the vapour tension curve must be a straight line.
He found his anticipation nearly realised in the mixture of
ethyl chloride and iodide. : '

The results of the experimental studies of LINEBARGER,
HarTvMANN, LEBFELD, and ZAWIDZKI have been incorporated. in
the standard work of Roozesoom (Heterogene Gleichgewichte, II,
21), hence.it is not necessary to discuss thém. here. In all the
cases where the curves of total as well as of partial pressure are
straight lines the components are substances known, by the
method of surface tension, to be unassociated. Some ini)itures
of presumably normal liquids give curves which are not quite
straight, but the curvatures.are mostly quite small. Doubtless
many liquidé usually supposed to be normal are associated to -a
slight extent.

According- to vAN DER WAALs the conditions necessary for
straight vapour pressufe curves are the following:

(@) The heat of the evaporation of the mixture is the sum

of the heats of the evaporation of the components. '

~(0) The critical pressures of the two components are equal.

That (a) is the consequen_ce of (2) is evident, while (3) has
no direct relation with (1). Komnstamm (Zeits. physik. Chem.,
36, 52; 1901) tried to verify the condition (&), but could not
reach any satisfactory result owing to the inaccuracy of the data
on critical pressure. B :

According to Young (Journ. Chem. Soc.,. 83, 45; 1903)
the chemical similarity of the components is one of the conditions
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for straight vapour pressure curves. Yet Zawipzkr has found
the mixture of benzene and carbon tetrachloride to have such’
curves. If the idea .of chemical similarity could be applied to
such cases, it would be too indefinite to be of much value as a
criterion.  Yet there seems to be some truth in Youna’s assertion,

because chemically allied substances mix with one another mostly
without much change of ener gy or of volume,

In a ternary system the vapour plessures, total as well as
- partial, are represented by planes p,

as shown in Fig. 2, while the ~ [\
surface of the total pressure has .\
* the form of a sail spread between NN A
three points, when the composi- A
tion is that of the gas phase. ' >
The plain and the curved sur- - X LN
faces of the total pressure are 7

represented by the following €
equations: ‘

P=C P+C,P+0C, P
1 _ 0,0, Oy . Y
FEERYRTE . &,
Fig. 2.

where C/, G/, C are the molar
fractions of the components in the gas phase, and B, .Z)g, P, are
the vapour pressures of the pure components at the given tem-
perature. | '

It is quite clear that these .equations can be extended and
‘applied to the ideal system of any number of components.

There seem to be some solid solutions whose vapour pressure
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corresponds tolerably closely to that of an ideal solution. For
~example, SPERANSKI (Zeits. physik. Chem., 51, 55; 1905) found
that the vapour pressure curve of the solid solution of p-dichloro-
benzene and p-dibromobenzene was very nearly a étraight. line
throughout the whole range of his experiment, which extended up .
to 45% mol dibromobenzene. The temperature was varied between
40.3°C. and 66.1°C. without any noticeable influence on the result.
This mixture was studied by Kisrer (Zeits. physik. Chem., 5I,
235; 1905) who employed a dynamical method for the measure-
- ment of the small vapour pressures. He found that the curve of
the partial pressure of p-dichlorobenzene is nearly a straightv line,
“while that of p-dibromobenzene is concave towards the axis of com-
position and has a maximum. ~If the data were exact they would
be of considerable interest, because they contradict the relation
of DuneM-MAarGULES which ought to be universally applicable.

“(8) Isitheimal Distillation.

Fractional distillation is one of the.most important 0perati6ns |
employed in separating the various components from mixtures.
It" is daily practised in laboratories and factories, but. the exact
quantitative theory of the procéss remains to be developed. This
is no doubt due to the lack of insight into the exact relation
between temperrture, pressure, and the compositions of the phases,
gaseous and liquid. For ideal solutions such ihsighot is given and
a part of the problem can be solved with comparative ease. For
example, take the subject of isothermal distillation. In this case
we not only have to determine how the compositions of the
distillate and the residue vary with pressure, but we must also
calculate the quantity of the distillate.
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To begin with a binary mixture, let the initial conditions

of the solution be as follows:

N, = number of mols of &,
N2 = ”» PR YR Y] 62

. Py = vapour pressure.
. Then we have

N,

N+ N,

Fy N, + N,

P+ L,;

hence if the initial pressure be given, the composition can be
calculated by the following equation

) M — I)O_-PZ .
N1+N2 P1"'P2 ’_

and if the initial weight of the solution be known, N, and XV,
can be determined. »

At any moment let the pressure be P and the number of.
mols of the components in the residue be anl and n, 'respectively.
Then in the infinitesimal evaporation the following relation must
hold :

duy:dn, = C/ . CY

But by the' equation (5) we have -

P .
1/ 2 2
62 = —

O/ = P
! P n+n,’

- 'n.l-i—nz’

hence

which on integration becomes

1 Ny }—l Ny :
T)Iln—lw =7 n N, e, ) (6)



CHEMICAL. THEORY OF SOLUTIONS. PART I. 15

This expression combined with the equation

7y _ P—.Pg
nytn,  P—PFy

suffices to determine the values of n; and mn,. !In the distil)late.
there are N;—n; mols of the first component, and N,—n, mols’
of the second. In this way the‘compositions and quantities of
the distillate and residue are determined in terms of pressure,
and the problem is solved. A

In the ternary system the:composition of the residue suffers’
a definite course of change during the process of isothermal dis-
tillation. This can be represented by a curve in the triangular
diagram. The nature of this curve was first investigated by
SCHREINEMAKERS (Zeits. physik. Chem., 36, 422; 1901) and is
called the distillation curve. So long as the temperature is kept
constant the composifioﬁ of the residue can vary only along this
curve. How this comes to pass can be briefly explained in the
following manner.

Let gl in Fig. 3 1ep1esent the composmon of the 11qu1d phase
and ¢ that of the gas phase e, '
in equilibrium with it. As the
distillation goes on’ the composi- -
tion of the residue will be dis-
placed a little in the direction
“of the line g'g according to the
well known theorem of the ter-
nary mixture. Hence g¢’ is the

tangent of the curve, -and thus- & - ’ €.
the direction of the curve is N
determined. After a certain amount of hqmd has been distilled,

the liquid phase will have the composmon f, while that of the
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gas phase will be f', and the curve wi‘ll‘ proceed in the direction

f'f, ete., ete.
In the case of an ideal solution we have
p = C/P=CPF
Py = CYP = G,P,
ps = O/ P =GP,

and P = O,P,+C,P+ P,
Hence
61 ! — OIPI
' T CP¥CPTOGR
e OB
> T 0P+ CPE+CP

As the tangent to the distillation curve passes through the point
C,, G, as well as the point CY, Gy we. have

dC, _ =0/ _ Co{CP+CPA(1—C—C,) B—P,} @)
a0, T 0 =07 TOICP+CRY(A—C—C) P= D)

‘Which may also be written
a0, _ C,(P—P)
40, T C(P=P) |
Suppose the first cqﬁnpqne_nt to be the most volatile and the
second component to be the least volatile of the three, then

P"‘-P2>07 . P_P1<O:
and as both (| and C, are necesmrilj positive

%%<Q N
In other words (, must decrease as C, increases. The curve of
isothermal distillation has therefore the form represented by -
©,46,, etc., Fig. 4. When there is but little &, in the solution

——jgz must be very large, and when C| = 0 the curve coincides
1 ) '
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' . o .

with the axis &;&,. Hence if &
there is much of &; in the original - A
solution the curve will have a foi‘fn ) .
like &, C&, -On the contrary, -
when there is. but little of &; the”
curve will have a form like &, BS,.
If Gi=0,

(P—P,): (P—.P,) =-0,:C;

e o S
H.l].d —JC% = -1, o Fig. 4.
so that the curve coincides with the axis' &, S,. -
The equation (7) can be written -

A0, _ _ G{(P—P) C\+(P—B) (1= 0,=C))}

40, T TC{(B=R) G+ (P=PY(1=C,—CyY.

which can be readily transformed . into

~

d 'T(P:s—Px)

C
¢,

)

(Fe=F2) e. "hitgzq =

On integration we get .

O~ Ps ([ Pi=Pr o= Py G Pa=Ps g Pi=P, QSP,—P, 8)

......

where €, €,, and @glare the initial molar fractions of the com-
pbﬁents. . This is the equation of the curve of isothermal dis-
tillation. ) - |
The composition and the quantity of the residue during th_é
process of isothermaldistillation of a ternary mixture can be
calculated in exactly the same manner as in the case of a binary

system. We have

dny:dng:dng = C/ . CY : O
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which becomes by (5) ,
1 dn, _ 1 dn, 1 dn,

P, n, P, a, P, m,
This can be readily integrated. to
‘ A 1 Ny . 1, Ty 1

Zln-Lt=_"lIn

BN RN, PN

We have also the relation

n ne  p n ' :
- = L— P IS P, S Py ... )
B % 7S Y Ny + Nyt 75 Ny Ny Mg
These. three equations of (z) and (8) are -sufficient to determine

the values of 2, n,, and ng.

(¢) The Boiling Point of an Heal Solution.

As explained under (@) the relation between the total pressure
on one hand and the vapour pressures of the pure components
and composition on the other is very simple at a constant tem-
perature. Hence if the vapour pressure of the components be
given as a function of temperature, the relation between boiling
point and composition can be readily ascertained. Now let the
vapour pressure of the components be expressed by :

-Pi'= (2 (,1’); ' ) b= SDZ(T): . ete.

and let P be the constant pressure under which the solution
boils, then we have "

S prbpet = G (1) 4 Co gy (T = P, (9)

The variation of the .vapour pressure of éach,compouent with the
temperature is given by the equation of CLAPEYRON-CLAUSIUS:

din P, * din P,

BTT . T = ———135,2 ) etc.
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where ¢;, ¢s,-.+--... Tepresent the molecular heat of evaporation.
The limitations to which the application of the equations are
subJect are too well known to be mentioned in this place 15
Gay++-++--- diminish with rising temperatures, but the exact form
of the funection is not known. Within a short range of tem- -
perature, say thirty to fifty degrees, and particularly in the
region where the vapour pressure is not very large, gi, ¢a,--eere-- .
may be considered constant without causing much error.” The
equations can then be integrated .into

where @, ag,-ee-- are constants. In cases where the differences
between the boiling points are not great the equation (9) can be

written

ax_L)y 29 ¥ ) )
Ce BT +Ce Elpo=g ... ....(10)

TrouToN’s law simplifies the matter considerably. According
to this law the ratio between the molecular heat of evaporation
~and the absolute temperature of the boiling point is constant for
various substances. This has been verified for many unassociated -
liquids’ under ordinary atmospheric pressure. But there is no
doubt that the law is also applicable to cases in which the pressure
" is  considerably smalle% Only the ratio must incréase with -

decreasing pressure. Thus under ordinary atmospheric pressure,

1) Otherwise we have the usual equation with more than two constanis in the form
In P=A—%+Oln I+DT+.+++-.-.. But then the constants can no longer be determined

with necessary definiteness from empirical data, because slight experimental errors cause
considerable shifting between the values of the constants, Hence the approximate equation
is employed advisedly, not only to lessen mathematical complicaey, but also to ake the
deductions more definite. )
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%
BT

— R‘];’z = eeeeens =.10.9 near]y,‘

while under a pressure of 200 m.m. mercury the fbllowing values

have been found :

Substance. iﬂther. Todobenzene. Benzene. Carbon tetrachloride.
a2 12.9 12.6 12.5 12.7
RT ' )

The values of ¢ have been calculated by means of the CLAPEYRON-
Craustus equation from the vapour pressures determined by

Ramsay and Youwne.

As 729_171?’ —quzL yoreeesins are equal, @y, @yereeerees must alse be
equal, the numerical value depending on the unit of préssure

employed. Hence if we put

o L _ .=

then Uy == Uy = svecveene =b+ln§£.

The equations (A) then become

......................................

in which Ty Tyyeveveees are the only constants characteristic of
the components. The equation (10) now reduces to

T T
b{1--32 b(1-—=
Cro ( 1)+0%e ( )+ ......... =1 e, (11)
When G, C,,e--.-.... are given, the boiling point 7' of the solution

can be calculated by this equation. But it is only for a binary
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mixture that the composition can be determined from the boiling
point. For solutions with more than two components the equation
becomes indeterminate.

' Youne and Forrey (Journ. Chem. Soc., 83, 45; 1905)
tested the applicability of the equation (9) to various binary
solutions approximating more or less closely to the ideal solution.
Of these the mixture of chloro- and bromobenzene satisfied con-
ditions (1)  and (2) most closely, and they found that the
boiling point of the ‘mixture could be represented quite well by
équatibn (9). For ¢(T) they employed Bror’s formula. The
calculation with equation (11) is of course much simpler, while
the agreement is nearly as good, as is shown in the following
table : ‘ '

Boiling point. ©182.0°  186.75°  14216°  148.16°  156.0°
. Molar fraction of C;H,Br 0 2501 .5000 ..7364  1.000
‘Ditto calculated .o— 9253 . .498 739 —

[

The differences between the observed and calculated molar fractions
do not exceed 3%, which corresponds to about .05° in the
. measurement of temperature, and seems to be nearly equal to
the limit of error. The value of 4 employed in the" calculation
is 10.9, and is nearly equal to the mean value.

If only one component be volatile, then
| BP=p =GP
or | Coou(T) = %
In thé cases where the simple equation (A4) is sufficed

N U N
Cie' B = 7R,
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or taking the logarithm
1 'QI [ 1 _L
InC, = _—R_(T 1’1)' ..................... (12)

This eq‘uatiou' is inapplicable to cases in which C, is very small,
because then P, will be very large and cannot be well expressed
by the simple equation (4). But in other cases C, can be
calculated from the boiling point by equation (12).

If we express the sum of molar fractions of all the involatile
components by C, then C = 1—C, and we get '

—n(1-0) = f%’l—’l_(T_ /L) RO (13)

T—T, is what is called the elevation of the boiling point, and
increases with increasing C. Equation (18) might well be employed
for the determination of the molecular weight, etc. in the cases
where the solution is not dilute but approximately ideal. When'
the solution is very dilute, C' is very small in comparison with
unity and we may write (' instead of —/n (1—C), and 77 instead
of 77}, and equation (13) passes into

— _ % _m
C= RTf (T 11)

which is the well known equation of vax T’Horr. .

§ 8. Equilibrium between Ideal Solutions and
Pure Solids.

The problems of the equilibrium between solid and liqdid
phases are full of interest. Yet the treatment of them has hitherto
been almost exclusively qualitative, the exceptions being those
cases which could be solved by the theory of dilute solutions,
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and some other simple cases which will be mentioned further. on.
In the case of ideal solutions it is quite easy to establish general
quantitative relations and these may serve as the norm in the
investigation of actual cases. Even with the ideal solutions there
_are so many problems that the discussion must be restricted .
to the more important ones. The influence of pressure has not
been taken into consideration because.it is in general quite

insignificant. ;

(a) Isothermal Relations.

Equation (3) demonstrates the applicability of the law of
mass action to ideal solutions of any composition. It is indeed
~ very inconvenient to use the idea of spatial :qoncentration in the
case of concentrated solutions and this must be replaced by that
of molar fraction. (GturLpBERG and WaAGE reached the conclusion
that the active mass of a pure solid substance is constant ‘at a
constant temperature.” From this standpoint the relations of
solubility at a constant temperature can be readily surveyed and
described. \ ’ o o '

When the solid phase has the composition LI
the composition of the solution which is in equilibrium with the
solid must satisfy the following equation :

ALY CACREREERS G (14)

Vis Vgyresresnss are the so called molecular coefficients or exchange
numbers (Herm). K is a function of temperature and pressure.
But as the influence of the latter is generally very slight K may
be considered to be constant when the temperature is constant.
Equation (14) which repfesents the law of mass action in



24 . ART..10.—K." IKEDA : STUDIES ON -THE

this case, can be deduced in the following manner. Let Z" be
the thermodynamic potential of one mol of the solid phase, then,

Z!" = Vlv#1+ V2/.L2+--'-’-‘“'-‘

because one mol of the solid phase produces on melting »; mols
of &,, v, mols of &,, etc., and in the state of equilibrium there
could be neither gain nor loss of available energy on fusion.
But as has been established in § 1, V

=2+ RTInC

= 2t RTINC Y o, (3)
hence
Z" =y 2t vp st eeeee +y BTl O+ v, BT In Cyt +oeve- )
and as Z”, 21, Zgyeeeeeee can be considered to be nearly in-

dependent of pressure, they are constant at a constant tempera-
ture. Therefore

viln Ci+vyln Cot voeeee = [n K = const.
which is equation (14) in logarithms.

Equation (14) admits of some interesting deductions. F or
this purpose we will put

Y — T']
p1+y2+ ...... 1I
T TV (15)
V1+92+ """ 7’2l ’
seeenas J
-and
T s = % eerseneienenies eeeeanenn(16)

Tiy Tageeererses are the molar fractions of &,, &,,......... in the melt
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of the pure compound, and it is quite clear that
| K< x

For example, for the blnary compound @51@2 K is less than %

and for the compound &, \"92 ' A

K is less than 77—

&, . 01 CH

When the solid is a com-
ponent, we have by (14),

C =K

In a binary system this is
fepresonted by .a point on
the line of composition (Fig.
5, A). In a ternary system
the = equation is represented

by a straight line parallel to
one of the axes of composi-
tion (Flg ‘5, B); while in a
quaternary system, by a plane
parallel to one of the planes
of the tetrahedron of com-
position (Fig. 5, C).

When the solid is a
binary compound, then we

have =
Olv’ Ozv2 = 4. ' ' o N

In the case of a binary system G M c,

this becomes : ' ‘

O (1—0)" = K. ) Fig. 5.
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There are two positive values
of Ci which satisfy the equa-
tion, and these are represented
by two. points on the lihe of -

-composition, situated on the

opposite sides of the point
Ci=r (Fig. 6, A). - In systems
than
ponents we have the additional

with more two com-

condition

O+ 0,< 1.

This, combined with the fore-
going equation, gives a solu-
bility curve of the form shown
in Fig. 6, B for a ternary.

system. 7 is a point at which
01.= al

1{1“',‘ V?.
In a quaternary sjistem the
surface of solubility is a ruled

surface whose general form is -

‘ represenfed by Fig. 6, C.

‘When the solid is a ter-

nary - compound &, &,, &, ,

the curve of solubility .in a
ternary system has the form

ART. 10.—K. IKEDA .. STUDIES ON THE

[ — o 1
r

SILE AN S
NS
Ll IN S
/I[’lll,"

s
NELLA L
i

€,
Fig. 6.

shown in Fig. 7, A. The symmetry of the curve depends of

course on the symmetry relations between the coefficients vy, »,,

and ;.
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In a quaternary system
the surface of 'solubility has
the form represented by Fig.
7, B. When the molar frac-
tion of &, exceeds a certain
value, the product C': Cy= Cy'» -
can no longer be equal to K,
but falls below it. Hence the

surface must have & maximum

point, for which the value of
©, is the maximum. This point
lies on the straight line con-
necting .‘the points &, and 7.
 When the solid is a quater-
nary corhpouhd, the 'sﬁrface of
solubility -will be a closed one,

&,
Fig. 7.

having the form shown in g,
Fig. 8. '
It must be remembered

that no compound exists in
the ideal solution itself, be-

cause the formation of a com-
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pound “would be accompanied by changes of energy and volume,
and would thus be incompatible with conditions (1) and (2).
The equilibrium between a solid compound and an ideal solution
is therefore comparable to that between ammonium carbamate
and the gaseous mixture of ammonia and carbon dioxide, As
the difference of densities between a solid and a liquid is not s0
great as between a solid and a gas it is quitelprobable that
more or less of the compound exists in the liquid solution also.
Hence the curvés and surfaces corresponding exactly to the
equation | '

(SACN OACTIIPER = const.

will ' rarely be met with in actual cases. The foregoing consider-
ations may, however, be of some value as establishing the normal
types. On the other hand the straight line and the plane of
solubility corresponding to the equation

C,=K

will be often met with.

(d) The Relation between the Temperature of Fusion and
the Composttion of the Solution.

That no sharp distinction can be made between fusion and
- dissolution of solids was pointed out long ago by GurarIE (Phil.
Mag., V, 18, 118 ; 1884), who exemplified his view by the
system potassium nitrate—w-ater, and it has now become a current’
opinion. - Hence in speaking of a binary system the terms fusion
curve and solubility curve have identical meanings. Yet it is

. more convenient to have one term which denotes isothermal

)
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relations and another which denotes the relation between the
temperature and the composition of the solution which is in
equilibrium with a solid phase. The terms solubility curve and
solubility surface have been employed to denote isothermal rela-
tions "in the foregoing passages. = The terms fusion curve and:
fusion surface will be employed to denote the relation between
temperature and composition. ‘ ‘ '

The ideal fusion curve of a binary system has already been
repeatedly a subject of study. Le CHATELIER and SCHROEDER
chose the Raourr-van r'Horr equation for vapour pressure
as the starting pbint of their investigation, while Darums and
VAN Laar employed the method of thermodynamic potential.
The result arrived at is the same and is 1epresented by the
~ equation : ' '

, 1 1. ' oy
In C, = _%_(_11___) e (1)

in which @, is the molecular heat of the fusion of the component
S,, and Ti is the temperature of the fusion-of the same. The
form is 1dentlea1 with that of equatwn (12), the only difference
being caused by the different signs of ¢, and Q. Detailed dis-
cussion is given by RoozEBoon in his' standard work (Heterogene,
Gleichge“richﬁe, II, 274). The three conditions stlpulated for the
vahdlty of the equation are: :

L

I. The concentramon C, shall be the so called thermo-
dynamical one, i.e. the molar fraction.
~ II. The solid component shall separate out pure.
- IIL. - @, shall be independent of temperature.

The necessity of the second condition is evident. The cases
in which this is not fulfilled will be treated in the next section.
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The third condition is an assumption which does not stand in
any necessary connection with the conception of the ideal solution
developed in the present study. TammanNN has observed that
the heat of fusion is nearly constant along the fusion -curve of
one component system (the temperature-pressure curve). And as
the heat of mixing is nil in the case of ideal solutions the
assumption seems to be quite plausible. -But tlie specific heats
of the same component as solid and liquid are in general not
equal. Hence the condition will rarely be fulfilled exactly.
Still for the cases in which the temperature range is somewhat
limited the assumption may- be admitted as a convenient ap- -
proximation. Two conditions out of the three being thus ex-
‘traneous to the conception -of an ideal solution, there remains
only the first condition to be examined. Excepting the cases
in which the gas pressufe or the osmotic pressure are avowedly
taken into consideration, the idea of molecular weight is
generally rather vague in thermodynamical discussions, and the
molecular weights employed in calculating C; may ‘well be those
in the gaseous state and not those in the liquid state. This
is often explicitely stated in the deduction of the laws of dilute
solutions. Hence . the first condition does not coincide with
condition (1) or (2), and it is doubtful whether the three con-
ditions given by Roozesoom suffice to establish equation (17).
On the other hand Damms mentions conditions ' (1) and (2)
explicitely. | . ' ' ‘

The relation” between the temperafure and the composition
of an ideal solution which is in equilibrium with a solid phase,
either a component or a compound, can be deduced in the

‘following manner. The equation (see page 7),
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Z/I =y, ﬂ1‘+p2/12+....7. ) . i
=V 5tV e + BT (v In.Ci4vpln Cyt oeveev ),

is of course valid for any temperature. On differentiating ~with
respect to 7’ we get: '

aan
arT

VAL 0z, +, 02, Fo BT

5T = Y a7 5T +2In K,

where K has the meaning defined by equation (14), but is no

longer constant as the temperature is considered variable. From

the definition of Z”, z;, z;,.-veee. it follows :
174 s

where §” is the molecular entropy of the solid compound
T , and 8, S, are the molecular entroples of
the components in the liquid state. We have therefore,

aan = 0, Sy vy Syt oo —S"—Rln K.

BT ———
But as —RTn K is nothing but the maximum work obtainable
by mixing the liquid components in the proportion -necessary
for the formation of one mol of the compound, we have the
following relation :. '

0y B vy Sy e —S"—RIn K = :412” ,

where ¢ is the molecular heat of fusion of the compound. The
foregoing differential equation reduces therefore to :

.‘E)ZnK Q
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a form which is identical to
the reaction isochor of VAN
T’ HOFF. »
This equaticn can be
integrated when € is given

as function of temperature. .

Let us assume as an approxi-
mation, that @ is independent
of temperature. Then
k% (71,1_‘-_;,-),...(19)
where x stands for the value
of K in the melt of the pure
‘compound, according to equa~
tion (16), and 7} stands for
the melting point of the com-
pound. _
When the solid is a

component, then

zr=1
-and K =0,

and - equation (19) assumes

the form (17), which is ap-

plicable to" systems of any
number of components.
Several cases in which
equation (17) represents the
actual course of fusion curves

in binary systems have been

Fig. 9.
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studied . by the au@hors men-
tioned above. The form of T
the curve has been discussed
by vaN LaAr in detail.. On
the other hand graphical re- -
presentations of the general
features of the fusion curves

and surfaces may be of some |
interest although they do not
bring ‘out anything new. =

Fig. 9, A represents the
fusion surface of a component

in a ternary system, while |
Fig. 9, .B and C represent \ / :

the fusion surfaces of a binary 6.

and a ternary compound. = | Fig. 9.

§ 4. The Equilibrium between an Ideal Liquid and
an Ideal Solid Solution.

Tt is probable that, in some cases, at least, conditions (1)
-and (2) are satisfied by solid solutions. For example, RETGER
observed in- several cases of isomorphous mixtures, that the
volume was equal to the sum of the volumes of their components.
And if these conditions are fulfilled, we may apply equation (3)
in the discussion of equilibria into which such solid solutions
enter. In the present section the equilibrium between an -ideal
solid and an ideal liquid solution will be considered. As the
solid phase is supposed by the very conditions not to contain
any compound, the problem is so far simplified. The equilibrium
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between a solid component or a solid compound-and an ideal
solid .solution may be treated just in the same manner as in the

foregoing section.

(a) Isothermal Relations.

The relation between the COIHpOSlthDS of an ideal liquid
and an ideal solid solution at a constant tempe1atu1e can be.
found in the following manner. Let s and p” be the molecular
chemical potential of the first component in the liquid and the
solid phase respectively. Then we have by equation (3)

w=%5+RTinC,

and w' ="+ BT C)

where z” and (" denote the corresponding quantities for the
solid solution, as z and C; for the liquid phase. In the case
of equilibrium

hence

The supposition that z,” as’ well as 2, is independent of pressure
may be looked upon as a close approximation as long as the
variation of pressure is not very considerable. Under this as-
sumption we have |

S == eonste v (21)

for a constant temperature. - Similarly
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P R R R R R E R

R R RN R R

TLy Pgyeernennes are all positive numbers greater or less than unity;
but they can not all be greater or less than unity, because
this would lead to incompatibilities. For example, in a binary

system
Y O (A)
1
) _ — ”
and : | 11_g:;_= 11_’”10 f} = Pgeeerererenieas (B)

Hence if 7, be greater than unity then 7 must be less than
unity. These two equations (A) and (B) determine the values
of ¢ and (". In other words, the composition of the two
phases must have fixed Qalues, which is in accordance with the
phase rule.

For a ternary system we have .

02 1'_01—02

G _ 7 =7 =
1 = =2 =, i S S
01// 1) 02// ’ 1— 01// _ 02// 3
from which we get
ra—1 . —r
2// —_ 3 + 1 3 01//

7‘3 h 7'2 7”3 = 7‘2

O, = 7y (rs—1) + e (r1—13) éyl

T3— 17y 7y (15— 179)

The former -of these two equations represents the solubility
curves with respect to the composition of the solid phase, and
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the latter with respect to that .
of the liquid. These curves are
straight lines, and the angle
which one of them makes with
the axis of C; must have the
‘same sense as the angle which
the other line makes with the

same axis. Fig. 10 represents

these lines, with the conjugated

Fig. 10.

points connected by straight lines.

() The Relation between the Temperature and the
Composition of the two Phases.

Differentiating equation (20) with respect to 7,

C,
dln , o
RT(’)—T] = (8,— 5, ,)—Rlnf'l%’
0, |
0n W ) o
RT_GT.?_ = (8;—8)—Rn 0;, X

................................................

where 8, &, etc. are the molecular entropies of the solid
components. The right sides of the equations represent the
increase of entropy when one mol of each component passes
from the solid to the liquid phase. When 7, 75,.ceeeee are
not very large or very small the heat absorbed when one mol
of &, &,,....csve. passes from the solid to the liquid solution is
very nearly equal to the heat of fusion ¢, gu,eeeeeeee , and we

have
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C'
ot o
n 0 _ o«
T BT
R
7 72,7 3 92
T BT

.........................

Assumiﬁg Qis Goyreveeees
integrating, we get :

02 = 02” G‘R_
But as
A A =1,
and Cl + O+ =1,
we have
_9_-_(L__1_) 2, (_L__l) ‘
Cle B\T, T/ygneR \T, T e =1,
...(23)
B (LoL) a1 1) ,
CleB \T I, + CoeB \NT T, Foeeenns =1,

relations quite analogous to that represented by equation (11).
Equations (23) represent the fusion curves, surfaces, ete. accord-

ing to the number of the components.
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.CHAPTER II.

QUASI-IDEAL SOLUTIONS WITH ONE ASSOCIATED COMPONENT.

In the systems, which we have been considering in the
preceding chapter, it has been assumed that chemical changes
do not take place in the homogenebus phases ; because if the
state of isomeric or polymeric equilibrium of the independent
components be disturbed on mixing them, or if they enter into
combination with one another, energy- and volume-change must
necessarily occur and conditions (1) and (2) will not be satisfied.
Yet, that the chemical species”? could be mixed without such
changes is not excluded, provided the chemical reactions were
checked. In order to make the matter more readily conceivable
we may suppose with LurtHER (Zeits. Electrochem., 12, 87;
1906) that a negative catalyser has been added to the chemical
species before mixing. This does not of course affect the chemical
potentials. Hence if the chemical" species are miscible without
volume- and energy-change, the chemical potentials have the
values given by equation (3). Such a solution, in which re-
versible chemical reactions take place but whose volume and
energy are equal to the sums of the respective quantities of the
component chemical species, we propose to call a quasi-ideal
solution. It can be readily imagined that actual solutions which
approximate more or less closely to the quasi-ideal solution will
be far more numerous than those which approximate to the ideal

1) The term “chemical species,” which has been employed by some older writers but
has lately almost gone out of use, may be employed to denote distinct chemical entities real
or imaginary. It is preferable to the term * molecular species.”
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solution. Of all sorts of quasi-ideal solutions, the one with only
one associated component is the simplest, and such we under-
take to study in the present chapter. When there are two or
more associated components, the formation of compounds between
them is quite probable and the subject threatens to become
rather intricate, and the theoretical discussion runs the risk of
losing itself in a labyrinth of hypotheses unless there is a goodly
store of exact experimental materials. This will explain the
singular limitati'o‘n imposed on the subject of the present chapter.
The subject will be treated in the order of complexity, i.e.
according to the number of components in the system.

§ 1. Associated Liquids.
(a) Homogeneous Equilibrium.

The chem1cal reactions in a one component system can be
represented generally by the equation
v, Gy 2 Y8 @B-
When », = v the reaction is an isomeric change, when yazv@ it
is a polymeric change, and when y; =1 the reaction is called associ-
ation. Such a system has been called by RoozeBoon pseudounary.
In an associated liquid any number of reactions of the type
»S, 2 S '
may take place. But in.order to simplify the discussion we will
suppose that there is only one such reaction.
When an assoclated liquid is a quasi-ideal solutlon, then
Mo = 2%+ BT I O,
#g =23+ BT In Cp. }
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As long as the variation of pressure is not very large we may
assume z, and zs to be functions of temperature alone. '
In the case of equilibrium ’

Ve = 18
so that for a constant temperature

ZB—V 2y

C O  _ BT — @ —consh. ... (25)

T T0

& in this equation is what is called the equilibrium coefficient. -
The ratio between the mean molecular weight of the liquid

and the molecular weight of ©. has been called by Ramsay and
Smierps the degree of association. If we express this ratio
by &, then ' '

E=v—(v=1)C, = 14(»—1) Cp ...... S (26)

The experimental determination of & presents considerable diffi-
culties. RAMsAY and SHIELDs attempted to evaluate it from the
temperature coefficient of the molecular surface energy, but with
only -partial success. Ramsay afterward modified the ‘mode of
calculation and his results are widely accepted. But there is a
‘serious doubt about the entire method, because it is based upon
the assumption that the composition of the surface film is the
same as that of the liquid mass. For mixtures of chemical
species of nearly eqﬁal volatility the assumption may hold. But
in the case of an associated liquid the component chemical species
must have a very different volatility. The more volatile species
will tend to accumulate in the surface film, because its molecular
surface energy will be considerably less than that of the less
volatile species, whose "eritical temperature must be assumed to
be much higher than that of the other.
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-

Even in the cases where £ is given ® can not be determined
at once,. because v is generally unknown. But v is in general a
small integer, and we are often able to deduce or infer its value
from various experimental data. '
The variation of ® with the temperature is expressed by
the equation
alnﬁ.zl 2
0T RI*

where £ is the heat of reaction for » mols of &, As it is
quite probable that the heat capacity of &g is not very different
from that of »&,, we may as an approximation, assume & to
be independent of temperature, then

o1 _1 |
zm_F(—%_ . 2T

where & is the temperature at which & becomes unity. This
temperature may be called the equipoise point of the reaction
and is characteristic of the homogeneous equilibrium just as the
boiling point, melting point, or eutectic point is characteristic
of the respective heterogeneous equlibrium. For such reactions
as 20; 230, or 2H;0Z2H,+0, the equipoise point is very
high, while for. such reactions as 28Cl, 2 8,Cl,+Cl, it is re-
latively low. When the given temperature is far from the
equipoise point we may say that the chemical species on the
right or the left side of the equation are stable against the
species on the other side according as ), the heat of reaction,
is positive or negative.

(6) Vapour Tension of an Associated Liquid. ‘

If we assume that the chemical species ©. and & taken
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separately present the vapour pressures =, and = respectively at .
the given temperature, the vapour pressure of the associated
liquid will be o

P Oyt (1= Ca) Tae wevrrrrerrensrnees 28)

Cx can be determined as a function of temperature from equation

(27), when v, O, and T are given. We may also put as an

approximation
T,
g0
Tgy .
g 7)

where 7. and 7p are the temperatures at which the vapour
pressures of S, and S; are equal to ‘P. The value of & depends
on the chosen value of P as we have seen in the preceding
chapter.

Now it is possible to determine the constants Q, &, Ti,
and 73 by means of equation (5), when the specific volumes and
the pressures of the saturated vapours at two different tempera-
tures are given, provided we can: hit. upon the proper value
of . This can certainly be done after a few trials. In this
case we have the following sets of equations '

b{l——=
Ci,.P=0C,%e ( 1y
el
(l_oal)l)lz(l—oal)%e cTr

Ta
b= G T

T
__8
(1-C) P, =(1-Cp) P ¢ (1 1)
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»

where C. is the molar fraction of &y in the gas phase, and the
suffixes denote the relation to the chosen temperatures 7} and 75.
Ci can be calculated from the specific volume of the vapour.
If we make ‘B = one atmosphere, thé value of b isknown, and
T. and Tp are the respective boiling points. By equation (27)
we - can express Cu and Gy in terms of & and €. There being
thus four equations to evaluate four unknown constants, the
problem can be solved, and the correctness of the values so
obtained can be tested by means of the vapour pressures at other
temperatures. In this way it will be possible to determine the
degree of association of liquids with tolerable accuracy. But the
calculation will be somewhat tedious.

It has been frequently observed that the vapour is not
~ polymerised to any noticeable degree, while the liquid must be
- looked upon as highly associated. In such cases =g is very sma]l

in comparison with =,, and equatlon (27) is reduced to

In order to evaluate 9, &, and Toc in such cases the vapour
pressures at three different temperatures must be given besides
the value of ». '

Differentiating both sides of equatlon (29) with respect to

T, we get
P 9.7, C, [ 1-0, P
o7 = Cogp Ty = (u—(u—l) oA -D’+q‘%)W’
here 1= C
where TTD& ¢« is the quantlty of heat absorbed during

the production of one mol of the vapour. Now - if TrouToN’s
law be valid for all normal liquids under all pressures below a

certain value, as indicated in the foregoing chapter, DUHRING’S
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‘relation must hold, and the temperatures at which the liquids
have an equal vapour pressure must be proportional to the ab-
solute temperature of the boiling points. - This has been found
to be the case approximately for a great many unassociated
liquids. Hence the vapour pressure curves of these liquids do
not intersect one another, at least at pressures below 1000 m.m:
of mercury. On the other hand the vapour pressure curves of
associated liquids mostly intersect those of the normal liquids, and
indeed they are at the points of intersection generally steeper
than the normal curves. If the heat of evaporation of a normal
liquid under the pressure P be ¢, then in most cases

-0,

BYSTmne B

But as a consequence of TrouTON’s law

9z < @.

Hence in many cases _—0“, £ must have considerable value.
v—(v—1)0C,

In other words, the heat of dissociation must be considerable.
As an illustration of what has been said in the foregoing
paragraphs we may adduce the vapour tension of acetone. As
will be shown in § 2 (8) it is possibie to determine the value
of v and & from the vapour pressure of binary mixtures which
consist of a normal liquid and the associated liquid under con-
sideration. From the data of Cuwarus at 0°C, it has been
concluded that » =3 and 7, = 162 m.m. As the vapour density
of acetone is normal 7z must be very small, so that equation (29)
may be applied. The vapour pressure of acetone at 0° is
P =69.6 mm. from which we get & = 0.1495. The hypothetical
vapour pressure of pure simple acetone at various temperatures

~ can be represented by -
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10.9 (1_311.71>

7y
Ty =6 1

where the unit of pressure is one atomosphere and 311.71 is the
hypothetical absolute boiling point. 10.9 is the general constant
accoi‘ding to the law of TrouTor and the conmstant 311.71 is
determined from the data at 0°. Now if a second point on the
vapour pressure curve be given, { and ¥ can be determined.
Zawipzkl found the vapour pressure of acetone at 85.17° to be
344.2, from which we get ‘
) £ = 3290 calories
T = 404.43.
With these constants the vapour pressure of acetone at various
temperatures has been calculated as shown in the following table.

[}

TABLE 1.
¢ C, 3 P (calculaied) P (observed)
0° 0.4206 21408 69.6 mm.  (69.6 m.m.)
5° 04422 21156 896 —
10° 0.4546 20908 1144 —
15° 04668  2.0664 1446 —
20° 04787 2.0426 1814, 1825 ,
250 0.4904 20192 2257 ,  229.
30° 0.5018  1.9964 2788 ,, 281 .,
35° 05130 1.9740 3419 343.
3517° 05132 1.9736 3442 . (3442 )
40° 05239 19522 4165 416, ,,
45° 0.5346  1.9308 5041 |, 505.
- 50° 0.5450  1.9100 606.3 , 607.
550 0.5552  1.8896 7251 2L,

60° 0.5652 1.8696 s62.1 ,, 860.

‘ 1) This table has been calculated by Y. Yanmasaxi, a student of chemistry.
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In the table the result of calculation is compared with the
observation of A. E. Tavyror (Journ. physic. Chem., 4, 336;
1900). The agreement is quite satisfactory. The degree of
association § has been calculated by equation (26).

‘The heat of evaporation for one mol of vapour at the boiling
point 56.2° has been calculated to be

1-0,

§ 4 ’

[g, is set 10.9%311.71x1.985 = 6744 calories]. The calculation
according to the well known equation, |

0+ ¢, = 7520 calories.

B(lnP—inP,) -
AL
T, I

Molecular heat of evaporation =

0

from Tavror’s data gives 7640 calories, while Wirtz (Landolt-
Bérnstein-Meyerhofer’s Tabellen) has determined it to 7300 ca-
lories. Were acetone a normal liquid the molecular heat of
evaporation would amount to only 6960 calories.

(¢) Acetaldehyde and Paraldehyde.

The equilibrium between acetaldehyde and paraldehyde. has
been studied by HorrMANN (Zeits. physik. Chem., 43, 129; 1903)
under the guidance of Roozesoox. The peculiarity of the system
is that the reaction ' o

3CH,0 2 G H,O;

proceeds so very slowly at lower temperatures, that the chemical
species can be treated as independent components, while at higher
temperatures or in the presence of catalysers the reaction takes

place so rapidly that the state of equilibrium is reached in a
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very short time. From Horrman’s data we may conclude that
the mixture of the two chemical species behaves approximately
as an ideal solution, the fusion curve having neally the form
represented by equation (17)

_Q(l_i)'
wl=g\zm—71)

as is to be seen from the following table.

TABLE 2.

Fusion curve of the system paraldehyde and acetaldehyde.

r—-273 Cg (g (calculated) Q
12.55° . 1000 - 1.000 ‘ —

. 8.90° 0.928 0.921 . 3279
6.60° 0.879 . 0.874 3441
3.70° 0821 0816 3502
0.93° 0.767 0.764 3549

—1.02° 0.727 0.726 3585 o

—4.00° 0.676 - 0.677 3612

—6.65° 0.633 0633 3600

~910°  0.584 0.594 3722

—11.1° 0.545 - 0.564 - 3818

—12.9° 0.525 0.548 3855

—13.0° 0.513 " 0.536 3855

—141° 0.493 - 0.521 3900 -

—16.4° 0.460 0.489 3907

~17.7° 0.444 0.463 3798

—923.0° 0.381 0.406 . 3852

—926.5° 0.345 0366 - 3314

—29.8° 0.313 - 0.331 3786

—33.0° 0.284 0.299 3759

—33.7° 0.279 .. 0.294 . 3749
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—380° 0245 0.256 . 3712
—426° 0.217 0219 3623
—46.8° 0192 0.189 3570
—52.5° 0.167 0154 . 3444
—58.2° 0144 0.124 3340
—62.0° 0.130 0.106 3277
—65.8° - 0.117 0.091 3291
—68.0° 0109 0083 3201
—68.5° 0.106 0.081 3214
—71.5° 0.098 0.071 3162
. —T7.5° 0086 0054 3023
~91.76° 0.044 0.026 3081
—113.51° 0.033 0.007 3085
—119.18° 0016 0.004 2742

'Ch is the molar fraction of paraldehyde. ), the molecular heat
of fusion of this substance, has been calculated from the fusion
points by equation (17). The values of @ for lower temperatures
are not reliable, because the composition of the solution must
have suffered considerable change on account of the separation
of the paraldehyde as the solid phase; and this source of error
is the more considerable as the molar fraction of paraldehyde is
the smaller. The notable decrease in the value of € for Cs < 0.2
is doubtless due to this cause. On the whole it éppears as if @

increases with a lowering temperature. If we assume

- @ = 3600 calories

and recalculate the molar fraction Ch for observed fusion points,
the agreement with experimental data is tolerably good, the
maximum difference being less than 0.03.

HorrMANN has also measured the boiling points of various
mixtures of the two chemical species. The following calculation
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is based on the data given in his second table. The temperatures
have been corrected for a pressure of 760 m.m. This could be
done without difficulty because the differences do not exceed
6m.m. The compositions of the mixtures corresponding to the
boiling - points have been calculated by means of equation (11) -

1 T
‘03;(1. T)+(1—0ﬁ)eb(1 Ta>:l,

where (s is the molar fraction of paraldehyde as before, and 7%
and 7p are the boiling points of the two chemical species. For
b the approximate value, 11, has been used. In the following
table the results of calculation are compared with observed values.

TABLE 3. '

. The boiling points of the system paréldehyde and acetaldehyde.

T—273" . - Cs Cpg (calculated)
21.0° 0 ‘ 0
27.1° 0201 0.205
327° - 0349 0.353
39.8° - .. - 0.501 0.497
40.8° - ' 0.523 : 0.514
43.1° 0.561 0.551
56.9° 0.703 0.721
72.7° 0798 0.838
103.0° 0.916. ~ . 0.963
123.9° 1.000 1.000

Up to the molar fraction 0.7 the agreement between the
values observed and calculated is tolerably good. That the
differences for larger values of Ch are so great is doubtless due

to the fact that a comparatively large amount of acetaldehyde



50 ART. 10.—K. TKEDA : STUDIES ON THE

was volatilized and was present -partly in the gaseous phase and
partly in the reverse condenser as liquid. This source of error
must be the more serious, the greater the molar fraction of paral-
dehyde. It is therefore to be regretted that the author .deter-
mined the composition of the solution from the quantities of the
substances put into the boiling vessel and not in a manner more
direct. Moreover the boiling point of paraldehyde is more than
a hundred degrees "higher than that of the other component, a
difference certainly too large for the exact applicability of equa-
tion (11). | | .
It is not improbable that the chemical species of an as-
sociated liquid as a ‘rule behave towards each other as the
components of ideal solutions. ’

According to Horrmany the freezing point of the system
acetaldehyde 2> paraldehyde in the presence of a catalyser lies at

T—273° = 6.75°
This temperature he calls the natural freezing point of the
system, and corresponds to the freezing point of an associated

liquids as it is usually observed. The composition of the system
at this point is

Cp = 0.883.

The natural boiling point of the system has been deter-
mined to be
T—973° = 41.6°,
with the compositi011

Cp = 0.534.
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From these two sets of values we obtain for the constants

of equation (27)
' T =320.4

_ 0 = 23340 calories.l
The heat of polymerisation & can also be calculated from the
thermochemical data. BrrrEELOT and DErepINE found the heat
of combustion of acetaldehyde C,H,O to be 279150 calories,
while the heat of combustion of - paraldehyde C;H,O; amounts
to 818200 calories according to Loveumive. Hence
0 = (3x279150—813200) cal. = 24250 cal.

The agreement must be looked upon as quite satisfactory, when we

take the errors of thermochemical measurements into consideration.
. o

60°

<

40°

sed
®

30°

20°

10°

00

0 N 0.2 0.4 - 0.6 0.8 1

Acetaldehyde. o Paraldehyde.
Fig. 11.
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For the calculation of the natural vapour pressure curve
of the system according to equation (28) we have the following

relations :
23340 / 1 1
A-G) _ g — (198 (5257
Uy
294
1 (1-2%
n = 00)
396.9
1 (1-

~where the unit of pressure is one atmosphere. The results of

the calculation are given in the following table.

TABLE 4.

The natural vapour tension curve of the system

acetaldehyde = paraldehyde.

T— 273°_ 8 OB 0@’ Ty, g P
0° 0.000635 0.9165 0.1483 0.429 0.00679 0.0421
10° 0.00289 0.8642 0.1044 0.652 0.01195 0.0989
20° 0.01197 0.789 0.0727 0.963 0.02024 0.2192

30° 0.0445 0.687 0.0496 1.386 0.03310 0.4565
40°.  0.1546 0.558  0.0359 1.949 0.05242 0.8150
50° 0.4943 0.412 0.0203 2.684 0.08074 1.611
60° 1.473 0.267 0.0121 3.626 0.1211 2.690

TurBaBa found at 50.5° Cs = 0.405 and P = 1.5—2, while the
calculation gives (s = 0.394 and P = 1.65.

The temperature-composition diagram shown in Fig. 11 is
constructed from the preceding table. The data found by
TurBABA are marked with circlets. These are but rough estima-
~ tions with the exception of the datum for 50.5° which, being
the mean of a large number of tolerably concordant determinations,

must be considered accurate.
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(d) Physical Properties of Associated Liquids.

The classical researches of Korpp and Lawport have called
forth a great many investigations on the relations existing between
physical properties and chemical composition, particularly of
liquids. But the work in this field slackened after a time,
partly owing to the rapid development of physical chemistry
which put forth so many interes;cing problems for solution, and
:partly owing to the fact that the regularities found were mostly
imperfect and could not be brought into well defined simple
schemes. This is no doubt to a great extent due to the fact |
that the investigators did not distinguish between normal and
associated liquids. Tt is self-evident that no good result can be
obtained when, for example, the system acetaldehyde == paral-
dehyde is treated as if it consisted of acetaldehyde alone. Such
irrational procedure has hitherto been quite general. But if the
molecular formule and the relative amounts of the chemical
species constituting associated liquids be determined by any
reliable method, then we shall be in a position to estimate the
physical properties of individual species. The - comparison of
various chemical species will then no doubt show greater re-

gularities.

§ 2. Quasi-ideal Solutions with a Normal and
an Associated Component.

(@) Homogeneas - Egquilibrium.

In the present case we have

Cot CatC =1y rerrirrrerererroenn.(30)
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when we assume as in the foregoing section the associated com-
- ponent to consist of .two chemical species &y end Sg, and express
the molar fraction of the normal component & by C. But these
molar fractions are mostly unknown. The molar fractions usually
given are calculated on the suppbsstion that the associated com-
ponent consists of the simplér chemical species ©. alone. These
we propose to call empirical molar fractions. Now let z be the
empirical molar fraction of the associated component, then 1-z
is the empirical molar fraction of the normal substance. The
relation between these two sorts of molar fractions is expressed
by the following equation :

x = 0a+"'0[3 _ 00('*‘”0(3
- 0a+v03+7 = I+(=1) 0{3 .....

As the solution is supposed to be quasi-ideal, equation (25)
must hold, which may be written

T~
¢y

P 20 O .
OB—ﬁ_c T T e, (32)

At a constant temperature & is constant and we have

7y
.+ v—i—%— ,
x = Qv e (33)
1 Y “ )
+(»—1) <
11
o K Cp +VOB
or x = m s ereeneteerescenneneennne (34)

while for the molar fraction of the normal component we get
from equations (30) and (31)

O = {Ll+(—1) O} (1=a). ©eerrrrrrerren, (35)

These relations may be made more conspicuous by means -
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‘of graphical representations in which z is taken as the abscissa
and the molare fractions as the ordinate. From equation (33)
we get by differentiation-

y—
dC, (1 +

de = (u—l)

2
0““) {4 e-1 G
Cl+ % 0v 1 1-(—1p Gyt ”;03

o

...(36)

A (=1~ 41 v(u'—l)f,\,}u(u—l),‘,_]( y—1 V)3
dzc,a_{(wl)oa U gty Do M= De(14 2 e,

aa : {1 (G 1)0+20V1}

-1
Lt O

=[(v+1)00€+y(v+1)0(; (=17 C, Gy y]( D=1

17 2
_(”ﬁ ) 0“\’—}-%0“""1

v
o

C
because -
8

=Us by equation (32).

| 40,

o is positive for all values of = because Cu is less than

unity. At 2 = 0 we have

because O vanishes as z approaches zero, while at =z =1
Ci+Cp = 1 and the differential coefficient becomes

(ddC’; )1_ (AT e (38)

where (C.); denotes the molar fraction of &.« in the associated
component in the pure state.

277

] ] . a*Cy .
The sign of the second differential coefficient a8 deter-

2

mined by that of the factors in the rectangular brackets, because
the other factors are necessarily positive. TFor small values of z
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a0, . . '
both G, and Cp are small and —» is negative. But for large

values of z it becomes positive, and at z = 1 we have

(-0%;1)1: (O + Cuy B 4
which is of course positive.
Hence, when we represent
the relation between Gy and z in \
a diagram, we get a curve like K
e in TFig. 12. The curve has
for its tangent at 2 =0 the g
diagonal 04 which lies com- | 7 =

pletely above it. The curve is 0"' B )
% .
concave towards the axis of z for )
Fig. 12.
small values of 2, and turns

convex as z approaches unity. The tangent at @ =1 is a
— straight line which passes through the origin 0.
From equation (34) we get by differentiation
dCy {14+(v—1) C)?

doe 1 ] , g 1
y+l RVO(;V _(J_l)varﬁ
v )4

1
v

{1+(v—1) Cg}*

R s
v O y

and

o : 1 1 1 1 .-
d‘O@ _ 1 5 —v——2 2 7 7~__1
A “(‘)_1){2”'{—,—)23%\0[3 +y2 K (/ﬁv

7
y —

1y 1oa( 1He=D0 e
_(U 4)(2V_1)Qv0ﬁv}{y+i U, (y——l)”
v
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11
or as 8" Cs¥ = C. from equation (32)

&0, 1 ¢, 2 0,
T =D Tty

e - 1+(y—1)0§ 2 2
_( — )(zu—l) Oa}{wr_l%_ CE) Oa}

y

., dCy
As both C. and C are necessarily less than unity, 'd_xB as well

261 .
as — mf must be positive throughout. We see further from equa-

tion (32) that (s approaches zero far more rapidly than Ci when
x approaches zero. Hence at 2 =0 '

d*Cy . _ ' .
and dfc‘-’B is also zero. On the other hand at * =1 we hdve

(ig“ ) ETTG) R— a1

where (Cg); denotes the molar frac'tton‘ of &g in the associated
component in the pure state. TFrom these considerations it is
clear that the curve showing the relation between z and Cs must
have a form like g in Fig. 12. .

As to the curve representing the molar fraction of the
normal component as a function of @, we see from equation (35)
that it must throughout lie above the diagonal B1 (Fig. 12).
Its shape can be further elucidated from the following considera-
tions. From equation (30) we have

dC¢ - dC, dCs

dr dx dx ’
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’ dc, ac .\ a’C .
and as both ——= and chB are positive, —— must be negative

throughout. Hence C decreases continuously with increasing
values of 2. At 2 =0 C is equal to unity, while at 2 = 1 it is
reduced to zero. Again in the equation

a2C dC,  d*Cy

dzt T dZt  dx®

.d2oo; . . ' . A d20ﬁ
gz 1s negative for smaller values of z, while T though

2 A
positive, is very small. Hence —CCZZ?O must -be positive for small

values of 2z and the curve is convex towards the axis of z.
oy . ac, _ . .
With increasing values of & . —— becomes positive too, while

*Cy
da?

. - . . d*C
remains positive and increases in amount, so that 7z must turn

negative at ‘a certain value of # and from this point the curve

becomes concave. The form of the curve must therefore be like

that of y in Fig. 12. '
Again from equation (35) we have by differentiation

ac _ a0 (14
o = =1 (1-2) T2~ 14+06-1) Gy}

Hence at 2 =0,

dc ' ‘
B L 4
(dx) e (42)

that is to say the tangent to the curve at z = 0 is the diagonal
Bl. At z =1 we have '

(%%)f — {1+ @=1) Oy wovrerrercnann. (43)

which says that the tangent at z =1 is equal to the degree of
association of the pure associated component taken negative.
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Thus we see that the state of homogeneous equilibrium at
a constant temperature in a system consisting of an associated

and a normal component and in which the reversible reaction

‘ 8, 2 Sp
takes. place, can be completely represented by a diagram like
that shown in Fig. 12. '

@) The Equlibrium between o GQaseous and a .
Liquid. Phase.

(1) Vapour Pressure at a Constant Temperature.

Let p,, pg, and p be the partial pressures of @o;, Sg, and
& respectively in the gas phase which is in equilibrium_with
the solution consisting of these chemical spécies, and let P be the
vapour tension of the pure ©. Then we have by equation (5)

Po = O g,
pp = O,
p=CFk,
and °
P = C, 7+ Cgmg+ O'P;, .......... eerrenenes (44)

where P is the total pressure.

The curves representing the relation between these partial
pressures and the empirical molar fractions must have forms
resembling those given in Fig. 12. As a rule =, will be far
larger than =g, so that the curve for pg .-will often lie far below
that for p,. ‘

When these curves of partial pressures are. given, we can
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evaluate the characteristic magnitudes of the system such as
7, 7, and K. According to equations (5) and (37) =, can be
found by producing the tangent at © = O to the curve of p, so
as to meet the pressure axis at 2 = 1. The height of the point
of intersection is equal to =,. | _ .

From the value of p, at & =1 the molar fraction of &, in
the pure associated component can be determined, and then =g
can. be calculated from pg at » = 1.

v can also be determined from the tangent of the aﬁgle,
which the curve of p makes with the z axis at z —1. From
equation (5) and (43) we- have '

(22)=n(42),=- (1461 (0o} B

Hence £, the degree of association of the pure associated com-
‘ponent, is given by

E=14+(-1)(Cpy = —

and for v we have

()

dx )

-1
i)

=—————+1 ................. i...45 )
v A (49)

"When » is thus determined & can be calculated from equation

(32), and we,are now in a position to give a quantitative account
not only of the vapour pressures, total and partial, of the whole
system, but also of the state of chemical equilibrium in the
homogeneous solution, liquid as well as gaseous.

As the measurement of the partial pressures, or molar frac-
tions in the gas phase,. is rather troublesome, it often happens

that the curve of the total pressure alone is determined.” Even
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in such cases the characteristic magnitudes can be evaluated in
the following manner, provided the measurement of pressure and
composition at both ends of the curve is sufficiently accurate. .

The tangent to the total pressure curve may be expressed
as follows :

dP _ G, _ dGy , dC
d—x—ﬂ“%_hﬁd Tz

At the end where z = 0 equations (37), (40), and (42) hold.

Hence
dPN _ _
(7;)0-* To— b,
and we get

—_(L”i> FPy e (46)

dz 0
In other words the tangent to the total pressure curve at z = 0

intersects the pressure axis at & = 1 at the height of =,.
At the other end of the curve we have

(P)l = ‘Ta (Od.)l + 776 {J. _ (Od)l} ........ “ea .- ...... (47)

These two equations, (46) and (47), do not suffice for the detier-
mination of the three qudntitjes v, (Cu); and mg. Another ex-
- perimental datum is necessary for the purpose. The density of
the saturated vapour of the pure associated component at the
given temperature may be measured and employed to evaluate
(Co);» Or a point in the middle portion of the total pressure
curve- may be taken into calculation; then a few trials will
suffice to determine the value of ».

It has been frequently observed that the vapours of as-
sociated liquids have normal densities, that is densities cor-

responding to the molecular weight of the simple chemical species
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S.. In such cases =3 must be so small that ps remains negligible
in comparison with other pressures. Then we have

and

5 dr
®-(9), B
—n
= (T2,

S T (49)

When 7, and =3 are known for one temperature then they
are known at least approximately for the range of 30° to 50°
~ above and below that temperature. I mean that it is possible
to evaluate 7% and 7Tp in the equations

. o

=g (1_ Ta>
e

eb (1" TB)

because & has approximately the value of 10.9 for all chemical

71'3:

species, when the pressure is given in atmospheres, as shown in
§ 2 (c), of 'the preceding chapter.

The quantities £ and &, which determine & as a function
of temperature can be "evaluated when the tension and density
of the saturated vapour of the pure associated component are
given for another temperature. In the cases where the vapours
have normal densities, only the knowledge of the vapour tension
is required.

"When the four characteristic quantities 0, T, 7k and T8
are known, the state of chemical equilibrium in the system com-

posed of the associated compound alone or with other normal
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components, can be described quantitatively for varying tempera-
tures and pressires. We thus see the important service which
the study of the vapour tension may render to the solution of
chemical problems. In the following is given a concrete example
in which the foregoing\_deductions are completely realised. |

(2) The System Acetone and Ethyl Owide.

The total and partial pressures of this system at 0°C. have
been studied by Cunarus (Zeits. physik. Chem., 36, 232; 1901).
Unfortunately I have not been able to consult the dissertation
in which he has given a detailed account of the measurements.
This is the more to be' regretted because there seems: to be
“several misprints in the numerical data given in the « Zeitschrift,”
as has been noticed by Baxmurs R00ZEBOOM (Heterogene Gleich-
,,ge\wichte, 11, 27, foot-note). In the following table his data are
reproduced. . | o

TABLE 5.9

z o ‘ P in mm.
—_— ;
0 0 - 0- 185.6
0.165 0.139) 012 181.2
©0.383 S (0272) 022 166.8
0.490 (0.330)  0.27 158.0 (150.)
0.636 (0.383) 035 142.3
0.808 —  — 1170
0.844 ©(0.554)  0.54 110.5 (118.5)

1.000 — - 100 E -69.6

1) % in the original paper is the empirical molar fraction of ether, while here it stands
for that of acetone.
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2’ in the brackets is the empirical molar fraction of acetone
in the gas phase, determined by means of the index of refrac-
tion. Unfortunately the method is not an exact one for gaseous
mixtures so readily condensible. The other . values are those
calculated by CunaEus by means of the following eQuation given
by vAN pDER WaALS: ‘

1 dP _  z—o
P d(l—-z) o (1-2a)

As the equation is deduced thermodynamically (see Continuitit
etc., 2, 187) it must be applicable irrespective‘ of the chemical
complexity of the liquid phase. The values so calculated deserve
therefore more confidence, and these will be employed in the
following calculation. V |

Two of the data on the total pressure are doubtful. I mean
those corresponding to © = 0.490 and z = 0.844. In the original
paper the numbers in the brackets are given. When an 2P
curve is drawn with the other six data we get quite a regular
curve ; these two values, however, deviate very far from the
curve. Hence they have been replaced by the numbers in the
column. I believe I am not making too free with the data
given, particularly in view of the remark of Roozesoom.

As is well known, ethyl ether is a substance very nearly
normal, while acetone has been demonstrated by Ramsay and
SHIELDS to be associated, though its vapour density corresponds
to the simple formula C;H;O. Hence in the gas phase of the
system there are only two chemical species C;HO and (C,H;),0,
while in the liquid phase there are at least three, i.e. C,HO,
(CH:O),, and (C;H,),0. Under the supposition that there is
only one polymer of acetone the mode of calculation developed
above may be applied to this case. '
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On tracing the curve of partial pressure for acetone and
drawing the tangent to the curve at z = 0, the following ap-
proximate value has been found, for the vapour pressure of pure

CHO -

T, = 160. m.m.

The tangent of the angle which the curve of partial pressure
of ether makes with the z axis has been found to be nearly

dp\ _ _
(—dz)r 400.

The molar fraction of C;H;O in pure acetone is

i 696 o os
(C)y = T = 0.435

and in consequence that of (C;HO), amounts to
(Cg) = 0.565

v can- now be determined by equation (45)

_(dp)
dah_, 400

0
7, . 18556 B
O = ~osm T =304

Yy =

There is no doubt that » =3.
With these.data the value of & for 0°C. is determined to be

= 0.1456.

ﬁ=—'y—'=

From the total pressure curve we get values but slightly
different. | ‘ -

7a=162  and  (Ch), =0430
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and
_(dP
(P)1"<75;‘)1 1 69.6—(—325)
P, ' _ 1856 oo
v IS (/A 1= 5570 +1=297.

We are now in a position to'give the equations of the
curves of ‘the molar fractions of the three chemical species and
of the total and partial pressures. These' are

Cp = {[6—02 =t J (b' = m)Z“L (S? '—1?550?)3]%

)

C = (1+20p) (1—a)

0“ = 1—06-0
Pa =160.C,

p =185.6C
P =p,+p.

The curves calculated by means of these equations are re-
produced in Figs. 13 and
14. The data found by

Cunaeus are marked with

1. 1.

0.8

7

circlets. The agreement

must be considered to be 06 0.6

satisfactory, in as much as \ /
0.4 [}

we have employed as the . { 4
.
basis of calculation only the P -
' 5 s 1" '
vapour pressures of pure P =
acetone and ether and the ] :
0 0.2 0.4 0.6 0.8, 1
tangents of the partial press-  Ether z Acetone

ure curves at the ends. - : Fig. 13.
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In order to make possible a more exact comparison the

calculated values of molar fractions and pressures are given in

the following tables together with the data obtained by CuNAErus.

0.165
0.383
0.490
0.636
0.808
0.844

1.000

TABLE 6.

Molar fractions of the three chemical species:

Direct
1.000

0.859
0.701
0.622
0.498

0.273
0

0.165
0.383
0.490 -
0.636
0.808
0.844
1.000

c

Cale.
1.000
0.859
0.707
0.629
0.504
0.316
0.269

0

Cunaeus

185.6
159.5

130.1

115.3
92.5

50.8

0

Direct
0
0.136
0.231
0.268
0.317

0.352

. TABLE 7.

Cale.
185.6
154.9
131.2
116.7
93.6
58,6
49.8

C

Calec.
0
0.127
0.221
0.255
0.303
0.362
0.371
0.435

Cunaeus

0.
21.7
36.7
42.7
49.8
59.7
69.6

Direct
0
0.015
0.068
0.110
0.185

0.375

Total and partial pressures.

Calc.
0
20.3
35.3
40.7
48.5
57.9
59.4
69.6

B

Cale. -
0
0.014
0.073
0.117
0.193
0.322
0.360
0.565

Found
185.6
181.2

- 166.8
158.0
142.3
117.0
110.5
69.6

x!

Waals

0
0.12
0.22
0.27

0.35

0.54
1.00

Calc.
0
0.113
0.212
0.258
0.341
0.497
0.544
1.000

Calc.
185.6
179.7
166.5
157.4
142.1
116.5
109.2
69.6
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200

150

100

.50

50
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z

Acetone
Fig. 14.
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. 'The mblar fractions of the three.chemical species under the
heading ¢ direct”” have been calculated more ‘directly from the
data of Cunarus by means of the following equations,

_ Q=P
_ P
C«=Te0
O = 1-C,—C.

The empifical molar fraction of the gas phase has been

calculated as follows:

o = De
Patp

the calculated partial pressures being employed.

It is quite probable that the other value for the vapour
pressure of the puré chemical species C;H,O, that is =, = 162,
is more in accordance with the facts.” But the exact determina-
tion of tangents from curves being very difficult, better agreement
could hardly.be expected. ‘At any rate - the foregoing s’ quite
enough .to  demonstrate thatgoi;r :clléory is-not'a purely hypothe-,
tical construction which corresponds to no reality. - '

(8) Boiling Poin“"?t "-u‘nde‘r‘ Constant: Pv*essure
. Here we' Imajr proceed as in § 2 (¢) of the preceding chapter.
In equation (44) . '
- Cumat Cgmg+ CPy= P
we have now to consider -P.as éonstar'it; 'a‘hd the- molar- fraétions‘

as well as. the vapour tensions of the pure chemical species as
fanctions of temperature. Ci efc. can be expressed as explicit’
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functions of 7' and z by solving equations (33), (34), and (35),
in which & is to be put, as in:equation (32),

g8z T

Now denote the given pressure by P, and remembering that

) ch T

— 0
P
Cpm ,
5 =
CF,
—c
Y

where C.' etc. are the molar fractions in the gas phase, and that

v =T
.
=
T
poszeb(l_T?) o

in which 7. etc. are the boiling points of the pure chemical
species under the given pressure, and 4 is a constant determined
by the same, we have

_la s
Sp“ (1" T’ D’ c'z) eb (1 T )+ Soﬁ (m) 'T) Q’, E) eb (1 T )
' , b( _ﬂ)
+o, (@ 1,0, ) e T/ = 1......(50)

for the equation representing the relation between the. boiling
point and the composition. This equation can indeed be employed
for the calculation of the boiling point, but it is.too complex
for general discussion. Hence the study of the boili'ng point is
not so well fitted for elucidating the chfalnidal conditions of the
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solution, as the study of vapour pressure at a constant tem-

perature.

(¢) The Equilibrium between Liquid and
‘ Solid Phases.

It has been shown by BECKMANN in his well known cryo-
scopic studies that the depression of the freezing point caused
by associated substances such as alcohol in solutions in normal
liquids, as for instance benzene, is sometimes far less than might
be expected. This has been further confirmed by the investiga-
tions of various savants and particularly by those of AUWERS
and his pupils. J. ScHROEDER (Zeits. physik. Chem., 11, 449 ;
1893) has shown that the fusion curve of a normal substance
deviates considerably from the ideal course, when the other
component}is associated, and indeed in the sense expected.

In the cases in which the conditions of quasi-ideal solutions
are satisfied, the equations of the fusion curves can be readily

obtained as shown in the sequel.

(1) The Solid s the Normal Component.

Since equation (7) must hold in this case, we have by (35)

e .
C={1+(v-1)Cp}(1—z) =ef <To 1') ......... (5L
Q(1_1
or l—2z = M . (52)
. - J.+(U—1) C'B ..................... .

‘where 7j is the melting point of the normal substance. Were
both components normal,
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),

’

W=

l—z = e% (—}'—o—

hence the fusion point 7 for the equal values of z must be higher
in the present case than in the ideal solution.

Since

1 1
C = 1—6’0‘—0(3 =1-Q"Cp —Ug

we get from equation (51).

1 1 _Q_(l_i)
-RVOBV+03=1—8R r, 1/,

Solving this equation and substituting for & its equivalent in equa-
tion (32), we get Cp in terms of 7,0, T, @, and 7;,. Let this be
Oﬂ =F(T,2T, 15,9, Q),

then

F )

T IV )T (0% 10,9, Q)

For example, when v =3

‘ e%<;-'o_'.'}’>

) L_L) (— 9(I-IW 9[-y

12 1eR1 r {1—eR 19T} cB\T T
" +\/ Tz T

s /1 % _,) /{1 ) S|
V T2 A 4 Y

This equation has been tested by Yamamoro,” and has been
found to represent the fusion curve of naphthalene in the system
naphthalene and phenol with a very close approximation.

1) See Art. 11 of this volﬁme, where z denotes the empirical molar fraction of napﬁ-_
thalene and not that of phenol, as'is implied in the foregoing deductions.-
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The fusion point of the normal substance caﬁ, therefore, be
profitably employed to elucidate the state of chemical equilibrium
in the solution. For this purpose the determination of Cp by
" the equation

Q (1 _1
8] e—E(_ﬁ —'l—’) 1
B_((P—l)(l—a:)—u—l ....................

seems to be the mogt convenient. That v must be found by
trial is the weak point in this method. But when its value is
once determined, Cx and & can readily be found. For the
determination of the characteristic quantities », Q, and ¥ three

fusion points -are necessary.

(2) The Solid is the Associated Component.

Of. which chemical species the solid phase of the associated
substance consists’ is a matter of indifference, because the heat
of dissociation or association ‘will be included in the heat of
fusion as it is observed or calculated. But it is otherwise when
the solid phase consists of the mixture of the two chemical
species ©. and 6@. In this case the heat of fusion must vary
with the temperature on account of the variation of the degree
of association in the solid f)hase. As this consideration leads to
- a tolerably complicated result, we shall not discuss it in this
place. ,

"In the following we shall consider the solid phase to be in
immediate relation to the chemical species ©g in the solution.
Then we have By équation (17)

4 _1__L>
Co=eB\TS T/ i, (54)
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where ¢ is the molecular heat of fusion of the solid to a liquid
consisting of pure &g, and 7y is the hypothetical fusion point.
From equations (32), and (54) we get

S ()8 ()

.0“ = ev_R‘ T T vRATLY T/
But as - .
1-C,— g
-l+(u—1) 0{3
we have _
D1 _1N, @1 1) @1 _ 1
l—e R (7)1 (7 T)_eR (7=
T = B o (55)

/1 _1
1+(y_1)e'17(1'0f T)

This is the equation of the fusion curve of the associated com-
. ponent under the supposition made. This equation has also been
tested by Yamamoro for the fusion curve of phenol in the
above mentioned system, but it has not been found in satisfactory
agreement with observations. Whether solid phenol is a mixture
of two or more chemical species, or whether the data employed
in the calculation are at fault can not be determined. . The
subject evidently requires more thorough study.

§ 3. Systems with one Associated and two
Normal Components.

(a) Homogeneous Equilibrium.

In the present case we have four chemical species S., Sg,
&, and &,, the last two of which are normal substances. Their

molar fractions must satisfy the following equation :

Cot Ot Crt Gy = Luverrreersrereennen, (56)
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It is quite clear that the chemical species &, and &, are
symmetrically related to the other chemical species. If we put

01+ 02 = 0,

we get quite the same equations as in the foregoing section, and
the relations found there must apply to the present, case without
any alterations.

Now let the empirical molar fraction of the associated
component be z, and those of the normal components, ¥ and z;
then we have

_ C,+v OB _ C,+v 0@
v= Corv e+ 0+ G, T+(—0)0Cg ™" S
— G i
Yy = THEEI) Gy s (58)
— G,
7= TE oIy g, (59)
and z+y+z=1.
, y
These equations  together Ca //’-’ '/'
with (30) enable us to deter-

mine C,, Cs, C, and G, as
functions of the empirical molar
fractions. As (s must have a
constant value for Ci+C, = C
= constant, it follows from (58)

and (59) that y+2z = constant. -

But this is equivalent to z =
constant. The surfaces of C,
and Cp must therefore have the

forms represented in Figs. 15
and 16. The locii of the points
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on the surfaces having equal
values must be straight lines
parallel to the axis of y. The
projections of these locii upon
the planfe of composition may‘ be
called equifractional curves. In
the present case they may also
be called equipotential curves,
because they are the locii of
points at which the chemical
potential - has. equal values.
These are of course straight
lines parallel to the axis of v.
The surfaces of €, and C,
are perfectly similar, hence we
need consider but one of them.
The surface is bounded on one
side by the binary curve Fig.
12 7, and on the other by a
straight line as shown in the
annexed diagram. On solving
equation (57) Cp can be ob-
tained as an explicit function
of 9, T, T, and z; and the
equation for the surface of C
has. the following form
¢, = ,
y{l+(=1) ¢ (D 2, 7, 2)}...(60)

&,

&,
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y

N

©.
Fig. 17.

As Cp is independeht of ¥ we have for constant C, -
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o '30[;
ay VG (61)
dx {1+ (v—1) Cp}*

80, . .
We have seen by equation (39) that T;‘— is always positive,

hence ) -
y .
7w <0
aC
Only at z =0, Txg =0, hence

dy\ _ o
'(%>0- O’

while at the other end where
z2=0, A

dy (v—1) C']. &, T ' 763
= ; 5 < 0.
d-’l}' v COL _(V— 1) C’ :Fig. 18.

: v( Y @

The equifractional curve for € must, therefore, have a form
shown in Fig. 18, being concave to the axis of z at least for

the smaller values of z.

(6) The Eguilibrium between Gaseous and -
Inguid Phases.

As the form of the surfaces of the partial vapour pfessures
at a constant temperature can be readily deduced from the
surfaces of the molar fractions we need not describe them in
this place. As to the surface of the total pressure it is re-
presented by the equation

P = n, Oy+mg Cg+ 7y Ci+ 71, G,

which may be written
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P =y, Oyt O+ {1+ (v—1) Cg} {7 y + 7, (1—z~7y)}
or P=ryCotryCat {14(—1) Co}(1—2) 7o+ {1+ (v—=1) Ca} (m— ) 9.

As (. and (g are independent of y, only the last. term is-
variable in the right side of this equation, when 2 is made
constant. Hence planes erected perpendicular to the plane of
composition and parallel to the axis of y must cut the surface
of the total pressure in straight
lines. This surface is therefore

a ruled surface as shown in
603

ox

the inclination of the straight

Fig. 19. As is positive
lines must increase with in-
* creasing z. The system ethyl
alcohol—benzene—carbon tetra-
chloride studied by ScHREINE-

MAKERS (Zeit. physik. Chem., ©:X S
47, 445; 1904) appears to be

in qualitative agreement with v s

the foregoing result. Yet the S

mutual relation between the Fig. 19.

alcohol and the normal com- o

ponents seems to be more complicated, the decrease of the
. chemical potential on mixing being less than might be expected,
were the conditions of the quasi-ideal solutions fulfilled.

The relation between the boiling point and the composition
will not be discussed in this place, because it is rather com-
plicated and there seems at present to be but scanty field for
application of the results to be obtained.
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(¢) The Equilibrium between Liquid and Solid Phases.

(1)  Solubility Curves.

Let us first take the case in which the solid phase is a
normal component; and as the two normal components must
show quite similar relations it is enough to consider only one
of them. According to equation (17) the molar fraction of &,
in a solution, which is in equilibrium with the solid &,, must
~be constant at a constant temperature. The solubility curves of
S, must therefore have the same form as the equifractional curve
shown in Fig. 18. This has been verified by H. Hirose? in the
solubility curves of naphthalene in the ’system phenol-naphthalene-
chlorobenzene. Equation (61) has been found to represent the
solubility curves with tolerable approximation, the deviation in
the value of z not exceeding 0.015.

When the solid phase is the associated component the solu-
bility curves must be straight lines parallel to the axis of v, as the
equifractional curves of (s as well as those of C; are such. HiroBE
has found that the solubility curves of phenol in the system at
various temperatures almost exactly fulfill this requirement.

We have seen in § 3 (@) of the preceding chapter that the
solubility curves of a component in an ideal solution are straight
lines parallel to one of the axes. But we are not justified in
concluding from such a course of a solubility curve that the
solution is an ideal one, because this is but a consequence of a
symmetrical relation between the components. When two com-
ponents are symmetrically related to a third the solubility curve
of the latter must necessarily be such a straight line.

1) See Art. 12 of this Volume.
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(2) Fusion Surfaces.

The equation for the fusion surface of a normal component
can be obtained by expressing €, in equation (60) as a function
of temperature. Hence from (17) we have

_Q_(_I__L)
Yy {1+ (=1 ¢, T, T a)} =e B T2 T/,

This equation has been found by HiroBe" to represent the
fusion aurface of naphthalene with tolerable approximation, the
temperature of fusion. calculated differing by not more than 1°
from the observed values.

The fusion,surface of the associated component will be re-
presented by equation (55), because the fusion point is quite
independent of y. In the system studied by HiroBe the fusion
surface of phenol is nearly a plane, which deviates considerably
from the calculated surface.

1) Loc. cit.

RS



