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INTRODUCTION.

The present experiments, detailed descriptions of which are
to be found in * The Publications of the Earthquake Investiga-
tion Committee in Foreign Languages” No. 17, Tokyo, 1904,‘
serve as a complement to the note, recently published by the

* A short abstract is to be found in the “Proceedings of the Tokyo Physico-Mathematical
Society ” Vol. II., No. 11. May, 1904.
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author, on the modulus of rigidity of rocks.* Some of the speci-
mens were identical with those used in the last investigation,
and the others were prepared in a similar manner. The principal
object of the present investigation is not to determine any accurate
value of the modulus of elasticity, but to determine whether the
modulus is constant within tolerably wide limits or not, and if
it is not constant, how it varies with the amount of stress or
with time and other factors which affect the change. The modulus
is measured by the method of flexure; but the apparatus is more
complex than the one which is generally employed. It may
therefore not be superfluous to give the following detailed descrip-
tion of it.

ARRANGEMENTS AND FLEXURE-APPARATUS.

In the measurement of ﬂexuré, the use of the cathetometre
or of the micrometrescrew are generally dispensed with. The
method with mirror and scale, as modified by A. Kénia,t is
generally adopted, though that by optical interference is more
accurate. The apparatus as designed in the present experiment
combines the advantages of Konia’s arrangement with other
necessary appliances. The principal improvements are :—(1) the
bending of the specimen cyclically from one side to the other,
with increasing and decreasing force passing through zero conti-
nuously ; (2) the elimination of external disturbances such as any
minute rotation of the- spec:lmen or shght displacements of the
scale and telescope

* Ibid. Vol. I., No. 14, Oct. 1902.  Pub. of the E. I. C. in F. L. No. 14, Tokyo, 1903.
The Jourral of the College of Science, Imperial University of Tokyo. Vol. XIX,, Art. 6.
1908.

+ A. Kéx1a. Ueber eine neue Methode zur Bestimmung des Elasticititsmoduals. Wied.
Ann. 28, 1886.
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A rough sketch of the arrangement is shown in Fig. 1. The
specimen is placed horizontally and, when it is bent, its plane
of curvature is also horizontal. There are necessarily one scale,
four fulerums and four mirrors, of which Atwol mirrors M; and M;
are attached to the specimen as in Konie’s method, while the
others M; and M, are rigidly fixed to the support. .Four different
images of one and the same scale S are to be seen in the field
of the telescope T, Fig. 2. They are all reflected twice by the

following mirrors respectively :—
nght upper image reflected by the mirrors M and M,,

“ght lOWe_I' 12 R X 1] il Ml and M4’
“left upper » m o s .. Mgand M,
- left lower » o . . . M, and M,.

. The apparatus is shewn in Figs. 3,  4 a,nd 5, in its front-
and‘fside-vievw,s as well as in its plan. The two mirrors M, and
M, rotate as the specimen is bent, while the opher mirrors M,
and M, are fixed unless the apparatus itself is displaced. The
fulerums F,, F,, T; and. F, are so adjusted that the edges of any
two of them lie in a verﬁical plane. A small framework F, which
is shown in Fig. .6, seryes to apply bendlng force to the specimen.
The frame-work consists of -two wedges, one fixed' (W,) and the
other movable (W,) inside a proper case. After placing a proper
-specimen between the two wedges, the movable wedge W, may
be pushed firmly against the specimen by the fixed screw S.
At the extremitiés of the strings S; and S, which run over small
pulleys P,, P, etc. towards the observer, some weights are hung
which supply the bending force. The support of the fulerums
is made of soft iron, which is rigidly screwed on a wooden block.

From what has been just described, it may be easily seen
that, when equal weights are hung on both 8, and S,, no bending




4 ART. 9.—S. KUSAKABE.

force is exerted on the specimen, and that it is only the difference
of the weights attached to the two strings which is effective in
bending it. That is to say, if m, and m, are the two weights
attached to the strings S, and S, respectively, then their sum
my+m,=M, regists the action of the bending force, the last of
which is due to their difference m,—m,=M. For future reference,
M, and M will be called the resisting mass and the effective mass
respectively.

When the effective mass is positive, the specimen is supported
by the fulcrums F; and F,, and it becomes convex towards the
righthand side. In the other case, it becomes .convex towards
the lefthand side, supported by the fulerums F, and F,. The
fulcrums standing face to face, i.e. ¥, and F; or F, and F,, are
clamped so as not to push too tightly against the specimen, as
there is a_possibility that the bending of the specimen will be
" hindered by friction. v o

A telescope, provided with a micrometer-screw, is rigidly
clamped on a tripod. The scale, engraved on a ground-glass
plate, 20 cm. long and 2 cm. wide is covered with a black board
having a slit, 8 mm. wide, and is illuminated by a row of small
gas jets.

PR.OCESS OF OBSERVATION AND CALCULATION.

The observation is generally as follows :—

1. To begin with, equal weights, each % M, are hung on
the strings S; and S,. :

2. A specimen is put between the fulcrums, passing through
the frame-work F, the last of which is to be clamped on the
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middle. part of the specimen. The planes passing through the
edges of the fulcrums standing face to face should be normal to
the length of the specimen. »

3. The four mirrors are so clamped in their proper positions
that the images of the scale reflected by them stand side by side
within the telescope-field. To adjust them properly requires much
practice. -

4. The constants of the micrometer-screw for all images are
determined. They are nearly equal to each other but not strictly
so. One mm. of the scale division is equal to about 23 divisions
of the micrometer-screw, which is again equivalent to a rotation
of 5176 x10~° rad. ie. 1068. , -

5. Zero-readings are taken for all images in a fixed order ;
Le. (i) right upper image, (ii) right lower image, (iii)" left upper
‘image, (iv) left lower image. |

6. The suspended - weights consist of some forty pieces of
equal weight. A definite number of pieces, say % m., are taken
off from one string and added on the other. - The bending force
~due to this is obviously mg, where ¢ represent the value of gravity.
The time-record corresponding to this transposition of weights is
taken. | , |

7. After a certain time, the readings are noted for all images
in the same order as in the case of the zero-reading.

8. Second transposition of weights; the time recorded ;
scale-readings noted : and so on till a definite amount of bending
force is reached. .

9. The weight is then transposed in the opposite way so
that the force diminishes gradually and ultimately becomes op-
positely directed. In this way, a series of observations is made

to complete the cyclic process several times.
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10. From the amount of the deviations of the images, the
amount of bending due to each corresponding force is calculated,
by the following method.

In Fig. 7, let the zero-reading be taken when the telescope
is in T while the mirrors M; and M; are in the position Mm,
and the mirrors M, and M, in the position M'm,. .In reality,
the reflections of light by the mirrors take place, as a matter of
course, in the spacepf three dimensions; but, for the sake of
simplicity, let us assume that the path of the ray of light lies
wholly on the plane of the paper. ‘Let ab be the position of the
scale, and suppose that @ is a point which gives its images in the
field of the telescope after reflecting at s and-s. Suppose that,
after a certain number of operations, the- specimen is bent, it is
rotated and also thetelescope is displaced ‘and rotated relatively -
to the scale. Let their respective values-be given by

a=angle through which the mirror M,
~ is rotated as-the specimen is bent,
— a=anlge through which the mirror M,
- is rotated as the specimen is bent,
p=angle through which the specimen is rotated,
d=the component of the displacement of
_ ‘the telescope parallel to the scale.
- Note that the other component is negligible relativelyj
“'to the distance between the scale and the telescope.
r=the amount of rotation of the telescope.
Then, if 6 and « denote the angles between the mirrors M,
and M, M, and M; respectively, we have . ~
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TABLE L

Specimen convex to: |- -  Righthand side. N Lefthand side.
. ST +n | Counter-clock- . Counter-clock-
Rotation of the Specimen. | Clockwise. wise. Clockwise. wise.
0 A a—p3 o+ - —a+pf | —a—p
w —a—f -—at+f a+B . . a=p .|

That is to say, provided « and £ are taken as algebraic quantities
having proper signs, we have simply
O=a+p
. w=p—a ' '
Let - 1 be the Iast position of the telescOpe, and put -
R.U.=The dev1at10n of the right upper 1mage, ’

" RL=, » 5 right lower 1m@ge_d_,' -
LU= y "q,, » 5 left upper image, -
LL=, » - left lower image.

Then, flom simple geometry, it ‘may be easily proved that
CLL.=6+D+c+d)y,
LU.=0+ (D+c+d)y—2do,
¢ R.E.=6+(D+c+d)y+2(c+d)s,
- RU=0+D+e+d)y—2do+2(c+d)d,
where ss’=¢ , sa=d , -1s'=D.

If there is no external disturbance, evidently we have

=0 »  T=0 _3,.=Q’
s0 that L.L.=o
_ _L.U =2da,
L.=2(¢+d)q,

R.U.=2(c+d)a+2da,

' c
o =Hdrge
the last of which is a.well known form. -

t
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In all cases, we have between the four values the following

functional relation. .
_ LL.+R.U.=R.L+L.U. _
Thus, the difference of the two sums indicates an error of observa-
tion: whence it gives the means of rejecting from numerous
observations those which are incorrect. For instance, in the
case of a piece of sandstone we had : ‘

TABLE" IL
M. R.U. R.L. L.U. LL |RU.+LL.RL.+LU.[ Error.
g c C c C N c c - c
900 1-129 0529 0-593 —0004 1125 1-122 0003
1200 1670 0789 0-877 -0-006 1-664 1-666 —0-002
1500 2204 1-039 1:159 —0-007 2:197 2198 —0-001

To calculate the amount of bending, we have four equations
containing four unknown quantities. ‘There is, however, one
functional relation between the four equations. At the same
time, the unknown quantities also may be reduced to three, as

o and y appear always in one and the same combination.

Put x=L.L. -
x+y=L.U.
' x+z=R.L.
then x+y+z=R.U.

Taking any three of the four equations, we may solve them. It
is preferable, however, to use all‘equations, since none of them
is strictly correct. Applying the method of least squares we

have
x=2%[3L.L.+ L.U.+R.L.-R.U.],
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y=3[(L.U.+R.U.)-(L.L.+R.L.)],
z=3[(R.L.+ R.U.)—(L.L.+ L.U.)],
~where x =6+ (c+d+D), )
y=—2dw,
z=2(c+d)d,
and 0=a+p
wo=0—a. ‘
Eliminating x, y, z 6 and o from the above equations, we
have

! c+2d
“="dc+d)

c+2d
P=tJerd)

In the example above cited, we have

{(RU.-LL)+ (LU.-RL) %)

{RL-LU)+ (LL-RU)- %)

TABLE IIL
c=12-4 cm. d=241'5 cm. ﬁ:z-sosx 0 %{% =10099x10 .
M. R.U.—L.L. RL-LU |  « 8
900" 1183 —0064 114610 rad.| —093x10 rad.
1200 1676 —0-088 16:95 | -3
1500 - 2211 —0120 | 2236 —176

It is to be noticed that, in the above calculation, the tangent and
arc of an angle are taken-to-be equal to each other. The greatest
angle to be dealt with is of the order of 107% radian: whence
the difference between the tangent and the arc is of the order
107% that is to say, it is of 'the order of 107* of their own
amounts, which is within the error of observation.
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The relation between the modulus of elasticity and the
amount of bending is given by the well known formula.
E=1% Mgl

ab®a

where o and b are the breadth and thickness of the specimen,

while 7 is the distance between the corresponding fulerums.

EXPERIMENTAL RESULTS.

The last 1nvest1gat10n with regard to the, modulus of rigidity-
proved a great deviation ‘from "Hooke’s law even in the case of
the least strain. Preliminary -experiments .showed it to be the
same also in the case of bending. Looking at the curve in Fig.
8, we see that there is a tendency on the' part of the rock to
persist in any strained state which it may have acquired, especially
. when the variation of the stress changes its sign. The curve is
closed and it is also of simple and regular form, though its path
during the incré@se of stress-differs entirely from that during-the
decrease. All rocks, so far as the author” has’investigated, have
this property in common, though they d1ffer in the character of
the curves and in other mmute details.

It may be suspected that, as the resisting mass increases
with the total mass to be .moved, this may have some in-
fluence upon the hysteresis curve. The comparison of the results
of four successive experiments, in which the resisting mass was
1000, 1300, 1600 and 1900 grams respectively, while all other.
conditions remained the same throughout, showed that the influence
of the resisting mass might be safely neglected. B

" There is one important fact which deserves to.be mentioned

here. Although the hysteresis curve is of a definite form and.
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traces one and the same curve when a specimen is bent ‘and:
unbent many times cyclically, the direction of the elongation of
the curve does not remain fixed when the amplitude of the cycle
—i.e. the greatest amount of stress applied to the specimen during
the cycle—is varied. As a general rule, the hysteresis curve:
becomes more and more vertical when the arﬁplitude of the
cycle is further and further increased. One instance is given in
Fig. 9. . ‘
. The’ amount .of - hysteresis, which is to be measured by the’
area enclosed by the curve or .by some function of it, is least for
Archezan rocks and- increases rapidly for new rocks. '
Although the modulus of elasticity .is never' constant during-
a cyclical strain, -its’ variation obeys one and the same law for
both the on- and the off-curve, in s0 far as. the centre of the
cycle coinsides with. the neutral state. of the specimen. It may
be necessary to make a remdrk on- the' meaning of the term
“ Modulus of Elasticity.” As there is a great.amount of hysteresis.
in the relation of stress to strain, the ordinary conception of the mo-
dulus of elasticity is ultimately vague and uncertain. ‘The actual
resistance to the deformation in any state whatever, be it: already
bent or twisted; elastic or plastie in that state, will be taken ‘as
the measure of elasticity in that state, so that in the present
experiment, the modulus is measured, stép by step, by the in-
crease of bending per 200 grams increase of the effective mass.
The curve expressing the relation between the modulus of
elasticity and the amount of strain is symmetrical with respect to
the axis of ordinate. One ‘instance for Limestone No. 29, is
given in Fig. '10. Fach kind ‘of rock seems to have its own
special character. If Hooke'’s law were to hold good, four branches
of curve, of which the right and left branches correspond to the
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cases where the specimen is bent convex righthand or lefthand
side respectively, while the lower branches correspond to the
increasing stress and the upper to the decreasing one, would all
shrink to a single horizontal straight line. In the case where
no hysteresis exists, both the upper and the lower branches
would coincide with each other to make a line not necessarily
straight. .
For all cases of rocks here experimented upon, the upper
branch is concave towards the positive axis of the ordinate. As
to its character, however, the variety is very abundant: circular,
hyperbolic, oval and other curves of higher order of complexity. -
The curvature of the lower branches is turned sometimes upwards
and at other times downwards. Although it is not easy to de-
termine any law according to which the modulus varies with the
phase of the cycle, we may find, as a first approximation, an
empirical expression for each specimen. For instance, in the

case of sandstone, we have. S
for the upper branch, y1=0243+092x*
for the lower branch, y2=0243 +0°043x>

where y and x represent Ex10~" and the phase respectively.
As a matter of fact, the constant term of y: is equal to that of
y» representing the modulus of elasticity at the state where no
external force is acting. '

In the following table, the constant term of the expression
for every specimen is given as the modulus of elasticity of several
rocks. It corresponds therefore to the value of the modulus of
elasticity in the state when the bending force became zero, during
which ‘the specinien, whose section was about one centimeter
square and the distance between the fulcrums was 10 centimeters,

was bent cyclically on both sides by a force varying between
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those due to M==3000 grams-welght

state under differént conditions must necessarily be different from

those given in the table.

13

The value in any other

TABLE 1IV.
No Rock Localit Kind 159nsit Mod. of Mean E.| Velocity of
) . ¥ : Y1 elasticity. .| Long. Wave.
1 Km.
ARCHZAN ROCKS. % 10%(c.g.s.) S
31i. | Quartzschist. | Chichibu. | Metamorphic. | 267 | 1048—7:07 | .878 573
46;. » Gumma. . 262 | 841—840 | 841 567
1. |Serpentine: | Chichibu. Erupgﬁered). 272 | 778—721| T47 | 524
40;. | Micaschist. Ibaraki. | Metamorphic. | 254 649—592 | 621 494
18;. | Chloriteschist. | Chichibu. ,, 2:88 8'63—8639 701 493
75 | Peridotite. | Kuji. E’“P(‘;;’t‘zr'e a)| 261 | 673583 628 | 401
261. | Chloriteschist.| Chichibu. | Metamorphic. |- 2:82 7‘03—6‘29 666 4-86:
22,. | Gabbro. " Eruptive. 271 | 621—s.57 | 589 466
241. | Graphiteschist. » Metamorphie. | 259 512—493 | 503 441
23, y . ) 256 | 369—337| 353 | 871
42, | Micaschist. | Ibaraki. , 263 | 1.20—116| 1923 | 216"
PALAEOZOIC ROCKS. °
34;. | Adinoleslate. |Gumma. |Sedimentary. 264 | 1099—10-23] 10°61 6-34
12;. | Clayslate. Aumi. » 271 | 10071—908 | 990 6-04
91. | Granite. Mikage. | Eruptive. 254 4-31—366 | 399 396
21;. | Limestone. | Chichibu. | edimentary | 964 | 414—365| 390 | 384
6s. | Marble. Kuji. , 268 | 351—324| 338 | 855
14;. | RedSchalstein.| Aumi. Sedimentary. 2-43 309—2.39 | 274 3:36
32;. | Pyroxenite. Gumma. »” 2.90 2:96—2'91 2:94 318
102. | Granite. Kagawa. | Eruptive. 2:57 2:30—210 | 220 293
29:. | Limestone. Gumma. | Metamorphic.| 266 2:06—1.92 | 199 274
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No. Rock. Locality. | - Kind- Density: e}\gggéi:; 1 Mean E/| Velocity of
. 1 Km.
TERTIARY ROCKS. x 10" (c.g.s.) Seo.
351. | Sandstone. Chichibu. | Sedimentary. 2:47 3:55—351 | 353 378
s0. | TwoByroxene| yryen | Bruptive. 270 | 404 288| 321 | 344
23. | Taff. | Tzu. Sedimentary. | 199 1.89-136 | 138 269
5s.- | Rhyolite. Yechizen. | Eruptive. 240 | 090—077} 084 1-87
4;. | Sandstone. | Kii. Sedimentary. | 225 068—057 | 063 1-67
Se ) Jonsshi |, | 221 | 034—020| 027 I
DILUVIUM ROCKS.
172. | Andesite. ! | Gumma. Eruptive. 2:68 4:36—431 | 434 4.06
S t . ; ' .
16. Dy E » : w o 232 068—063 | 066 169
s i { - .
¥

As the hysteresis :;cm've becomes more and more -vertical
when the amplitude of. the cycle increases further and further,
the mean elasticity necessarily weakens when the amplitude of
the strain increases. For inst%mnce, in a case of sandstone where
the curves could all be represented by a series of parabolic ex-

.pressions, the constant term of them was:—.

TABLE V. -

Anp. (in gramsweight) | 300 600 ‘| 1200 | 1800 | 2400 | 3000
E (c. g s x 10M). 065 046 033 027 021 | 015

Thus it is important to notice how the modulus of elasticity di-
minishes when the amplitude of the strain increases.

~ Here it will suffice to remark that, as in the case of the
~modulus of rigidity, the modulus of elasticity also is comparatively
greater in a strained than in the neutral state.
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The phenomenon of yielding, though it is not so enormous as
In the case of torsion, is still sufficiently great to be dealt with.
For a piece of sandstone, €.g., which was loaded with M,=3300
and M=3000 gramsweight, the amount of bending increased, in
the course of two and a half days, to, at least, more than three
times its initial value. It is, indeed, questionable whether there
is any limit to the yielding.

Also the amount of residual surviving the bending force does
not remain constant, but recovers gradually and uninterruptedly.
The amount of recovery, in the case of the above specimen just
referred to, increased, in the course.of about four days, by more
‘than twice its initial value. . R

. The yielding of specimens under-a constant force having
become comparatively small after a few days, the temperature-
variation of the flexure may be clearly observed. The relation
between temperature and bending for a . piece of sandstone is given
in Fig. 11. The curve, as a whole, expresses the simple propor-
tionality ;bet'we'enA the two elements. We find, however, the amount
of flexure has a’ minimum value in ' the neighbourhood of about
9°C.- In the case of .the rigidity-modulus, we had a result strictly
analogous of this effect. It nu;y be, however, the effect of moisture.
To determine any general relation between elasticity and tempera-

ture requires further investigation by a special arrangement.

SOME INFERENCES RELATING TO SEISMOLOGY.

In the author’s publications above cited, it was experimentally
as well as theoretically explained that, in the case of distorsional

waves, the velocity of propagation is a function of the amplitude
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0

of the wave, as there exists more or less yielding in the rocks
through which the waves propagate, and also that, in view of
this inference, we do not see the necessity of assuming the path
of the tremors to be different from that of the principal shocks.
The present experiment relating to other modulus give, it seems to
me, still stronger foundations to support the above view. We must
not however forget that, it is unfortunately the common rule ra-
ther than the exception that a theory, however perfect it may
be, does not explain all the facts connected with it and also that
almost every phenomenon has more than a single cause, and this
is particularly true in the case of earthquakes. -

As the elastic constant varies during oue cycle of bending
and all values at different- phases of the cycle equally play their
parts in causing the vibratory motion, the apparent value of the
elastic. constant during one complete vibration must be:the .mean
value of all the values at different phases. Now the mean elas-
ticity for one comialete cycle being distinctly greater than what
is commonly adopted, the actual velocity of propagation for seis-
mic waves must be correspondingly greater than those given in
the above table, which are calculated by taking the square root
of the elasticity-density ratio. In the case, e.g., of a piece of
sandstone, the result of the experiment shows that the mean
value is 3'67 times greater than the constant term. Whence we
may infer that the actual velocity, in this case, would be probably
twice the value given in the table.

Again, the velocity must necessarily diminish with an increase
of the ‘amplitude of the wave, since the elasticity diminishes in
that case as explained above. From the example given there,
we may deduce the following to show how  the velocity changes
with the amplitude.
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TABLE VI

Ratio of Amplitudes. 1 2 4 -6 8 10
Ratio of Velocities. 2:08 175 148 1-34 118 1,00

Though the variation of the elastic constant due to temperature-
rise is comparatively small, it can never be neglected in so far
as the velocity of seismic waves is concerned, since the under-
~ground temperature rapidly rises with the increase of depth..
Although the elastic constants increase from Cainozoic ito- Archsean
rocks in a greater ratio than the density does, to attain the main
stratum of Paleozoic rocks we must go deep down some ten
kilometres, at least, and for a stratum of Archeean rocks, at least,
thirty kilometres, where the underground temperature must be
tolerably high. Any conclusive deductions should, however, be
postponed until the more accurate observations on the change of
the elastic constants due to temperature-rise, which are in course
of preparation, :shall have fully elucidated the relation between
the elastic constants and the temperature. ’ '

As ‘a matter of fact, there are scattered everywhere within the
earth’s crust veins and dikes of different kinds of old rocks, uplifted
by géological disturbances, some of which run over many hundreds
or thousands of kilometres. The velocity along such a vein or
dike must necessarily be greater than that through any of the
surrounding strata, so that the seismic waves mainly propagate
through that region. As a consequence of the above result, if -
an observing station be situated near such a vein, not only will
the number of earthquakes observed at the station be greater
than those observed at any place in the vicinity, but the direction
of the motion will not necessarily indicate the position of the
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seismic centre. It is a matter of daily experience with us who
live in an earthquake country located in the ° girdle of fire of
the Paciﬁc, that observers in some districts feel all shocks as if
commg from one particular direction even When the seismic centreA
lies in an entirely different direction.’

... As another consequence, there may exist seismic shadows ;
or, in:other words, seismic waves may be partially shielded by a
vein or dike of old rocks. . Earthquakes originating in one region.
may always be well observed in the station while those originating
in another region' may fail to. be observed in the station. In
Prof. F. Omorr’s paper® we find a most interesting example to
support the above consideration. Of the earthquakes which hap-.
pened between Sept. 1889 and July 1886 in Central Japan, those
whose origins were situated within certain boundaries werc never
felt in Tokyo, . .though ‘the weaker ones of more distant origins
were clearly felt there.

The frequency of earthquakes as related to the geologlcal
‘distribution of rocks will be fully discussed in a following . paper.
under a special title. : o

In conclusion, I wish to express .my great 1ndebtedness to
Mr. FuxkuchL for valuable information concerning the geological
characters-of the specimens. ..My best thanks are due to Professor
H. Nacaoka, under whose. kind guidance I have carried .out . this
experiment.

* F. Omorr . The Pub..of the E. L..C.’in.F. L. No..1L 1802.. ./ ..... ..°
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