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1. Introduction.

From the time of Descartes, many theories of the rainbow
have been proposed, but Airy™® was the first to establish a satis-
factory theory on the undulatory theory of light. Airy’s equation
of the meridian section of the emergent wave-surface immedi-
ately after leaving the surface of the raindrop (y=a2®), was,
hdwever, formed with reference to the tangent and normal to
the curve at the point of inflexion, based on geometrical optics.
This point in -Airy’s theory was afterwards developed in detail
by Boitel,” Larmor,® and especially by Mascart® and L.
Lorenz.® But all the above investigations were based on. the
assumption of a point source of light, and for the actual case

(1) Trans. Camb. Phil. Soc. VL. p. 379 (1838); VIIL. p. 595 (1848).
(2) Con:pt. Rend. May 28, 1888; Phil. Mag. XXVI. P 239 (1888).
(3) Proc. Camb. Phil. Soc. VI. p. 283 (1888).

(4) Traité d’Optique, I. p. 382 (1889); IIL. p. 430 (1893).

(8) Euvres Scientifiques, I. p. 405 (Copenhagen, 1898). . -
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of the rainbow which is due to a source of finite dimensions,
the result holds only approximately. Recently, the colours of
the rainbow have been minutely investigated by Pernter® with
the use of Maxwell’s theory of compound colours. In that paper
Pernter- also calculated the colours of the rainbow as due to a
circular source of light, by a numerical addition of the results,
due to seven point-sources in a straight line, each differing by
5. This method of calculation is not exact, and the result only
holds as a rough approximation (see ante). A

It is to be remarked that Pernter’s values® of Airy’s inte-
gral f* (z), on which the whole calculation is based, are some-
times discrepant -from those originally given by Airy. On
comparing them with Airy’s values, we found three mistakes at
_z¥1.8, 2.2 and 3.6, and Pernter himself, in his second paper,®
remarked that these mistakes came from Mascart’s table and
that they did not affect the final result of his _calculatioil.. For
2>8, on drawing the curve representing Pei'nter’s values, we
_fqui]_d conside‘rabl'e0 irregularity. It seemed therefore adviéabl_e
to repeat the calculation, using Stokes’s semiconvergent series
(see ante). The results of our calculations were always greater
. .than Pernter’s Values, excepting the maxima and minima values.

Some numerical examples are given in the following table

oz . f?: Pernter’s  f*:our’s
88 0189 o 0223
9.4 100 | ,.125.
10.0 240 268
106 022 033
110 170 189

(1) Wien Sitz. Ber. CVL."2a, p. 135 (1897); Neues iiber den Regenbogen (Wlen 1898)
(3) Loc. cit., p. 140. -
(8) Wien. Sitz. Ber. CXIV. 2a, p. 1 (1905).
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In our calculation we did not take the same numerical values
for z that Pernter took. Thus in our values given above which
were: found by interpolation, there are probably-small errors in
the last figures. )

So.far as we are aware, the various calculations are as yet
limited to cases -which, strictly speaking,.hold only for a point
source of light. These considerations have led us to undertake
the follo&jng investigation. It may therefore, be looked upon
as an extension of Airy’s theory to the case in which the source
of light is circular, namely, when the apparent diameter of the
sun is taken into account.

" Next, let us consider the expel'ir;lental side. Miller® and
Pulfrich® verified Airy’s theory in the special case of two
dimensions with a cylindrical stream of water (or glass rod),
and a straight slit as the source of light. But a question sug-
gests itself in connexion with the problem of the circular source
of light—if we take account of the breadth ‘of the slit, assum-
ing its length to be infinite, what difference wili occur ? This

question must be answered.

In the following, we shall start by briefly stating Airy’s
theory, and then proceeding to find differences when the source
of light is replaced by a small circular disk; and after some
_additional notes on the two-dimensional case, the colours of the
rainbow due to. the sun are calculated in two cases, which may
be taken as illustrations of the difference between the poiﬁt and
the circular source; and lastly experimental results will be
discussed. '

(1) Trans. Camb. Phil. Soc. VIL. p. 277 (1841).
(2) Wied. Ann. XXXIII. p. 194 (1888).
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2. Airy’s theory.

Tt will be necéssary, in the first place, to state Airy’s theory
in a form convenient for use in subsequent investigations. First,
let us neglect the visual angle of the drop, i.e. the radius of
the drop compared with the distance of the observer from the
drop (in the case of table experiment, we have to consider the
observer’s distance as infinity, the telescope being so focussed).
Describe a unit sphere having the centre ¢ coinciding with that
of the drop, and let the points o and s on the sphere be the
directions of observer and point-source of light respectively, seen
from ¢, and em be the direction of the ray of minimum devia-
tion in the plane sco.  The position of the observer with
respect to the sun is specified by the angle sco, or by the

~ angle mco. .

- Put

0 = |mco =D — lsco €))

where D 7 — angle of minimum deviation,”
r = radius of the drop,
-+ p = Index of refraction,

p — 1 = number of internal reflections,
and J g1y [P
a’nd ho= Pr—=1)N n*—1

Then the emergent wave-surface, being the surface of rotation

with the axis se, is specified by the curve of the intersection
with the plane sco. Taking the coordinate origin at ¢, y—axis
in ¢m and z—axis perpendicular to it, we have the equation

of the curve

o ) @)
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when we confine our attention to small values of 6; and then
the intensity of light in the direction o is given by

i(0) = const. A2 :0) B

where . A = ()t B
OE e

" Axl) = f: ‘cos —_(u — x0u)du. o (3)

But, if we do not neglect the visual angle of the drop, the
definition of ¢ must be slightly changed. In this cas.ei the ray
of minimum ‘deviation does not pass ¢, but meets the surface of
the drop at a point say ¢. Thus ¢ .must be taken as the
coordinate origin and ¢'o’ the direction of the observer ; t_heh o
is defined by ‘ §
: 0 = |o'c'm. @y
Using this value of 6, and neglecting 76 compared with the
observer’s distance, Wwe may- state the same formula as the above. -
For different wave lengths of light, the point ¢ is slightly dis-
placed but .the amount of the . displacement being neghglbly
small, we may take one position gf ¢ as the coordinate origin
for all the wave lengths of a visible ray.

Airy, expanded f{«) as a power series of 4, which is not
convenient for a practical calculation of values for x0>3, though
it ledys remains convergent. On the other hand, especially
for lalge values of 4, the following semiconvergent series taken.

from Stol\es“) can- be employed with advantage :—
/(0)= 22374 (6) % M cos (,1— a o)

where - . pf(’ff),

(1) Collected Papers, II. p. 329 (London, 1883).
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M=1-0.0347p"%, _ tan 6=0.0694p7'; . .. . v

or, a pproxnnately, T ORI
f} ;} \_,Sl 0 1 }
/(10) 2 3 (z(j) S 7T \3 > T

Tt must be remarked that both expansions only .represent
Sfb) for 6>0. But for §<0, fixf) being a function having no
characteristic .prdperty, it is at once seen that no important dif-
ference appears between a point and a circular source. In the
following discussion the places where §<0 are therefore excluded. -

3. Remarks on Airy’s theory.

" In his paper, Airy confined the value of # within -2°, but
he did not exactly determine the limit of approximation in his
theory. Also he did not discuss the dependency of the ‘intensity
of the rainbow on the wave length of 'ligbt. Pernter applied®
Airy’s theory for §=16° not only to determine the posit;ioﬁs of
nidxinm'and minima, but also to calculate the amount of inten-
blty, and he said® that 6 might be 20° or 30°. Mascart took®
as the value of A of (3,) at ﬁrst T

\ 4)2 2‘%
: (cos-ﬁlz ) ’

and then modified® it to the form of (8,) taking ‘account of
dimension. ' ' ’

We shall have to examine these points 'in detail, before
proceeding to our discussion. First, in the equation (2), there
was neglected the term of «* compared with 2*. Differentiate (2)
with respect of z and

(1) Wien. Sitz. Ber. CVL. 2a, Tab. I, 1I (1897).
@, w oy OXIV. 2a, p. 6 (1905).

(3) Traité d’Optiques 1. p. 394 (Copenhagen, 1889).
@, »  ILT p. 487 ( ,, 1893).
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dy b _,

de — a?x% ’

dy _
put dz =tane , .

‘then e, bemg the angle between the tangent to the wave-front and
the z-axis or the angle between the wave normal and the y-axis,
is of the order Of 6. It follows that z is of the order 6%, This
shows that in (') 6% was neglected as compared with 6

Secondly, the phase difference at a point z, 9, z on the wave-
surface is easily calculated f'rom the equation (2), the z-axis be-
ing perpendicular to the z and y axes. Represent the position
of the observer -by"é‘, 7, o, then the phase difference is

0= «/(Cc~—')+J 77)+? «/g+/,,

or 3 0,+90, ,
’ i . h & 2

S = 3——_“ . =_‘
where =~ . 9 P e .0 5

-~

x, z, £ being small compared with 7. Then the intensity,‘ being
proportional to the squale of the amphtude, is given by
° i0)=VI+VE, .

where Vc'—‘**f“ cos22§ds "V, ——fa sin
vy VR ) .

o rla

do being the surface ‘element . ‘of the. Awa,v'e_ surface, and a the
amplitude of the wave. In the case of B spherical drop, we .
have to put v 00 oLl L S

o« =" or siﬁ I I, |
where I is the angle. of incidence of the ray which has péssed-
through ds, and ¢ depends on I n, P, 1ep1esent1ng the effect
of polarigation - _
or Ca = or sin (I +7)
. where I0 is the angle of  incidence of a ray of minimum dev1a-

tion and y=1=I, But in the posmon of minimum dev1a.t1on
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de d%
=0 =
& ) 7 =finite,
ie. e is of the order 7’, or 7 is of the order of ¢:.

Thus, if we again neglect 6% as compared with unity, i.e. 62 com-
pared with 6, we have

a = const, r
:In the case of the mrculal cylinder, we have simply

a = const. ‘
Thus, putting do=dz dz and taking the limit of the 1;'i1tegrati0n
from —0 to + o

o o '7 +o o
V,= const ff 08 —‘)io dx dz, ’3" const ffsm 225 dedz
where cos 3 0 =cos (3 +32)
=¢0s }7r 6, s 2/” , —&in } T3, sin 0; Oy .
Therefore
: o N
V,= const. (o 2n 0, dmfcos 2n Oxdz .
. Ay : 2. J /
In the first part of these integrals put
_( 62 \3 :
‘”“( 2 )“_’ (m
. - . .
then fcos -2)77_3 dex _( Ar? )g’;fcos 5 —(* —xﬂu)du ,
. 2
and in the second part z2=~277—b‘2

+x

“1A;he‘n . fcos—'—adz__N//177 fcos—zﬁdv—/i

He'née g V = cy_sf_ (—)T_) f €08 ?(u —-xﬁu)du B '

o
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and similarly for V,

+ 1
V const, fcos 2z 8, dacfSin 2n Opdz=V, . »
38 17 a A . 4 ' )

Thus, for a spherical drop

z(ﬂ)—const( ) fz(/ﬂ)
and for a circular cyiinder

1 (6) =const. ( 4 )?f («0) . .

Of course, if we leave 2 out of considera.tion, we may take as

the expression for V, and V,
+w

2; 2
V,,:const.fcos_—r_ﬁjdx , V,=const. fam T

5 0,dx=0,

-

as Airy, J, being small compared with &

~Airy’s theory holds good only when 0% is neghmbly small,
in other cases the theory must be essentially modified. If r is
not negligible, then we have to take into account the dependency-
of the intensity of light on the angles of reflections and refrac-
tions, namely the effect of Iiolarization as indicated ‘by Mascart
and Lorenz; on the other hand the form of the wave front must
be modified by adding a term of z*. Thus some of Pernter’s

calculation for large values of § can not be regarded as exact.

4. Extension of Airy’s theory to that of a
circular source.

Passing now to the case of a circular sdurce of uniform
intensity, the apparent diameter of the source 2d will be sup-
posed so small that we can neglect '®* compared with ®, and

confine our attention to _the neighborhood of the minimum
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deviation, so that Airy’s theory applies. It is most convenient,
in this case, to neglect the visual angle of the drop. Take the

Fig. 1. elementary area of the projection s of
the source on the unit sphere, s be-
iffg that of the centre of the circular
source, and denote the angle between
s's and so by ¢, the angular distance
between s and s by o, the angle sco
by D—6 and the angle s'co by D—=z.

Then, in the spherical triangle ss'o,
we have the relation
cos (D —a) =cosgcos(D — ) + singsin(D —)cos¢y ‘
which reduces to the form
x="0+ ¢ cosgh,

since z, 0, ¢ are small.

The intensity of light at o due to the elementary area s’
which is equal to ¢de¢ d¢, is expressed by

1 (0)=const. A f*(xx)
odydy

77

1
=const.( o )3.}”2{2(04—500059/))} ;

from which it follows at once as the expression for the total

intensity in the direction co, that
1(6, ®)=const. AF(x, @, x8) 4)

. . ® on
where (5@ =—gr [ [ ededgpix@+eenl, 4
. 0 0

(2 )3
A _( h*A ) ?
S0+ pcos¢)} = f cos% {u - #(0 + ¢cos ¢)u}du .
0 _

Thus the function f* in Airy’s theory is replaced by a

more genéral function F. From the form of the function f?
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and F, the difference between a point and a circular- source is to
be found. f*(x0) does not change for different values of # if we
reduce the scale of 6 properly, because it is a function of 0,
but not a function of » and 6 taken separately; this however,
does not hold for F, which is a function of =« as well as of 0.
Thus it is necessary to consider F more in detail, though its
evaluation as a function of z, @, and x0 is by no means easy.

If 'we try to expand fQ{/(lf-HﬁCOSy)l in a power series of
xocosg, then its coefficients gradually increase -with x4, and are
very inconvenient for values of 20>1. If we change fz{z((?ﬂocow)} :
to a double integral

S0+ goosp)}

OV R b0sdh N .
f o5 {x 2(0+ gocosy)w}dmf 2 { /(0+gocosy) J}dy

%f chf Jy[cos?{m + —10(904‘?/)}

— smT{x’ + - xl(xc+ g/)}

]

'u

5 cossb(ww)}

{Aso cos¢h(z+ 1 J)}

- cos.

g {af — P — 2l — y)} cos-%—{zgocosgb(x— y)}

—_ sin.-g_{zﬁ — 1yt — bl (x— y)}m %{ 2@ cosd (x— y)}]

and integrate with respect to ¢ and ¢, by using the relations of
Bessel’s function

Jy(w)= f :cos(wcos;t)cl;z ,

3
0 =f sin(wcosp)du |
0

andl ' ;JU {wsJ (1/10)} 4J0(1/ w) ,
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then the final form is

w Mo Jliixfb(w-l-y)}
f f dx dy[cos%{ocs + 9P — 0z + y)} 2
0 0 ¥4 T

»i)’—z(l)(w-i- 7))

Js {—g—zd)(a: - ?/)}

— (@ —y)

. SVEATENPEVE L A
Putting w—x(—;r— y=y'\— =z —

+ cos—g— {m3— Y’ —xl(x— y)}

and Y =—y in the latter half,
then applying the well-known sequence equation of the Bessel’s
function '
< Jiw) _ 1§y
1(50) =T{J2(w)+J0(zv)} )

this can be reduced to the form
@w -tw
f fcla:’dy'cos {m’3+y’3-—x’0(x’+y’)} [Jz{z’(x’—i-y’)} +J0{z’(m’+y’)}] ,
0 - )

which is almost intractable for practical calculation.
If we transform the variables ¢, ¢ to z, ¥ which are given
by x=g¢cos¢, y=¢sing, and then integrate with respect to 7, we

arrive at the expression

1 ‘ 9 [ e e
¥z, @, 20)= o5 | d (ZW)N/(ZGD)Q — (@) (20 + 2) . 4"
A

This form is most advantageous for the numerical calculation of

I by means of mechanical quadrature.

5. Case whére the visual angle of the drop is
not negligible.

In the preceding article we neglected the visual angle of

the drop, ie. r as compared with the observers distance, but
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when this ‘is not the case, the consideration is more ¢complicated.
Firstly, let us consider the case where the source of light con-
sists of three points s, sg,.s3 lying in a plane perpendicular to
sic at a great distance. In the plane s¢ o, the intensity of
the rainbow due to s, is | '

i, (0)=c, A f20) |
where 6 1'eprésents the angle B, A; O, B, A, being the direction -
of the minimum deviation due to s;,. Suppose that s, lies in
the ‘plane sléo, and its angular distance ¢ from s, is small ;
then the intensity due to s, in the direction A,O or A,0 is

f)=cA ﬁ{z(0+_ 50)} .

Next suppose that s; lies in another plane s;o, and its position
is represented by ¢’ and ¢, where ¢’ is the small angular dis-
tance of s; from s, and ¢ the angle subtended by s, s, and s, s, °
Now then, in the plane sco there is' no direction parallel to

°
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A,O, but there exists a direction which makes the angle § with
A; B;, and the intensity in this direction is given by

i (0)=cA f"{x(ﬂ + go’cos;b)} .
Thus, in the plane s,co we have as the total intensity
§(0)=1,(0)+4,(0) ,

and in the plane ssco
o'(0)=1.(0) -

In this case,’ therefme thoudh +(6) and () do not exist in" one
direction nor in one plane, they exist in the same arc of the
rainbow which is specified by 6. Hence, the distribution of the
intensity of the rainbow can not be considered as uniform along
the arc of the rainbow.

The above method is directly applicable to the case of a
circular source of light. To determine the position of a point
in the source of hght take the centre s, of the source as the
origin from which ¢ is measured, the diameter D, of the source
which liés in the plane s,co as the axis from which ¢ is mea-
sured, and-the direction of the" miiﬁmum deviation due to s, as
the y-axis from -which 6 is measured. Then, in the plane ssco,
the intensity of the rainbow is given by

1(6) =const. A f ” fl{x(ﬁ+gz.>)}dgoh, (@)

® being the a:ngular radius of the circle. Pernter took this in-
tegral as the general expression of the intensity of the rainbow
due to a circular source of light and condemned our result, but
- this holds only in the plane sco. ILet us consider another plane

which cuts the source in another line L and contains ¢ and o. -
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Then, the line I. does not pass ‘the centre of the source, but
is approxiniately parallel to D,. Representing the angular dis-
tance of L from D, by y, and the angular length measured
from the middle point of L along L. by =, we have as the in-
tensity due to L in the direction 6 in the plane Lco,
+/ DT =37
1(0)=const. 4 [ f2{x(0+x)}dx . . (®)
/T
This value of I(6) being a function of 7, holds for any plane
which contains a part of the source and ¢, 0. For a particular
value y=o0, (b) reduces to (z), and when y=®, I(d) becomes
Zero. ' ‘

The above discussion shows that, in general, when both the
angular diameters of the source -and of the drop are not, negli-
gible, the inteﬁsity of the rainbow can not be considered as
uniform along the arc of the rainbow; and exact in%resnt-igation
is almost impossible unless we are informed of the distribution
of the drops. Again, if we consider the drop so large that the
distance of the lines A,0, A;O in Fig. (2) is greater than the
pupil of the observer’s eye, the result must be considerably
changed. ' _'

’ If we take the mean value of intensity I(6) a,loﬁg the arc
of the rainbow which is specified by ¢ as

o /T
I (6)=const. Af J‘/ . ﬁ{z(0+w)}dydx -
0 5 @Z_y‘-’ .

. changing the order of integration, we have

L) —const. A f " ~/ D — g /“-’{,T(g~+ ?0)}
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. or T.(8) =const. A f‘/— ’ d(zoc)./?{z(0+ w)}~/(sz)2— (z2) .‘

This coincides with (4), ie. the result when we neglect the
angular diameter of the drop.

6. General nature of the intensity curve.

It will be advantageous to consider first the maxima and
minima of I as compared with those of f2, and then to discuss
the general character, and finally proceed to .the numerical cal-
culation of F. In the expression (4') in § 4 put *x=2, then

o +% ®
F(x @, 20)=m;“zlgf dzpf (x0) =2 f*(x0 +2) .
s .

Thus the maxima and minima of F are given by

° VA

f dz~/(zga)2—zg—£—{f9(zﬁ+z)}='0;

-7~ d

+7% @

| anfeor—sg-{ruoeal=o.

~%4 D

Or, putting the mean value of 1/(x¢)'—# in the integral, we
arrive at the approximate relation
SH(x0—2@) = f2(:0 + xD) .
For smaller values of 6, especially at the first maximum, f?

has no symmetry on ‘both sides of the maxima and minima
(see PL I.); so that the first maximum of F receives a small
displacement towards #=0 as compared with f? This displace-
ment becomes smaller and smaller for other maxima and minima.
For larger values of 6, as f? is nearly symmetrical on both sides,
the maxima and minima approximately coincide with -those of
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J?; nevertheless it does not follow that the maxima for f? always
remain as maxima for F. ' )

For the consideration of the general character of F, we
shall begin with that of f*. By Stokes’s expression

sin?z(%a—)

1 } — 1 _
ST B V3

ol

N:L;:

2 1
j‘-’(zﬁ)=_1/,_§ 1 Ucosz{(——)

‘ 1
2 3 < . - . i h

S is composed of two terms: the mean term WERVeTE and the
oscillating term, whose amplitude.is limited by the same numer-
ical factor ~1/5le/—/;0- ; ph_erefor_e at maxima f? increases to 2%
(mean term) and at minima decreases to zero. But the character
of I' is slightly different, since '_
V 9 +r® e : 1 sm2n(‘0;4) )

F ‘.,(1) 0 ='—~q——;f /\/ —& ( .

(/- »#0) 7®%* J dz (‘90) / V'3V 20+ 2 _ 1/31 /0-}-7 .

-7

a3
2

The first term is equal "to

9 +rE

207 f dzA/("P) - /51//0\ 2/0 + .. ):

—-7®

and leads. t6 -the.'same mean term so fér as the ﬁrst order of

. 2D
':0,_ is concer ned. But the second term, after puttmo m4 i@ as

Lhe ‘mean Value of 1/(:992 H? s and 1nte0ratmg with respect to

‘a-‘new " variable 2u< /0;2) becomes oL

cos‘? (Xﬁ_l(b)

PEF SRV

3
2

0059 (/0+A®) '. s1<n27r'(v 4. > m(]/s TA(I)1//0)

Grx®xl . 3@l -
Thus the amphtude of the oscillating - term is hmlted by
sin(y/3mx®+/ 26) . -
— St . which is much smaller thanA Yo 1/ 5 and, more

over, this may be positive or negative according to the sign- of
syn(;/suxdn/‘d). For the smaller value of @,

e

1_ b
37x0A0 ecomes
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larger and the period of sin(;/3 7x®/x) is prolonged; in the limit-
sin (/3 7x®1/48) ‘

3zt V'3 /20’
pected. Also for smaller values of x i.e. of 7, the same reason-

ing case ©=0, becomes equal to as ex-
ing will hold true. Thus for large values of ® and r, the differ-
ence of the two cases becomes manifest.

From this approximate expression,

3
- 1 sin Qr:(%) sie(3/3 zz(lh/z—y)
VBV 3axbzY

it follows that F does not increase at maxima to 2 x (mean term),

, 1 .. .
but only to (mean te1~1n+w); and at minima 1t does not

9
. e - 1
. o (mean torm— R
diminish to zero, but only to (mean term 3m<<pzd>’ moreover,
for values of 6 for which sin(y/3mx®1/26)<0, the maxima of
. z0\3 .. . . .
Sm?ﬂ(T)i changes to minima and the minima to maxima.

Finally, the expression for the intensity being

X ‘
7 3
i(ﬁ):const.( ;L‘Z ) J(x0) for point source,

1
7\3
I((’;‘D)‘—“COUS'&( ;:2 ) F(z,®,%0) for circular source;
it follows, first, that for larger values of ®, the difference of (6)
‘and I(6, ®) becomes larger; secondly, that for larger values of 7,
the difference of maximum and minimum values of ¢(f) becomes
larger in virtue of 75, but for I(6, ®) at the same time it is

diminished by the presence of F.

'7. Case of the cylinder and slit.

We shall now treat the case which has often been tested
by experiment with the glass rod, and straight slit as the source
of light. In this case, if we neglect the breadth of the slit,
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Airy’s ‘theory applies as well as in the case of the spherical
drop, when we change the value of A

(0) =const. A’ f*(x)

e (o
where A _(h“).) .

oo

If we take into account the breadth of the slit, there is no
difficulty in applying reasoning similar to the above, to arrive
at the expression

) 4

I*

1
I(f,d)=const. ( )31?1(;{, O, 0)

P
F, (2, @, )= f P+ 2y
e

where 2¢= the angular breadth of the slit as viewed from the
centre of the glass rod. Or putting z=zp ,

+ @
(@, )= [ fz{z(0+ga)} dg .

This coincides with the integral at (¢) on which Pernter's cal-
“culation was based. Hence, wé see that Pernter’s integral holds
good. for the case of slit and cylinder, but not for the case of
circle and sphere. A

The difference of the expression of A in the two cases of
sphere and cylinder was not discussed by Airy and others; but
-the existence of the difference is evident from the geometrical
theory of the rainbow,‘in which the intensity is proportional to
7 in the case of the sphere and to 7 in the case of the cylinder.

In § 6 we always substituted the mean value of +/(xpf—7
before integration, so that the expression for I’ becomes only

roughly approximate; but in the present case, there being no
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such term as v/ (xpff—7, this expression for F must be taken
as nearly true. ‘ _
Thus the maxima and minimia of F; are given by

S0+ 2D) — f (20— 2D) =0
and to determine whether they' correspond.to maxima or minima,
we have to consider the sign of

{ Sl D) —f? (70—/@)}

il

This being given by the directions of the tangents to the curve
of f* (PL. T) at the points x0+xD, and »J—xb, we see at once that
when the intervals of the consecutive maxima or minima are
greater than #®, maxima of f* correspond to maxima -of F, but
when 0 exceeds the intervals of the consecutive maxima or
minima, the maxima of f* correspond to minima of F. '

The maxima and minima not only interchange places at
certain points, but the interval hetween the maxima and minima
slightly increases, as a consequence that the first maximum be-
ing displaced towards ¢=0, while the higher maxima, showing
the same- tendency, are displaced. by smaller amounts. In Pul-
frich’s experiment, where he takes the third maximum as
standard, the first and second are displaced slightly toward
¢=0, and the other to the opposite side, as compared with
Airy’s values of f? This displacement may be paltly due to
the breadth of the slit.

8. Numerical calculat_ion.

For numerical calculation we must have recourse to mecha-
nical quadrature. The method of procedure is as follows :—

Draw a cicle having the -centre at 0 and radius equal to @,
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then plot a curve whose ordinate is equal to the product of the
value of f* into the corresponding ordinate of this circle; the
area of the new curve divided by the area of this circle is the
value of F at x0. The following table has been made according
to this method. ' o ‘

20 =apparent diameter of the sun=32'

%0 :T(except 0) max. and mini. of Airy’s value.

In Table I |
F,:r=0025 cm.  2=5893x 10~ cm.  x=120.95
F,:7=005 om.  2=5803x10 om.  x=192.00

TABLE T.

T e F, F,
0 0.443 0.447 . 10.465
1.084 1.008 0.930 0.840
'2.495% "o.ooo 0.103 0.228

- 3.467 0.617 0.497 0.362
4.363 0.000 0.124 0.237
-5.145 0510 ©0.378 0.266
5.892 0.000 0.133 0.235%
6.578 0.450 0.300 '0.206
7.244 0.000 0.140 ©0.223
7.868 _ 0.404 o.25"4 - 0177
8.479 . . 0.384 0.230 0.164
9.060 “ 0.000 0.148 o 0.199
10.177 0.362 : :  0.207: 0.155
10.716 0.000 0.150 0.195

The graphical representation of this table is given at the
end of the paper, where f* is represented by the dotted, F, by
broken and F, by solid lines (PL I). '
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In Table II :
F,: r=0025cm. ~ A=6302x 10~ cm,
F,: I © 2=5211x10"% cm.
F,: ” A=4659 x 10~% cm.
TABLE 1L

%0 F, F, F,

o ©0.449 0.456 0456
1.084 938 927 912
2,495 097 121 139
3.467 492 473 451
4.363 119 148 . 166
5.145 " 380 351 333
5.892 126 150 173
6.578 306 281 265
7.244 133 154 175
7.868 250 230 216
8.499 135 155 - 174
9.060 232 207 166
9.630 137 159 176
10.177 209 190 176
10.716 138 . 162 177

In Table IIT
F, : #=0.05 cm. 4=6302 x 105 cm.
F,: ” v A=5211x10"% cm.
4F,, : ’ A=4659x10"° cm.
TABLE III.

xﬂ‘ ' F, ¥, F,

o} 0.482 0.484 0.484
1.084 . - 869 - 837 . 814
2.495 215 262 . 290
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'

TABLE II1. (Continued).

z0 N ' F, F,
3.467 0.394 0.353 10.326
4.363 . 231 267 293
5.145 263 237 230
5.802 222 253 262
- 6578 216 . 199 " 189
7-244 223, 237 237
7.868 166 169 181
8.479 ' 208 - 209 204
~ 9.060 : 166 165 - 162
9.630 202 204 204
10.177 163 155 136
10.716 o187 196 197

In the case of slit and cylinder,. the method of mechanical
quadrature is simpler; the mea_n value of f* in the interval
# —x® and 0+ x® representing the value of F, at «6. Pernter’s
method of calculation - which we have described in §°1 is appli-
cable in this case only. He calculated the case where »=0.025
cm., and compared®” with “our result, shows that there was no
great difference in both results. This fact shows that there is
no great difference in the two cases, of slit-cylinder and of
circlé-sphere. Thus, fortunately, Pernter’s method of calculation
applies as a rough approximation for the case of circle-sphere,
though his reasoning was not exact. It seems rather curious
that in his calculation for »=0.05 cm., we can not find the
general nature in § 7 ; when the interval of consecutive maxima
or minima of F is less than x®, the maxima and minima

interchange.

(1) Wien Sitz. Ber. CXIV. 2a, p. 13 (1905).
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9. Colours of the rainbow.

Pernter calculated the colours of the rainbow due to the
sun, but his calculation was not sufficient to establish the above-
mentioned results. We repeated the calculation for two cases.
The theory of compound colours being the subject of much
dispute, there is as yet no settled opinion. But we can admit
that, excluding the physiological and psychological points of
view, there are three primary colours, as Maxwell’s experiment®
shows. For the discussion of the colours of the rainbow, we
may conveniently take only these three primary colours, in
such a ratio as to produce white, and proceed in the manner
indicated by Maxwell.

We take the primary colours

. 2=6302x 10~ cm, 5211%x 1078 cm. 4659 % 107% cm
(Scarlet) = . (Green) - . (Blue)

corresponding to Maxwell’s

| (241 [46] - [64]
in the ratio 1:1.62: 1.60, so as to pxoduce white,
and  n=1.332 1335  1.339
whence . D=42°22  41%0 = 41°21
and for r 0.025 cm. | A » R

Ta=i1s3 1816 T 1420

for 7=0.05 cm. e
| Tx=1830  209.0° 2269 "

Thus we obtain the values of F given by '1ab1e IT and
Table III in thevprecedmg a.rtlclg. The results of cornpouqd
- colours represented by Pl. IL...... Pl. V, Pl. Il and PL IV

(1) Scientific Papers, I. p. 410 (Cambridge, 1892).
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corresponding to the case of the point source, and Pl IIT and
Pl. V to the circular source (20=32" mean angular diameter of
the sun), 7 in PL II and Pl III being 0.025 c¢m., and in Pl
IV, PL. V 0.05 cm. The intensity of the scarlet ray is given
by dotted ; green by broken; blue by solid lines, and the sum
of the three intensities, ie. the total intensity, by curve (1),
which is compounded of a portion of white and a portion of the
two primary colours. ' ‘
- For example, in P1. IT:—

T at 41°5 consists of 27 percent. scarlet, 48 I;ercent. green, 25 i)ercent. white,

40°5 s 14 blue, 14 ,  scarlet, 72 ,,  white,
38>, 23 green, 77 ,,  blue, 0 white.
In PL. III:—

Lat 41°5 consists of 24 percent. scarlet, 43 percent. grecn, 33 pel:cen t. white,
40°5 ” 21
38° ‘

. blue, 9, scarlet, 70, white, .

' 9 ., green, 19 ,,  Dblue, 72

, . white,
where the angles correspond to sico=D—8 in § 4.
 The above -calculation shows -that in the colours of the
supernumerary bows due to the sun, white predominates, and we
can not distinguish many numbers of the supernumerary bows.
This explains the fact that the rainbow in nature is accompanied
by only a small number of supernumerary bows, while according
to Asry's theory lhe rainbow ought to be accompanied by numer-
ous bous. : S
According to § 6, we notice that the difference between the
maximum and minimum values of intensity increases with -the
size of the drop for a point source; .but for a circular source
the intensity depends on two factors, one of which enjoys the

same property as for a point source, but the other producés a

'
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contrary effect. Montigny® says that supernumerary bows are
numerous when the drops are small. This holds for ‘the case
of a circular source and supports our view, hut he considers this
as the result of Airy’s theory, ie. of a point source, which we
cannot understand. )

10. Summary.

From the above discussion, we obtain the following result,
where (1) represents the case of a point source, (2) a circular
source~:¥ . o .

(e) The positions of the maxima and minima of (2) ap-
proximately coincide with. those of (l). Strictly speaking, the
first maximum of (2) is displaced by a small amount towards
0=0 as compared with (1), and for other maxima and minima.
this displacement becomes smaller-and smaller. But the maxima
of (2) may correspond to the minima of (1), and the minima
to the maxima. S '

(6) - The value of (2), which corresponds to the maximum
of (1), is smaller than that of (1), and the value of (2), which
corresponds to the minimum of (1) Is greater than that of (1).
This difference between (1) and (2) increases with the value of
¢ (ie. with the increased diameter of the source).

(¢) As the value of 6 increases, the maximum value of (1)
and. (2) gradually decreases. While the minimum value of (1)
alwé.ys remains O, the minimum value of (2) gradually increases
until it becomes equal to the maximum value and -assumes a
stationary value, then the maxima and minima interchange, the

difference of the maximum and minimum values at first increases

and then decreases, then again assumes a stationary value, and

(1) Phil. Mag. IX. p. 389 (1880).
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so on. If in this interval between the two stationary values the
maxima of (2) correspond to those of (1), then in the next in-
terval the maxima of (2) correspond to the minima of (I).

(d) For larger values of 7 (radius of the drop) the intensity
of (1) and (2).inereases by r5.  But at the same time for (2),
the difference between the maximum-and minimum values is
diminished by another- factor F. '

() -The above is more nr;anifestly shown in the case of
the laboratory experiment with a cylindrical glass rod and a
straight slit as the source of light’.. The stationary points of (2)
at which the maximum value coincides with the minimum  are
" easily found by

x*®=m x -interval of the maximum and minimum of (1),
where m represents an integer.

(f) " According to Airy’s. theory, the law of the distribu-
tion of the colours of the rainbow is independent of the magni-
tude of the drop. But in the case of the finite source, the
colour distributions are changed by the magnitude of the drop,
'espe(nally in the supernumerary -bows.

(9) The supernumerary bows almost lose their colom as
the consequence of the finiteness of the source. This effect is

more remarkable when the drop becomes larger.

1. Note on the experimental side.

‘To show the above-mentioned results, we repeated rough
experiments with glass rods and a’ straight sht as the source -
- of light.

Using homogeneous light, we see that when the slit is vefy

‘narrow the phenomena nearly ‘coincide with Airy’s theory, and
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that when the breadth of the slit is increased, the positions of
the bows (or fringes in this case) change very little. As an-
other effect of the increase of the breadth of the slit, the bows -
become indistinet, especially the supernumerary bows. This
effect is remarkable when the diameter of the rod is large. We
could not observe the turning point, at which the maxima and
minima interchange, as the difference of  the intensities is very
small. But we can roughly say that the point at which the
bows become almost indi'stinguishable corresponds to the position
at which the angular breadth of the bow coincides with that
of the slit. , '

Again, using white light, it is easy to see that the colours
of the supernumerary bows change when the magnitude of the
rod is changed, ‘and that the supernumerary bows almost lose
colour and become indistinct when the breadth of the slit is
increased. '

"In the table experiment, we always observed that, when the
breadth of the slit is not too large, the supernumeraty bows are
numerous for a cylinder with a large radius, but fewer for a
small cylinder. This fact may be -explained by the presence of
the factor r%. In the case of natural rainbows where, as Pernter
indicated, the supernumerary bows were observed when the drops
were large, we can not take into account the factor 3 directly,
because the intensity depends, at the same time, on the number
of drops which are contained in a unit volume of space, and it
is -pfobable that when the radius of the drop is large the num-
ber of the dropsis sinall. For instance, let us take the cases
r=0.025 cm. and r=0.05 cm., and suppose that the quantities
of the drops per unit volume is equal in the two cases, so that
‘the ratio of the numbers of  the drops is 2°:1, and that the
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intensity of the rainbow is proportional to the —g—th power of
‘the number of the drops. Then, the numbers in the curves in
Pl III and Pl V are increased by 22(0.025)% and (0.05)3
or 1 and 1.26 respectively, and we see that the ‘intensity curves
of the former are sharper than those of the latter. Thus, the
“above result of observation is explained only by saying that there
~ was a comparatively large quantity of drops. But, we have
another cause on which the above observation must  depend ;
namely, the imperfectness of An'ys theory for large values of 4.
In the strict sense, we can not compare the corresponding
supernumerary bows due to two drops of different sizes, because
the value of ¢ being different, the approximation of Airy’s and
consequently of our theory is not the same in both cases. So
far as Airy’s theory holds good, we can say that the super-
numerary -bow due to large drops is less distinct; leaving out
of consideration both the factor 75 and the number of the drops.

The above discussion only holds for supernumerary bows;
on the contrary, the principal bow is more distinct for large
drops, as Pl III and PL'V show. Thus a white rainbow is
probably caused 'by small drops, or rather mixed drops of dif-
ferent sizes. In fact, in many cases in nature, it is absolutely
important to consider the inequality of the size of the drops,
though actual discussion of this point is almost ‘impossibl.e.

In conclusion, we have to thank Prof. Nagaoka for suggest-
ing the ‘problem and for giving kind advice during the course .
of our investigations.
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