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MODULUS OF ELASTICITY OF ROCKS:
VELOCITIES OF SEISMIC WAVES :
A HINT TO TﬁE FREQUENCY OF AFTER-SHCCKS,

BY

S. KUSAKABE. Rigalkusli.

1 Introducﬁon.

The. present experiments, the expenses of which were defrayed by
the Earthq. Inv. Committee out of the fund specially alloted for the
investigation of the elastic properties of rocks, serves as a complement
to the 1ote, recently published by the author, on the modulus of rigidity
“of rocks.* Some of the specimens were one and the same with those
used in the last investigation, and the others were prepared also in a
similar .manner. The prihcipal object of the present investigation is
not to determine any accurate value of the modulus of elasticity, but
to determine whether the modulus is constant within tolerably wide
limits or not, and if it is not constant, how it varies with the amount
of stress or with time, and other factors ‘which affect the change. The
modulus is measured by the method of flexure; but the apparatus is
not so simple like one which is generally employed. It would not
be therefore superfluous to deseribe the details of the apparatus in the

next section.

2. Arrangements and Flexure-apparatus.

Tn the measurement of flexure, the methods of eathetometre or of

_* Thig . Publication. No. 14. 1903. Tokyd. The Jour. of the Col; of Sci., Imp,
Univ. of Tokyd, Japan. Vol. XIX, Art, 6, 1903.
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micrometrescrew are generally put aside. The method of mirror and
scale, Fig. 1, PL I, as modified by A. Konig,* is generally adopted
thoﬁgh that of optical interference is more accurate. The apparatus as
designed in the present experiment combines the advantages of Kénig’s
arrangement with other necessary appliances.. The principal features
(1) to bend the specimen cyclically from

of the improvements are:
one side to the other, with increasing and decreasing force passing
through zero continuously ; (2) to eliminate any external disturbance -
- such as minute rotation of the specimen or slight displacements of the
scale and telescope. ) , .

 First arrangement :—A rough sketch of the first arrangement is
shown in Fig. 2, Pl. I. The specimen is placed horizontally and bent
righthandedly or lefthandedly, so that the plane of curvature is horizontal.
There are necessarily four fulerums and- two scales instead of two and
one respectively. As in Kénig’s method, the twice-reflected image of
the first scale S, is seen in the field of the telescope 7'; and beside
this an image of the second scale S,, once reflected by the mirror Mz
is also to be seen. .

Second arrangement :—In Fig. 3, Pl I, the second arrangement is
shown in its rough sketch. As in the first arrangement, the specimen
is, placed horizontally and, when it is bent, its plane of curvature is
also horizontal. There is only one scale; but two more -mirrors M,
and M, are rigidly fixed to the support, while M, and M, are atached
to the specimen. TFour different images of one and the same scale S
could be seen in the field of the telescope 7, Fig. 4, PL I They are
all reflected twice by the following mirrors 1’espectively — ‘

Right upper image reflected by the mirrors M, and M,

Right lower , v v sy » M, and M,
Teft upper . ) i) 3 It ’ -2”3 ?]:Ild ],12’

Left lower ’ ' v 3 ’ My and O,

* A, Konig. Ueber eine neue Methode zur Bestimﬁlung des Elasticitiits modulé .
Wied. Ann, 28, 18886. : .o



ELASTICITY OF ROCKS: ETC. ETC, ) 3

Flexure Appiratus:—In Pl. I, Figs. 5 and 6 show front and side-
view of the flexure apparatus while Fig. 7 shows it in the plan.
The two mirrors M, and. M, rotatg as the specimen is bent, while the
other mirrors M; and M, are fixed unless the apparatus itself is dis-
placed. The fulcrums F,, Fz, F, and F, in Fig. 7 are so adjusted
that the edges of any two of them lie in a vertical plane. A small
frame-work F, which is shown in Figs. 6 and 7 and more minutely
in Fig. 8 Pl TI, serves to apply bending force to the specimen. The
frame-work consists of two wedges, one fixed (W,) and the other
movable (W,) inside a proper case. After haviﬁg put a specimen
between . the two wedges, the movable wedge W, can be pushed
firmly against the specimen by a fixed serew S. In the extremities
of the strings S, and §,, which run over small pulleys P, P, ete. to
the neighbourhood of the observer, some weights are hang which gfve
the bending force. “The support of the fulerums is made of soft iron,
- which is rigidly screwed on a wooden block. From Fig. 5, PL 1, it
would be easily seen that, when equal weights are ’hang on both S,
and -S,, no bending force acts on the specimen, and that it is the -
difference of weights hang on the iwo  strings which is effective to
bend the specimen. That is to say, if m, and m, are the two weights
hang on the two strings S; and S, respectively, then their sum m+
m,= M, resists the action of the bending force, the last of which is
due to their difference m,—m,=M. For future reference, M, and M
-~ will be called the Resisting mass and the Effective mass respectively.

When the effective mass is positive, i.e. as more weight is hang
on the st.rilig S, than on ), the specimen is supported by the ful-
crums F, and F,, and it becomes comvex towards the righthahd side.
In the other case, it becomes convex towards the lefthand side, sup-
ported by the fulecruns F); and F,. 'lhe fulecrums standing face to
face, ie. Fy and Fj or F, and F,, are clamped not to push too tight-
ly against the specimen; as there is a possibility of the bending of
the specililen being hindered by friction. '

- A telescope, provided with a micrometer-screw, is rigidly clamped
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on a tripod. The scale, engraved on a ground-glass plate, 20 cm.
long and 2 c¢m. wide is covered by a black board having a slit, 8 mm.

wide, and is illuminated by a row of small gas flames.

3. Order of Observation.

Order of observation is generally as follows:—

1. To begin with, equall weights, each § M, are hang on the
strings S; and S,. - |

‘2. . A specimen- is put between the fulcrums, passing through the
framework Z, the last of which is to be clamped on the middle part
of the specimen. The planes passing through the edges of the ful-
crums standing face to face should be normal ‘to the length of .the
specimen. ' '

3. The mirrors are so clamped in their proper positions that the
images of the scale reflected by them stand side by side within the
field of the telescope. This adjustment requires much expeﬁence.

4. The constants of the micrometer-screw for all images are
determined. They are nearly equal to each other, but not strictly.
One’ mm. of the scale division is equal to about 20 divisions of the ’
micrometer-screw, which is again equivalent to rotation of 5.176 x 107°
rad.=1'".068. |

5. Zero-readings are taken for all images in a fixed order; ie.
(1) \; right upper image, (ii) right lower image, (iii) left upper image,
(iv) ieft lower image. '

6. The suspended weights consists of -some fourty pieces of equal
weights. A definite pumber of pieces, say % m, was taken off from
one string and added on the othér. The bending force due to this is
obviously mg, where g represent the value of gravity. The time-record
corresponding to-this transposition of weights is taken.

7. After a certain time, the readings are noted for all images in
the same order as in the .case of zero-reading. N

8. Second transposition of weights; the time recorded ;  scale
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readings noted ; and so on till a definite amount of bending forces is
reached. '

9. The weight is then transposed in the opposite way so that
the force diminishes gradually and ultimately becomes oppositely
divected. In this way, & series of observations are made to complete
the cyclic process several times.

10. From the amount of the deviations of the images, the amount
of bending due to corresponding force' are calculated, by a process to

be explained in the next section.

4, Process of Calculation.

Process of calculation naturally divides itself into two according
as the first or the second arrangement is adopted.

For the first arrangement we have :(— In Fig. 9, Pl II, let

SPE be the initial position of the specimen,
Sm, and Em," ,, ,, sy » 5 mirrors M, and M
respectively,

ab and 4B be the initial positions of the scales,

T , be the position of  the telescope.
Suppose, for the first case, the effective mass M to be positive so that
the specimen takes the position SP'FE and the mirror Sm, and Em,’
takes the positions Sm, and Em,, rotating through an angle =u«
respectively. And also suppose, then, the specimen to be rotated
through an angle 8 so that the last positions of the mirrors are S'm,
and 'E"mg’ respectively. Note that the rotation of the specimen is
'génemlly not negligible, although the fulcrums as well as the apparatus
itself are absolutely fixed. If the specimen be perfect square prism
‘and the plane passing through the edges of the fulcrums F, and F,
or F; and I, perpendicular to that passing through those of the fulclums
F, and F; or F, and F, the specimen can not rotate. The above
condition, however, could not be satisfied in the actual case, so th,ett

the specimen rotates whenever the effective mass changes its sign.
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Let MM =c¢, AM =D, Ma d, then it may be easily seen that
4o =arcte| —(ab— S AB)
a=arctg 3 (a D ) } 7

o 11
/- - dda=ab— AL LGBt AB ...
ot =D 3 d~{ D “

Now, in so far as the present experiment goes, the first two terms in
the righthand member ave only effective: e.g. for the case of a piece
of sandstone which seems 1o Le one of the rocks having the smallest

modulus of elasticity, we had

M=3000 grams, ab=3.139 cm., AB=1.525 cm., ¢=12.8 cm.,
d=235.3 cm., D=248.5cm.

.1‘

so that = ab— - AB=3.060, {cﬁ;—_.AB} 0.00017.
| D a2

Thus, the magnitude of the third term, and a prioli all the following

terms, is within the errors of observation. Hence we have
1= %
a:Q{CLb——@—AB}.

It may be easily proved that, in other cases where either the
curvature or the rotation of the specimen or both of them change their
signs, the same formula holds good, provided ab and AB are considered
as the algebraic quantities having positive or negative signs.

The amount of rotation, i.e. 8, is calculated from the formula

” AB. 1 4B
= arct L o L2
a+ = 2 ‘ucg 9
e 3=AB _
1.e 3 o0 o.

In the example above cited, we have

a+B=3.07T%x10"%; «=325x10"%; B=-0.18x10"2 . radians.
Here it will be noted that the value of 3 was generally small a,nd‘
constant relative to that of «, except in some particular cases which
could be easily. expected. When any.small error occured in the
evaluation of «, it caused an enormous discontinuity upon the value of

,3 so that the error could be easily discovered on tracing the curve of 3.
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For the second arrangement we have:—In Fig. 10, Pl II, let
the zero-readings be taken when the telescope is in 7’ while the mir-
rors M, and M, in the position Mm, and the mirrors M, and M, in
the position M'm, In reality, the reﬂections‘of light by the mirrors
took place, as a matter of course, in the space of three dimensions ;
but, for the sake of simplicity, let us assume that the path of the
my of light lies wholly on the plane of the paper. ILet ad be the
position of the scale, and suppose that a is a point which gives. its
images in the field of telescope after reflecting at S and S’. Suppose
that, after a certain number of operations, the specimen is bent, it is
rotated and also the telescope is displé,ced and rotated relative to the
scale. Lt their respective values be given by

u=angle through which the mirror M, is rotated as the speci-
men is bent, '
—a—=angle through which the mirror 3, is rotated as the speci-
men is bent,
f=angle through which the specimen is rotated,
0=the component of the displacement of the telescope paral-
lel to the scale. | ‘
Note that the component perpendicular to the scale is
negligible relative to the distance between the scale and
the telescope. I ‘ ' )
7y ="The amount of rotation of ths telescope.
Then, if # and @ denote the angles between the mirrors M, and M,

M, and M, respectively, we have.

TABLE. . 1.
Specimen convex to righthand side lefthand side
Rotation of - counter . counter
‘the specimen : clockwise ~ clockwise i clockwise « clockwise
o i-B a+8  —atB —a—p
w . —a—f —a+p3 a8 o ]
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That is to say, provided « and 3 are taken as algebraic quantities -
having proper signs, we have
| O=atp
w=3—a
Let 7”7 be the last position of the telescope, and put .
I.U.=the deviations of the right upper image, which is reflected
" i)y the mirrors M, and M,
- R.L.=the deviations of the right lower image, which ‘is reflected
by the mirrors M; and M, .
LU:me%ﬁMWsdﬂwhﬂuwwhmggmeism%%ﬂ
by the mirrors M, and M, |
L.L.=the deviations of the left lower image, which is reflected
by the mirrors 3, and M, _ ,
‘Then, from simple geometry, it may be easily proved that
L.L.=0+(D+c+d)y,
L.U.:B—}-(D+c—{—d);"—2(:lm,
R.L.=6+4(D+cid)y+2(c+d)b,
RU =0+ (D+c+d)y—2dw+2(c+d)b.
where ss’ =c¢, sa=d, Ts'=D.
If there is no disturbance, evident-ly we have
3=0, y=0, ¢=0,
So that ~ L.L.=0.
| L.U.=2da,
RB.L.=2(c+da,
RU.=%c+dw+2da=4id+3 10,
~the last of which is a well known fql"nl. _ .
| In all cases, we must have a relaticn belween the fcur values as
follows : — ‘ :
| LL.+RU=RL.+L.U. |
The difference of the two sums indicates an error of observation ;
whence it gives the means of selecting correct ones from pumerous
observations. For instance, in the case of a piece of sandstone we

have :—



ELASTICITY OF ROCKS: ETC. ETC.

TABLE. I
i | nw RI. L. LI. |RUA+LLRLALU| Eiror.
900 | 1120 | 0520 | 0593 | —0004 1125 1122 | 0003
1200 1670 | 0789 | 0877 | —0006 | 1.664 | 1666 | —0.002
1500 2004 | 1039 | 1159 | —0007 | 2197 | 2198 | —0.001

To calculate the amount of bending, we have four equations
containing four unknown quantities. There is, however, one function-
al relation between the four equations. At the same time, the un-
known quantities also may be reduced into three, as ¢ and y appear

always in one and the same combination.

Put - x=L.L.
x+y=L.U.
x+z=R.L.

Then x+y+z=R.U

Taking any three of the four equations, we Vnmy‘ solve them. Tt is
preferable, however, to use all four equationé, since none of them is
strictly correct. Applying the method of least squares, we have the
normal equations ‘ |
" do+%y+2%=LL.+L.U+R.L+R.U.
20+2y+2 =L.U.+R.U.
204y +2%=R.L+R.U.

The solution is given by

m;%pluL3bm+RLfJaU}
»y:_;.{ (L. U4 R.U) — (L. +R.L.)},

z:%{(I{.L. +RU)~(LLA+LU)},

where
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and =0+
w=R—a.

Eliminating «, ¥, %, ¢ and © from the above equations, we have

_1 c+2d 7T TPy °
d(Hd){(R.D. L.L)+(L.U.—R.L. (z} |
1 c+2d
F=3 8 d(c-{-d){( L= LU)+ d} '

Tn the case lately cited, we have

TABLE. IIL

1 ¢42d

= G = 4 ——: 10-2 et = 1. -3
c=12.4cm,, d=241.5cm,, Y 2.503X10-2 8 do+d) 1.0099x 10
M RU.—L.L. RIL.—L.U. a B
900 grams. 1.133 cm. —0.064: cm. 1146 10-4 rad,) —0.93X10~4 rad.
1200 1.676 —0.088 16.95 —~1.31
1500 2.211 —0.120 22.36 —~1.76

It is to be noticed that in the above calculation, tangent and arc of an
angle are taken to be equai to each other. The greatest angle to be
dealt with, indeed, is y+26 —2« which is of an order of 107* radian :
whence the difference between the tangent and the arc is of an order
10-%; that is to say, it is of an order of 10-* of their own amounts,
whlch is within the error of observation.

The relation between the modulus of elasticity and the amount of

bending is given by the well known formula

where o and b are the breadth and thickness of the specimen, while

{ is the distance between the corresponding fulerums.

5. Preliminary Experiments.
The last investigation® with regard to the modulas of rigidity

proved a great deviation from Hooke’s law even in the case of the

* Toc. cited.
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smallest strain. Preliminary experiments showed it to be alike  also
in the case of bending. Fig. 11 in Pl II, shows the result of observa-
tion on a piece of micaschist, No. 42,. The ordinate represenfs the
amount of diviation of the image in the first arrangement, while the
abscissae i'epresents the corresponding effective mass in grams. It is
clear at a glance that there is a great amount of residual bending
‘when the force becomes nil, and also that the residual vanishes very
rapidly when an oppositely directed force is-applied. Such is always
the case in magnetic hysteresis, especially at heigh tempemtures,* and
no one would doubt the result.

Examinning more accuratély, however, it was proved that the
latter fact was false. The deviation above stated was not due to the
~ bending of the specimen, but also to its rotation. KEvaluating these
qua,nt-itiés separately in'the manner above given, we have the results
given in Fig. 12 and Fig. 13 in the same plate.. Fig. 12 can be
taken as the hysteresis curve in the relation between the-bending and
the force, while Fig. 13 gives the amount of rotation of the specimen
duﬁng a cycle. When a series of observation, is completed' within
(5ne or two hours, rotation of the specimen is the only correction re-
quired, so that the first arrangement is sufficient to be relied upon.
As the experiment, however, is to be continued during several hours.
or even for days, it is safer to use the second arrangement.

Influence of the Resisting Mass :—To get rid of the influence of
friction, etc, the resisting mass is kept constant during the whole ex-
periment. Now it may be doubted that, “as the resisting mass in-
creases with the total mass to be moved, it might have some influence
uppon the hysteresis curve. To examine this point, a series of experi-
ments was made on a piece of sandstone, No. 3,. The resisting mass
was 1000, 1300, 1600, -1900 grams in each successive experiment
respectively, while all other conditions remained the same through the

four experiments. During the experiment, 1"50™—5"45™ P.M, 19%

* DK Morris. On the M:ignetic properties: and Flectrical Resistance of Iron as
dependent upon Temperature. DPhil. Mag. Vol. 44. 1897. :
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March 1903, the temperature of the room changed from 12°:8 to 12°2,
whose influence upon the elasticity may be neglected as we shall see
soon after. To get rid of any influence of its imitial state, the result
was adapted after two complete cycles in each experiment. In PL IIL,
* the curves in Fig. 14 show the relations between the amount of bend-
ing and the corresponding effective mass for successive experiments.
The curves in Fig. 15 show the variation of the modulus of elasﬁcity'
due to the change of bending force during one complete cycle on the
above experiments:

It may be necessary to write a remark on the meaning of the
term  “ Modulus of FElasticity.” As there is a great amount of hys-
tevesis in the relation of stress to strain, the ordinary conception of
the modulus of elasticity is necessarily vague and uncertain. The
actual resistance to the deformation in any state whatever, be it al-
ready bent or twisted, elastic or plastié at that state, will be taken as the
measure of elasticity at that state. Hence, in the above example, the
modulus is mez,msuréd, step by step, by the increase of bé]iding per 200
grams increase of the effective mass. In each curve of Fig. 15, the right
and left branches correspond to the cases where the specimen was
bent convex towards righthand or lefthand side respectively, while the
lower branches correspond to the increasing stress and the upper to
the decreasing one. Comparing the curves in these figures, we may
safely conclude that the presence of the resisting mass has no sensible

influence, or, if any, it is negligibly small.

6. Yielding and Reéovery from the Yielding.

The phenomenon of yielding, though it is not so enormous as
in the case of torsion, is still sufficiently great to be dealt with. A
pisce of sandstone, No. 3, was loaded with ,= 3300, M= 3000 grams
at 4'27m P.M. 9%, Feb. 1903, |
At the instant of loading we had 0=27.95%x10"* for the amount of
bending which increased to ¢=33.86x10~* at 8"6™ P.M. and to a=



ELASTICITY OF ROCKS : ETC. ETC.

13

60.57 x10~* at 8"33™ of the next morning. Turther observation was

continued during about two weeks till the yielding, though it was

steadily increasing, was much obliterated by the influence of the tem-

perature-change. The amount of yielding since 3“_30“‘ P.M. 10"

given in the following table.*

TABLE. IV.

18

. Specimen No. 3,. Sandstone. Loaded at 4b27™ P.M. 9th Feb..1903. M=3000 grs.,
My,=3300 grs. '

Total amount of bending a=ay+e,+a,, where a,=27.95%10~*,

32.62X10-*+4-«.

;=
in radian.
Time Temperature. o, Time Temperature. a,
10th .M. : 11th A M.
- 3h 3om 12:0 0.00x10-%rad) 11 53m 10:2 10.25x10~ 4 rad.
- - PM.
3 51 11.3 0.02 0 48 10.1 10.43
4 10 10.8 0.15 1 14 10.1 10.54
4 35 10.0 0.25 1 40 10.6 10.53
5 6 9.5 0.58 2 5 115 10.85
6 19 9.2 144 2 30 11.9 11.69
6 39 9.1 1.82 2 54 121 13.55
7 5 9.3 2.17 3 14 12.2 14.99
7 31 9.2 2.38 3 34 12.3 16.87
7 58 9.0 2.52 3 b2 124 18.41
8 24 9.0 3.19 4 13 12.4 20.31
8 45 8.8 3.26 4 40 121 22.66
9 12 8.8 3.52 5 1 11.7 23.86
9 35 8.7 3.70 5 21 115 24.44
9 47 8.6 3.96 6 10 114 25.53
11t AM. :
8 25 6.4 8.79 6 28 115 25.83
8 47 6.7 9.07 6 52 115 26.04
9 10 7.0 9.31 7 16 114 26.25
9 30 7.3 - 9.29 7 37 113 26.50
9 52 7.9 9.52 7 56 11.0 26.70
10 14 8.4 9.77 8 24 11.0 26.85
10 42 8.7 9.91 | 8 44 10.8 26.91
1 0 8.9 9.94 9 6 10.7 26.96
9.6 10.11 ete. ete. ete.

1128

- ete.

* On noon of this day, the telescope was slightly disturved so that the total sum of
the yielding could not be known. After this event, I devised the second arrange-

ment.
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1t will be seen that the amount of bending' increased, in a
course of two and half days, to, at least, more than three times of its
initial amount. The above result as well as the further yielding of
the same specimen are plotted on P1l. IV. Even after some tenth of
thousands of minutes, steady increase of bending could be seen. 1t
is, indeed, questionable whether there is anyllimit to the yielding or
not. One instance where a plate of marble, resting horizontally on
four posts at the cormers, in a course of about half a century, was
considerably bent by its own weight, is reported by T. J. J. See.*
Here it may be remarked that, in Fig. 17, there is an abnormal in-
crease of bending. Close examination showed that it was the effect
of temperature-rise, as we shall sée in the next section.

Recovery from the ytelding :—It is of no small 1ntele%t to ex-
amine whether the yielding above stated is elastic or permanent
From an investigation by F. D. Adams and J. T. Nicolson,t it is
evident that even such a- comparatively rigid rock as marble may be-
come wholly plastic under suitable condition. In that case, an enorm-
ous change of sha,pe occurred in a compalatlvely sllolt time and it
seemed to be permanent. For instance, the dlametel of a cvhndel in-
creased by 11.388 times of its initial, bulgmg out by endplessure in
only 18 minutes. The structure of the marble deformed n 64 days -
was essentlcdly the same in chalactm as that which was deformed to
the same extent in 10 minutes. The foldmg of rocks and other
lgindered phenomena pertaining te the manifold change of shape in
rocks are found in great abundance. It is never- out of question
whether Such phenomena had oceurred in a short time under wholly
plastic condition and now is in perma,nent set, or they are the results
of yielding, progressing from time to-time, Wlought by the: continuous
action of stress, and always 1eady to recover f10m their over-stmmed

btdte

* The secular bending of a marble slab under its own -weight. Nature. Nov. 20. 1902,
- 1 An experimental investigation into. the flow of marble. Phil. Trans. of the
R. S. A, Vol. 195, 1901.



ELASTICITY OF ROCKS : ETC. ETC. 15

If the latter were the cage, it would not be wholly unconcievable
that an overstrained portibn of the earth’s crust 1'ecové1's gradually
after its stress have been ‘rem‘oved’ by some geological disturbance:
Then, this phenomenon of 71*eeovei~y may be, to be .sure, one of the
causes of after-shocks of an earthquake, since ultimate result of this
phenomenon must be equal that which may be produced by an op-
positely directed stress. } |

A piece of sandstoue No. ’34 ‘remained loaded, M=3000, M,=3300
grams, since 4"27™ P.M. 9" Feb. 1903 till 7"50™ PM. 23" of the
same month, during 14d 3h 23m i.e. 20363 minutes. Then it was un-
loaded, M=0, M;=3300 grams, and the amount of residual "bending
was observed from instant to instant. As in the case of torsion, it
recovered gradually and incesantly. The result of the experiment is

given in the following table.

TABLE. V.

Specimen No. 3,. Sandstone.
Loaded at 4h27™ PM. 9th Feb. M=3000 grs. M, =33C0 grs.
Unloaded at 7 50™ P.M. 23'4 Feb. M=0 »  My=3300 grs.
Amourt of residual bending=x—a; e=amount of recovery.

TFime. - a Time. a
23rd PM. 7h 51m 20.87 X 10—+ rad. 24th P M, 1h 38m 27.50X10-¢ rad.
: 52 21.59 ‘ 2 37 28.06

55 21.87 3 15 : 28.30
57 22.02 4 33 29.06

8 0 22.30 5 34 - 2928
4 22.51 6 43 31.09

6 - 22.37 7 14 31.27

9 22,69 8 18 3147

17 22.69 ‘ 9 41 31.84

24 22.95 25th AM. 10 0 34.44

57 23.32 PM. 6 42 37.63

9 35 24.52 27th AM. 8 12 45.27
24th AM. S8 3 25.91 PM. 5 28 47.38

Thus, the}amount of recovery became increased, in a course of about
four days, by more than twice its initial value. The result is also
shown in TFigs. 18 and 19, PL IV, ‘ ‘
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Effect of recovery -on cycles is to be seen from Fig. 20 in P1. V.
Another piece of sandstone, No. 4;, was loaded with M=3000, ;=
Then it was released gradually

3300 grams during 2647 minutes.
from the load and treated in a cyclical manner as usual.
is given in the following table :—

TABLE. VL

The result

Specimen No. 45. Sandstone.

Toaded with M=3000, M,=3300 grams-weight,

from 6" 35 P.M. 20t May, 1903.

to 2h 49m PM. 22nd of the same month:

then it is unloaded and loaded ecyclically.

M.
in grams weight,

First cycle.
o in radians.

Second cyele.
e in radians.

Third cycle.
a in radians.

3000

700
2400
2100
1800

1500
1200
900
600
300

000
—300
—660
—900

—1200

—1500
—1800
—21C0
—2400
—32700

—3000
—270n
—2460
—2100
— 1800

—1500
—1200
—900
—6C0
—300

000
300
600
900
1200

1500
18C0
2100
2400
2700

24.21x10-¢
23.80
23.24
- 2247
21.59
20.36
18.97
17.25
15.52
13.50

11.31
9.02
6.68
429
1.84

—0.70
—3.12
—5.38
—9.33
—11.17

—13.47
—13.04
—12.486
—11.83
—11.10

_8.95
— 755
—6.02
—3.95

—2.02
0.03
2.11
418
6.19

8.26
10.57
1254
14.75
16.93

19.12X10-¢
18.59
18.14
17.51
16.54

15.66
14.50
13.25
11.59

9.96

7.83
5.51
3.41
1.30
—0.62

—2.68
—5.03
—7.60
—9.62
—11.62

—13.86
—13.28
—12.82
—12.20
—11.35

—10.70
—9.64 .
—8.01
—06.50
—4.33

— 257

—0.28
1.40
3.54
545

751
9.72
11.81
13.99
15.82

17.9010~-4
17.51
-7.08
16.50
15.72

14.71
13.50
12.22
10.65

9.02

7.07
4.92
2.59
0.64
—1.13

—342
—b.49
—7.78
—9.69
—11.86

—13.81
—13.15
—12.60

—11.97
—11.30

—10.60
—9.31
—7.99
—6.57
—4.61

—2.56
—0.70
1.32
342
5.38

7.33
9.45
11.47
13.46
15.35
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The result is also shown in I‘lg 20. PL V.

As a natural consequence of yielding and recovery, a piece of 1ock
under over-strain is not indifferent of the direction of the second
stress to be applied, even after the piece has blo'ng been in the st‘ra,in-‘
ed condition. For instance, a piece of sandstone, No. 3,, was sub-
jected to a force due to M= —1500, M,=3300 grams during 1641
minutes and then a second force “;%%s applied in the same direction
as the first one. In the mnext ‘place, the same piece, was acted by
the same force during 1234 minutes and then a second force was ap-
plied in the opposite direction as the first one. The changes of
flexure for eqﬁal change of force were :\’elf:}’ different in these two

cases, as shown in the following table :—

TABLE. VII.

M=M,+ M,. Sub,]ected lSubJected under M, = —1500] Started from ‘neu(ral %hte
under ﬂ[ ==-1500 grams

, durivg’ '1641 minutes. grams during 1234 miuutes. ie. M;=0.
M, a M, @ M, a
—300 |  ~200x10-1 300 0.59X10-4| 300 . 258X10-1¢
—600 —4.29 600 2.95 600 " 6.43
—900 —748 900 4.39 " 900 1146
—1200 —11.17 1200 6.25 1200 16.95
—1500 —15.06 1500 1120 - 1500 22.36
ete. ete. ete. ete. ete, ete.

The result is also shown in TFig. 21, PL V.

7. Effect of Temperature.
The curve of yielding given in Fig. 17 PL IV, as it 'was noted

in the last section, is very irregular, increasing with abnormal rapid-
ity in some moments. Comparing this with the curve of temperature-
change during the same time, we may percieve at a glance that the

disturbance of yielding corresponds to the variation of tempemtu_re,
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In Pl. VI, Figs. 22-25, the temperature and the amount of bending
are plotted against the laps of time respectively, In TFig. 22,- there
is an abrupt increase of bending between 46™ and 49™ hours. In the
'corfesponding part, we notice the rise of temperaturel There is, of
course, more or less time-lag on the part of yielding, since a piece. of
rock requires more time to get on the same temperature as the sur-
rounding air than a mercury- thermometel

Here it must be remarked that the rise of temperature is never
an ultimate cause of the increase of bending. It is neither more nor
less than an inducer. The amount of increase of bending induced by
a rise of temperature depends wholly on the capability to yield at
that instant. When the capability is large, an enormous increase of
bending takes place induced by a little rise of temperature. Looi:ing
on the figures, for instance, we see that the rise of temperature was
more rapid during 64™--T0™ hours, while the amount of yielding dur-
ing the same time was comparatively small. ‘

Tn so far as the temperature-rise it a mere inducer, the resulting
flexure - must bé irreversible. The flexure, however, decreased a litﬂe
during 71™ hour, when the temperature ‘descended with great rapidity.
The above shows that one part of the flexure is reversible with regard
to the change of temperature. Whence we must conclude that the
effect of tempelature is double : firstly, it acts as an inducer,—i.e. it
facilitates the flexure- change caused by other agent ; seconlly, it is one of
the ultimate causes of the flexure-change. For the first part, there can
be no numerical relatibn betiween the variations of both flexure and
temperature. For the second part, however, a functional relation must
exist connecting the two variations. These two effects always appears
hand in hand. When the capability to yield is large, the second part
must be obliterated by ‘the first one. After a long time, as the capa-
bility to yield tend to vanish, the second part becomes the principal
one. This was really the case with the present experiments, as we
" shall see in the annexed figures in Pl VL

In Figs. 23-25, the corresponding curves are similar to each
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other, with an exception to be explained in the following lines. TLeft =
parts of the two curves in Fig. 23 and right parts of those in Fig.
25 are mot parallel; on the contrary, they converge towards .the
right. Txamining them more minutely, we percieve that this ab-
normity takes place, when and only when the temperature is lower
than a definite degree Ca. 9°.C." When the temperature is higher
than this, the {wo curves proceed parallel to each other; in othel"-cz.bse

they are symmetrical to each other. -That is to say, the amount -of |
-bending increases with the rise of temperatme in the first case, but
it decreases in the second C‘lSG and vice versa.

The above fact is also contained implicitely in the curve of bend-
ing in Fig. 22. From 40" to 48" hour, the temperature rose with
great rapidity, but the abrupt increase of bending took place only
after 46" hour, which indirectly shows that, during 40"-46™ hour, as
the temperature was below the neutral point, the-rise of temperati_lre,
on the contrary, diminished the yielding.

The relation between temperature and bending is given more
clearly in Fig. 26 of the same plate. The curve has a neutral point
in the neighbourhood of Ca. 9°C. That is to say, the elasticity of
sandstone is maximum at that temperature in so far the change due
to temperaturo—varia,tion is concerned. In the case of the rigidity-
n:lodulus, we had a result strictly analogous to this effect.

To determine any general relation between elasticity and tem-
perature requires further investigation by a special arrangement.
Here it is sufficient to remark only that though the change of flexure
due to the variation of temperature is unexpectedly great, yet it is.
almost negligible as compared with the total amount of flesure. In-
deed, the incréase of behding per degree of temperature-rise in the

case of sandstone i_s of an order 1073 of its total amount.

8 . Hysteresis Curve.
Looking on the curve in Fig. 12, Pl. II, we see that there is a

- tendency on the part of the rock to persist in any strained state
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which it may have acquired, especially when the variation of the
stress changes its sign. The curve is closed and it is also of simple
and regular form, though its path during the increase of stress differs
entirely from that during the decrease. A more close examination
will prove that the on-curve, when it is turned through two right
angles, becomes coincident with the off-curve. ~All rocks, in so far as
the author has investigated on, have this property in common, though
they differs in the curvature of the curves and other minute details.
Figs. 27-50, Pls. VII-IX, show the hystéresis curves of several rocks.
of different kinds.

From what was stated above, it is evident that all these speci-

mens had symmetry on both sides, with "t.-he exception of one or two
schistose rocks. When a specimen was in a strained state, or whén
it ‘had a crack or the like, the curve, however, lost its symmetry so
that the curve did not close, or else the on-curve could not be brought
in coincidence with off-curve. _ '
- There is one important fact which deserves to be here mentioned.
Although the hysteresis curve is of a definite form and traces one and
the same curve when a specimen is bent and unbent many times
cyclically, the direction of the elongation of curve does not remain
fixed when the amplitude of the cycle (i.e. the greatest amount of
stress ap]g)lied to the specimen during the cycle) is varied. As a
geneml rule, the hysteresis curve becomes more and more vertical
when the amplitude of the cycle is further and further increased.
Figs. 51--563 fully explains this fact. When the centre of the cycle
cori’espo_ndS to the strained state, Fig. 53, this variation of the direc-
tion seemed to be rather rapid.

The amount of hysteresis, which is to be measured by the area
enclosed by the curve or by some function of it, is not necessarily
greater for the rock having smaller modulus of elasticity. For ex-
ample, red schalsteine No. 14, has smaller modulus of elasticity (2.39-
3.09 x 10") than marble No. 6, (3.24-3.51 x 10"), but the former has

smaller hysteresis than the latter, as it will be seen from Fig. 31,
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Pl. VIL and Fig. 41, Pl. VIIL. Generally speaking, however, the
amount of hysteresis is least for archaean rocks and increases rapid-

ly for new rocks.

9. Variation of the Modulus of Elasticity During
the Cyecle.

As it was noted in the former sections, the modulus of elasticity
is never constant for a given piece of rock. In the case of sandstone,
given in Fig. 15, Pl. I1I, it is evident that the variation of the
modulus obeys one and the same law for both on- and off-curve, in
so far as the centre of cycle is at the neutral state of the specimen.
That is to say, the curves in Fig. 15 are symmetrical with respect to
the -axis of ordinate.

Further examples showing how the modulus of elasticity varies
during one complete cycle are given in Figs. 54-65, Pls. XI and XIL,,
for several different kinds of rocks. KEach kind of rock seems to have
its special character. Tf Hooke’s law were to hold good, four branches
of each curve would all shrink to a single horizontal stright line.
~ In the case where no hysteresis exists, both the upper and the lower
- branches would coinside with each other to ‘make a line not neces-
sarily straight. |

For all cases of rocks here experimented upon, the upper branch
is concave towards the positive axis of the ordinate. As to its charac-
ter, however, the variety is very abundant;. circular, hyperbolic,
parabolic, oval, and other curves of higher order of complexity. The
left lower branch, indeed, is a continuation of the r’ight upper one,
‘and vice versa. But, in saying circular or parabolic, etc., we assume |
left upper branch as a continuation of the right upper one, and vice
versa. The curvature of the lower branches is turned sometimes
upwards and other times downwards. That is to say, one piece of
rock, e.g. Fig. 61, chloriteschist No. 26,, becomes more. and more stiff
as it is bent further and further, while other piece, e.g'.l Fig. 62,

marble No. 6,, becomes more and more flexible.
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From the above fact, it seems that the procedure of bending had
opposite effect on the elasticity.of the specimens in the two cases,
chloriteschist and ‘marble. . This fact, however, may be easily under-
stood from the following explanation. When a piéoe. of rock ig bent
by an increasing force further and further, there must be a limit as '
to the amount of strain beyond which it can not go on, or else it
breaks down: i,e. The piece firstly becomes more flexible and then, .
after having reached to a minimum elasticity, it begins to become
more and more stiff until it breaks down at last.. Hence whether the
curve is convex or. concave up or down depends wholly upon the
ratio of the actual stress to the breaking one. This fact is typically
shown by the case of graphiteschist, Fig. 59, Pl. XL |

Though it is not easy to determine any law according to which
the modulus of elasticity varies with the phase of the cycle, we may
find, as a first approximation, an empirical expression for each speci-
men. For instance, in the case of sandstone whose experimential
result is figuratively given in Fig. 15, Pl III, we have two parabolic
equations expressing the upper and the lower branches respectively.
I y and « represent £x 107" and the phase respectively, we have

for the upper branch, y,=0.2434 0.922* with a probable
error==0.013, ‘

and for the lower branch, %,=0.24340.043 2> with a probable

error = ==0.004, _ : '

As a matter of f‘act, the constant lerm of y, is equal to that of y,;
it represents the modulus of elasticity at thé’ state where no external
force is acting.. These two parabolic expressidns are traced in Fig,
66, in Pl. XIII. Assuming this relation between the modulus of
elasticity and the phase, we may easily calculate the amount of flex-
ure for the specimen corresponding to any bending force not greater
than that due to 1000 grams of weight. The result of calculation is
given in Fig. 67, Pl. XIII, which coincide with the observed
value within a probable error =7.5x 107%while the amount of bend-
ing due to M/ =1000 grams is 1334 x 10-%.
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In the case of a piece of chloriteschist, No. 26,, Fig. 61, Pl. XII
the upper branch can be represented by an hyperbola
\ . o e 4

(5.75)* (0.35)*

I

or y=1/{3313+122.52¢*; , probable error= +0.13.

For one kind of granite, No. 9,, Fig. 54, Pl. XI, on the other hand,

the relation is given by an elhpse

(y—1009¢  2* _,
(6.21)2 (0.93)* ~

or y=10.09—+/{38.56 -44.42°! , probable error==:0.12.

This expression, of course, is applicable only within a certain limit
ie. phase <<0.93.

- In so far as the author e‘:perimented upon, the modulus of
elasticity of all rocks can be expressed as a simple and definite
function of the phase in a cyclical process, provided the specimen is
not too near its breaking state. '

In the {ollowing table, the constant term of the expression for
every specimon is given as the modulus of éla,sticity of several rocks.
It corresponds therefore to the value of the modulus of elasticity at
the instant when the beﬁding force became zero during the specimen,
whose section is about one centimetre square and the distance be-
tween the fulerums is 10 em., was bent cyclically .on both sides by
a force varying between those due to M= 3000 grams weight. The
value at any other state under different conditions should be, with

all probability, greater than those given in this table.
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. TABLE. VIII
. ] ] M d. of Velocity
No.. Rock. Locality. Kind. Density. elasticit y. Mean E. O%V Loyng.
ave.
- ARCHZEAN ROCKS 1011(c.gs.) Kilom.
‘ ) x ¢85 ‘Second.
. 31,. | Quartzschist. | Chichibu. | Metamorphie. | 2.67 | 10.48—7.07 8.78 5.73
46,. | Quartzschist. | Gumma. P 2.62 8.41—8.40 8.41 5.67
. - Eruptive -

8,. | Serpentine. |Chichibu. (altelz)f ed). 2.72 7.73—721 -7.47 5.24
40,. | Micaschist. | Ibaraki. | Metamorphic.| 2.54 6.49—5.92 6.21 4.94
18,. | Chloriteschist. | Chichibu. o 2.88 8.63—5.39 |- 7.01 4.93

T,. | Peridotite. Kuji. gg&gﬁ‘gf 261 | 673583 | 628 | 491
26,. | Chloriteschist. | Chichibu. | Metamorphic. | 2.82 7.03—6.29 6.66 4.86
22,. Gabbro. » Eruptive, 2.71 6.21—5.57 5.89 4.66
24,. |Graphiteschist. ' Metamorphic. | 2.59 5.12—4.93 5.03 4.41
23,. |Graphiteschist, ” » 2.56 3.69—3.37 3.53 3.71
42,. | Micaschist. | Ibaraki. » 2.63 1.29—1.16 1.23 2.16

PALAZOZOIC ROCKS. ,

34,. | Adinoleslate. | Gumma. | Sedimentary. 2.64 | 10.99—1023 | 10.61 6.34

12, Clayslate. Aumi. . . 271 10.71—9.08 990 |- 6.4
Yy Granite. Mikage. Eruptive. 2.54 4.31—3.66 3.99 3.96

21,. | TLimestone. |Chichibu.| Sedimentary | 264 | 4.14-365 3.90 3.84

) (Metamorphosed). :

64 Marble. Kuji. » 2.68 | 3.51—3.24 3.38 3565
14,. {Red Schalstein.| Aumi. Sedimentary. 2.43 3.09—2.39 2.94 3.36
32, Pyroxenite. | Gumma. " 2,90 2.96—2.91 2.94 3.18
10, Granite. Kagawa. Eruptive. 2.57 2.30—2.10 2.20 2.93
29;. | Limestone. | Gumma. | Metamorphic. | 2.66 2.06—1.92 1.99 2.74

TERTIARY ROCKS.

35,;. | Sandstone. |Chichibu. | Sedimentary. 247 355—3.51 | 353 3.78
‘ Two Pyroxene . ; ,

50. { Priobyroxenc! Awomori. ? 270 | 404238 | 321 | 344
25. Tuff. Izu. Sedimentary. 1.90 1.39—1.36 1.38 2.69 -
5,. Rhyolite. Yechizen, Eruptive. 2.40 0.90—0.77 0.84 1.87
4,. | Sandstope. Kii. Sedimentary. 2.25 0.68—0.57 0:63 1.67
3,. | Sandstone. Choshi. ” 2.21 0.34—0.20 0.27 11

DILUVIUM ROCKS. |

17,. | Andesite. | Gumma. | Eruptive. 2.63 | 4.36—4.31 434 | 406

16. Andesite. Gumma. » 2.32 0.68—0.63 0.66 1.69

10. Mean Vahie of the Modulus

During One Cycle.

of Elasticity

In the last section we learned that the modulus of elasticity varies,

during one cycle according to a definite law. When a piece of rock
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is bent by a foree and unbent by virtue of its elastic property, it is
not, evidently, the modulus of elasticity l‘at- fmv perticular state, which
determines the vibratory motion of the rock. Modulus of elasticity at
all different phases of the vibratory motion cqually play their parts
in causing the motion. Hence, to know the apparent modulus of-
elasticity - during one complete VibratiOn, we must take mean value of
the modulus of elasticity at all different phases. '

Let (¢ be the mean value, then we have
1
(@:S y dx

where 7 is the modulus of elaqtlmty e\plessed as a function of the/

phase . o ‘
If the velation Letween x and y is parabolic, we have

:s(aerx"‘) do=a-+ 1b.
For the case where it is hy?erbolic, we have
i b I
(Q:SEVCL"+.#‘ dr= 9 {wx/a + 2+ log (x+ 1/(12—{—932)}.
We may assume, with all probabﬂity, that the function is a
power series ,
’ 'y:ao,+alm~}-a.,x2+ R

Then XZ a2 dx -—21 vy
: )

Eor a piece of sandstone, when the maximum bending force dur-

ing the cycle was equal to that due to M=3000 grams, we have

for the upper bmnch ¥, =0.152 +2.352°
for the lower branch, y,=0.152 +0.082oc.3.

Hence, in this case, we have

' 1 1 1 y
@ x 10‘“:-5-“ Y dac+—‘)~j ygdx:,().152+—(7{‘3.35—{-0.082}
<4 Jo a.Jy" " ) D

ie. © E=0.152x 3.67 x 10"

Thus, the mean vabue € taken for one complete cycle is 3.67 ‘times

greater than the value I taken at the state of no bending force.
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11. Diminution of the Modulus of Elasticity Due to
~ Increase of the Amplitude of Cycle.

As it was laltély. noted, the hysteresis curve becomes more and
" more verticq,l when the amplitude of cycle is further and further
increased. This fact expreéses that the mean elasticity gradually
weakens as the .ar.liplitlide‘of' cycle increases. The variation of the
modulus of elasticity in each cycle given in Fig. 52, PL. X. is shown
in Fig. 68, Pl XTI, At a,vglance, we see that the greater the amplitude,
the lower the curve. In Fig. 69, Pl XIII, the same result is shown
in a somewhat different manner. The modulus is expressal as a function
of the phase in the eycle. Tt will be seen that the modulus of elasticity
corresponding to one and the same phase of the cycle is genera,ll_y
greater when the amplitude is smaller.

In this case, also, the curves can all be represented by a series
~of parabolic expressions. The constant terms of them are, of course,

“not equal to each other: i.e. they are

TABLE IX.
Amp. (i.e. I} in grams.) 300 600 1200 1800 2400 3000
E. (c.g.sx1011) 1 0.65 0.46 0.33 0.27 021 0.15

This relation between the amplitude of cyclé and the modulus of
elasticity is also shown in Fig. 70, Pl. XIT. Thus, it is very important
to notice how the modulus of elasticity diminishes when the amplitude

of the cycle increases.

12. Increase of the Modulus of Elasticity due to the
Strained State of the Specimen.

In the case of the modulus of rigidity, it was mnoted that the
modulus is comparatively greater in a strained than in the neutral

state. This is also the* case for the modulus of elasticity. Here it
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“will suffice to give one example. Firstly, a piece of sandstone No. 4,
was applied with a force increasing.. by 4M= 300 grams step by step.
Secondly, the sams speci@eﬁ, after having been under a constant force
M= —3000 grams during 4027 minutes, wasapﬁlied, -also, with a force
increasing by 4M=300 O‘farus step by step. The modulus in each
step is given in the annexed table, and also 1t is glap]nca,lly shown

in Fig. 71, Pl. XIIL

TABLE X,

Second force: M. in grams. | 300 | 600 | 9C0 1206 1500 1800 } 2100 | 2400 | 2700 3000

z | Trom neutral state: | 04 1168 0.810] 0.727) 0.664|0.578| 0.601{ 0.565( 0.517] 0.540

170 ={Q.
{C J-S- 1| From strained state: : '
Xl()nj F —3000 S 12.962] 2.169 1.577) 1.38¢ 0.987) 0.874] 0.706} 0.702} 0.601) 0.555
oYY ) . .

Tis example will fully erpress how the modulus of elasticity in a

strained state is greater than that in its neutral state.

13. The Velocities of Propagation of Seismic Waves.

In the author’s publications above cited it was experimentally as
well as theoretically explained that, in the case of distorsional waves,
the velocity of propagation is a function of the amplitude of the wave
as there exist more or less yielding in the rocks through which the
waves propagate, and also that, in view of this inference, we do not
see the nécessity to assume the path of the tremors to be different
from that of the principal shocks. The present experiment relating
to other modulus of elasticity, i.e. You'ng’é modulus, gives, it seems to
me, more strong foundation to supp01t the above view.

In so far as the above-mentioned experiments can be conﬁdentlally
relied upon, the following inference may safely be drawn from them,
provided we agree that the velocity of wave varies as the square root
of the elastic constant of the medium thmugh which the wave pro-

pagates.
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In § 10, it was noted that the elastic constant varies during one
cycle, of bending and that all values at different phases of the cycle
equally pla;y their parts in causing the motion, i.e. the apparent value
of ‘thel, elastic constant during one complete vibration must be the
mean value of all the values at different phases. Now the elastic
constanit which détermihes the velocity of wave is, as a matter of
course, not its value at any particular phabe, but its mean - value
taken for one complete cycle. ’

Assuming Yy=aytaxtar+ ... ..

' ) . y,
we have - = E a. 2" do= E -
: ¢ S 0 " n+1

In usual case, what is given as the value of the elastic constant is
L’_au—i-a]j (@)

where x, is a certain small qua,ntlty pcumcmm to the mode of experi-

ment.
In Table VI1I, the vaiue of g 18 given as the value of the
modulus of elasticity ; accordingly the value of velocity there given is

calculated by the formula ' ' ‘

- o ‘ = Uy
P

It will be noted that these values, as a matter of course, are generally

bmallel than those given by Professor H. Nagaoka in his valuable

report :* V= \/ Z
‘l)

In the actual case, what determines the velocity, is neither v nor

V, but, with all probability, it should be given by
(&

Sm(,e the mean elasticity § is 1ema1kwbly greater than the values q,
or 17, the achml velocity of propagation 8 must be somewhat greater

than those w or V given in the tables. For instance, in the case of

*-H. Naéaokn. Elastic Constant of Rocks and the Velocity of the Seismic Waves.
This Publication No. 4. 1900. .
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a piece of sandstone, the result of experiment showed that the mean
value (§.is 3.67 times greater thap the constant term a,. Whence, we

must have

&

=1/3.67=1.92,

that is to say, the actual velocity would be probably twice the value

given in the table. In general, the actual velocity. would be

\/ { Z a,zl /a!,} times greater than that given in the table.
v el 77, | .

14. Diminution of the Velocity due to
Increase of Amplitude.

The velocity must necessarily diminish with increase of the am-
plitude of the wave, since the elastic constant diminishes in that case
as fully explained in the eleventh section. From the instance given
in that page we have a good example to show how the velocity changes

with the amplitude.

TABLE XI.

. ' . g §
Ratio of Amplitudes. 1 2 4 6 8§ ¢+ 10
Ratio of Velceities. 2.08 1.75 148 1.34 1.18 1.00

‘This relation between the ampﬂtude and the velocity is more clearly
shown in Fig. 72, Pl. V. The velocity increases twice or more while
~ the amplitude diminishes from IR{=3000 to I =300 grams.
Examining the course of the curve, we may safely conclude that
any further diminution of the amplitude will give very rapid increase

of the velocity.

15. Increase of the Velocity due to the
Strained State of Stratum.

As the elastic constant is comparatively greater in the strained

®
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than in the neutral state, thé,velocity must, as a matter of course, be
correspondingly greater in the former state than in the latter. 1In the
example shown in Table X, the ratio of the values of elastic constant
for the first step of flexure is 2.962:1.104 so that the ratio of the
velocities will be 1.72:1.05 or 1.64. In other words, the velocity-
in that strained state must be 1.64 times greater than that in the
neutral state. This is, of course, nothing but an example; general

relation between them, however, would not much deviate in its quality.

16. Diminution of the Velocity due to
Increase of Temperature.

Though the variation of the elastic constant due to temperature-
rise is comparatively small, it can never be neglected in so far ds the
velocity of seismic waves is concerned, since the underground tem-
~ perature rapidly rises with the increase of depth. According to Pro-
fessor A. Tanakadate,* the underground temperature increases at a
rate greater than 25°C per kilometre of depth.

The change of the elastic constant, on the other hand, is Ca. 0.5
% per degree of temperature-change for the case of sandstone. That
is to say, the elastic constant diminishes by 12.5 9% per kilometre of
depth, provided all other conditions remain the same. Then the
velocity would proportionally diniinish as the depth gradually in-
creases, so that the influence of tle underground temperalure on the
velocity of propagation woutd be too great to be neglected.

Here a remark may e added on the existence of a stratum of
maximum velocity of propagation, p10posed by Professor H. Nagaoka
That the modulus of ~elasticity increases in a gleatel rate hom
cainozoic to archsan rocks than the density does, is surely an es-
~tablished fact. When the effect of temperature is taken into acount,

however, the depth of a stratum where such old rocks aboundant can

* A. Tanakadate. The Pub. of the I.E.C. in Japanese Languige. No. 45. 1903.
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never be put out of consideration, since the increase of depth tends
to increase the density but to diminish the elastic constants for one
and the same kind of rock, if the elastic constant of rocks with
earth’s crust behave in the same manner as sandstone as regard tem-
perature. “Acco'rding to geologists,* the thickness of each of quatery,
tertiary and mesozoic rocks is some three or four kilometres, while
that of palaeozoic attains twenty five or more kilometres in some
regions. The summation of the thickness of the strata of different
ages, of course, includes only the part which was revealed to the earth’s
surface by some geological disturbances. Whence it follows that to
attain the main stratum of palaeozoic rocks we must go deep in, at
least, some ten kilometres, and for a stratum of archaean rocks, at
least, thirty kilometres. The underground temperature, however, at
such a great depth must be tolerably high, and the consequence of it
would probably in a great diminution of the ‘elastic’ constants, so that
the depth of the stratum of maximum velceity, if it exist at any rate,
would be greatly shortened. The author would not, however, insist in
this opinion till more acCﬁth observations on the change of the
elastic ¢onstants due to temperature-rise, which are in course of pre-
paration, will fully elucidate the relation between the elastic constants

and the temperature.

®

17 Note on the Existence of Paths of Maximum
Velocity and Seismic Shadow.

Notwithstanding the doubt about existence of a stratum of maxi-
mum velocity, there may exist, with all probability, several paths of
maximum velocity of propagation within the earth’s crust. As geology
teaches us, within the earth’s crust there are scattered everywhere
veins and dikes of different kinds of old rocks, uplifted by geological
distdrbances, some of which run over many hundreds or thousm;ds of

kilometres.

* Encyclopzedia Britannica : Geology..
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In this case, it is true, the velocity along such a vein or the like
is greater than that through any of the surrounding strata, so that the
seismic waves mainly propagate through that region.

As a consequence of the above result, if an observing station be
situated on such a vein, not only the number of earthquakes abserved
at the station is greater than that observed at any of the stations in
the neighbourhood, but the direction of motion would not necessarily
indicate the position of the seismic centre. It is of daily experience
that observers in some districts always feel any earthquakeshock to
come from one particular direction even when the seismic centre is in
entirely different dirvection, provided the “contre is not too mnear the
observers. i

»Ars other consequence, there may exist seismic shadow ; or, in
other woids, seismic waves may be shielded by a wvein or dike of old
rocks.  As the elastic constants is neither negligibly small nor infinitely
great for any rock, the shielding, of course, is mnot perfect. Strong
earthquakes, however, may be reduced to weak ones and weak shocks
to insensible tremors. After all, earthquakes originating in one region
‘may always be well observed in the station while those originating in
_the other region may fail to be observed in the station.

In Professor F. Omori’s paper* we find the most interesting
example to support the above consideration. Of the earthquakes which
happened between Sept. 1887 and July 1889 in Central Japan, those
whosée origins ‘were situated within certain boundaries were always not
felt in Tokyo, though the weaker earthquakes of more distant origins

were easily felt.

18. A Hint to the Frequency of After-shocks..

Even at the present day, after all that has been written on earth-
quakes, but little is really known as to the frequency of after-shocks.

An empirical formula,

* F. Omori. This Publication. No. 11, 1902.
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in which % and % are constants, was proposed by Professor F. Omori *
about. ten: years ago. How his hyperbolic formula gives satisfactory
results is sufficiently shown by him in the valuable paper “On the
afterfsllocks of Earthquakes,” in which the formula is applied to the
three recent great earthquakes in :Tapan; namely, those of Kumamoto
in 188?5, of Mino-Owari in 1891, and of Kagoshima. in 1893. Lately,
other formula, in a form of logarithmic function was obtained by
0. Enya,'i‘ founded on three assumptions. A result of labourious
calculation is given by him to show that the logarithmic formula is
better than the hyper_bolic. |
To get any reliable formvla for the frequency of after-shocks, the
first step for it is i» know what is the cause of after-shocks. Pro-
Lably several distinet causes should be recognized, for it is hardly to
be supposeéi that all subterranean disturbances, differing as they do
¢o widely in intensity and in duration, should be referable to one
common mechanism. Each succeeding ‘geological disturbance, the
fracturing, dislocation, caving-in of ill-supported regions, and also
establishment of lines of freedom for the exhibition of voleanic activity
which would accompany these changes, would promote the aftershocks.
‘ According to the iutrinsic meaning of the -'11am,e « After-shock,”
However, the nearest cause must be due to residual disturbance in the
geotechtonic condition after the primitive-shock has recovered. An
earthquake not recieving any participation of this residual is no after-
shock, but an independent earthquake. Standiﬁg on this principle,
with an assumption that the {requency of after-shocks in a given in~
stant is proportional to the rate with which the earthcrust recovers
from the residual disturbaﬁce, one more generai formula for the fre-
quency may be eaéily obtained. The above assumption is, to say in

other words, that i the eartherust were perfectly elastic, the fre-

o T. Omori.. The Jour. of the coll. of Science Vol. VIIL TGkyo. ,
1 O. Enya. The Pub. of the E.IC. in Japaneses Language. No, 35. 1801,
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quency of earthquakes would be proportidnal to the rate with which
the disturbance of the eartherust would be produced.

From what has been explained in the sixth section we know, as
a matter of fact, that a piece of rock yiélds’ under a constant action
of force, and also that the residual strain surviving the force di-
minishes from instant to instaﬁt,- i.e. the rock recovers from its over-
strain. This last phenomenon must be the essential cause of the
after-shocks. Thus, the first step is to find dhy formula expressing the
rate of recovery, or the rate with which the residual varies with time.
One form of such a formula, however, was lately ‘deduced from the -
logarithmic law of yielding, as it was glven in the author’s paper

above cited. The formula is

o=k log I12p+1) Mip+t+ DI . .‘ ........ ()

[p+1)F T2p+t+1) T(t+1)

where p is the total amount of recovery at the instant 7, both p and ¢
being reckoned from the instant when the external force is wholly
withdrawn, while % and p are constants, of which the former specifys
the rock and the latter specifies the time-lapse required by the force
to attain its maximufn.

Let F be the frequency, then the above assumption is

. Foo A2
At
ie. if ¢ is a constant, we ha.ve.
F: C_é"q -
4t
=cklog [p+t+1F

@p+itD+1)
—cllog 1 /2 B I
¢ Og{ +‘2p+1)+2(p+1)t+t‘}. -

Thus we have a logarithmic form for the frequency of after-shocks.
One curve of frequeney for some particular values of ¢, I and p is

drawn in Fig. 73, Pl. XIV. A little consideration on the nature of
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92

-

the constant p will make it reasonable to neglect the term i; so long

as ¢ is not very large. 'Then we have, to the first approximation,

F;&kg{LfAiBA.“.”“.”n.“aﬂ)

which is the same with that of Enya. Again, ekpanding the loga-
rithmic function and taking  its first term only, we have Professor

Omori’s formula

F= e e (IV)

k-t

Though the resuiting formula for the frequency are tolerably
well found in so far as they were tested by Professor Omori and
My. Enya, the original formula (I) for the recovery is not wholly out
of question. The aésunlptioné .under which the formula (I) is deduced
are very far from being the case in an earthquénke. The force acting
on rock is assumed to inerease intermittently; and, to be worse, it is
assumed to be withdrawn not éuddenly but slowly and intermittently.
The following may be more close to the actual case. '

Whatever may be the real cause of an earthquake, it is reasonable

to consider the force as increasing constantly with time, ie.’
df =T dit
where k is a constant, and attaining a sufficient amount F to cause
an earthquake at time 77, so that we have
| F=kT.
Suppose the logarithmic law of yielding, which was empirically estab-
lished in the last series of experiments, to be granted, so that
dn= K dflog (t+ 7),
where 7 is the amount of yielding and K a constant specifying the
kind of rock while z is a constant refering to the choice of origin of

time ¢. Then we have

=K ksTlog (t+ 7)dt

0
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1—]—2’

~kK(T+r)log +k K.

If the total force F is suddenly withdrawn at the instant ¢=17, it
may be easily proved that the residual strain at any instant {= T+t
s giifei.l. by | | '
c=kK T-H/—{—r log{ﬁﬁ_‘w}.
: t/ <

Now, as the ft’equancy is assumed to be proportional to the rate
of recovery, we have | '

P CZO- .

dt

F=—¢

:igf_jl—c‘.k.zﬁo {1+ T L,

where L"c,k,K and 1’ are a'l ‘constants, and ¢ is W11tten for ¢ whose

T

origin may ‘be any 1nstant provided proper value is gwen to the
constant ¢

Here the hequency F m‘my be considered to be (Jomposed of twb
terms F, 1 which 1s h} perbolic and F, Whlch is logauthm]o so that 7

bemg a constant

-
t+c

Flog{1+t —r}

]’__

As the constzmt T is, witk all probability, very great compared to
other constants ¢,k and K, “the main term is the first one, so that the
curve of {requency Fis a little different: ﬁom a hyperbola.

When his gwen, +the curve of I, takes a definite form, but the
cuive of F, is wholi- inde? “nite in so far as T, ie. the time 1equued
by the force to attain its gleatest amount, is not given. That is to
say, if the time duung which the ‘causal agent of the ealthquake
'emsted is long, the curve of frequency aupploacheb\the .hypelbola re-
‘presented by £, but it deviates more and more from the latter curve
as the duration 7" becomes shorter and shorter. Since #, generally

increases as 7T’ decreases, the number of after-shocks of an earthquake
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of rapid generation is necessarily smaller than that of other earthquake
of gentle generation, in o far as the other conditions required to
cause the earthquakes remain constant. Numerical example given

below will show it more ‘clearly.

"ijABLEg XII

h=1000; r=1 | 7, | < F
t F, T=100 7'=1000 T=100 | 7=1000
1 500 .39 6 461, | 494
2 333 35 - 6 298 327
3 250 33 G 217 . 244
4 200 30 5 170 195
5 167 99 - 5 138 162
B 6 143 Y 5 116 138
7 195 26 5 99 | 120
8 111 ‘ 25 5 86 . 10m
9 100 21 5 76 95
10 91 23 . 5. 68 86
\]
11 83 u2. 4 61 79
12 77 22 4 55 73
13 71 21 . 4 50 67
14 67 20 4 47 63
15 63 50 4 43 59
16 59+ 19 4 40 55
17 56 19 4 37 52
18 53 18 4 35 49
19 50 18 4 32 46
20 48 18 4 30 44
o2 { 45 17 4 28 a1
22 43 17 4 96 39
23 42 16 4 26 38
24 40 16 4 24 36
29 33 .| 15 4 18 29
32 30 14 3 16 a7
39 25 12 3 13 22

The éurves of F, and F are drawn in Fig. 74, PL. XIV. In this ex-
ample, suppose the unit of time to be one month, then the number
‘of after-shocks during the first, second, third, etc. one month would
be either 461, 298, 217, etc. or 494, 327, 244, etc. respectively, ac-
cording as the time required by the force to attain its greatest amount

was ‘a hundred or a thousand months. .
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19. Curves of Iso-frequency of After-shocks.

The discussion in the last section refers to the frequency of after-
shocks in the very centre of distufba,nce, i.e. the seismic focus of the ‘
primitive earthquake. It must be borne in mind, however, that such’
a centre, so far from being anything like a mathematical point, is in
nature a subterranean region, which in many cases, is undoubtedly
of very large dimensions. Whatever may be the real origin -of the
after-shocks, it is reasonable to regard them as proceeding from the
seismic focus. If the earth were a honio€eneous solid, perfectly iso-
tropie, the curves of iso-frequency would take the form of a series of |
closed curves around the seismic focus. As a matter of fact, however,
the eartherust is made up of rocks varying greatly in physical
properties, each having its own density and elasticity. To make the
~ variation more discontinuous, rocks of all geological ages are mingled
together, as it were, by a series of geological disturbances, and they
are scattered about through the earth crust. ‘

As to the relation between the frequency y at any place, distant
R from the seismic focus, and the mean radius » of the curve of iso-
frequency, which is assumed to be a circle, corresponding to that place,
Professor F. Omori proposed an empirical formula

y=a b
where both @ and b are constants. Here a hint is given to show how
the existence of hysteresis plays a great part in the frequency of after-
shocks, i.e. r~1 increases very rapidly as there exist different amounts
of hysteresis in the stratum of rocks forming the path of the seismic
wave. \ ‘

From the figures in Pls. VII and VIII, it will be easily seen
‘that, as a general rule, the amount of hysteresis decreases with an
increases of the modulus of elasticity. Though nothing can be said
about any numerical relation between hysteresis and elasticity, but in
the rocks so far examined, certain fela.tion Dbetween these two physic:ﬂ

constants seems to exist. Thus it would not be a wild conjecture to
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say that the amount of hysteresis gradually diminishes from  eainozoic,
e.g. sandstone and rhyolite, to archaean rocks, e.g. peridotite and
gtial'tzschist, in a definite, though not yet known, ratio. .
- It is a matter of course that a seismic wave propagating through
a medium of greater hysteresis fades more ra,pidIy than that propagat-
ing through other medium of less hysteresis. The consequence is that,
provided the frequency of after-shocks at the seismic focus is given,
the fréquency at any place having a given distance from the seismic
focus increases with the geological age of rocks forming the path of
wave between the focus and the place. That is to say, the distance
between two successive lines of iso-frequency is greatest where archaean
rocks lie and becomes less and less through palaeozoic and mesozoic
rocks to reach its least value at the region where cainozoic rocks
extend. - N
Now examining the . curves of iso-frequency in the great Japanese
earthquakes carefully drawn by Professor F. Omori in his paper above
cited as well as many others, it is clearly seen that the irregularitis
of the curves conforms with that of the geblogical distribution of rocks
in those regions. For example, in the case of Mino-Owari earthquake,
in which the total number of after-shocks during one year, 1892,
amounted to more than eight hundreds, four curves of iso-frequency are |
shown, with corresponding geological distribution of rocks, in Fig. 75,
Pl. XIV. The iso-frequency curve of =>500 lies wholly within quatery
rocks and is in an elongated form extending neary north and south
between Gifu and Nagoya. The central ,fegion of the after-shocks may
be in a similar form. The succeeding curves of iso-frequency, however,
‘5o far from being similar to the  first, are in quadrantal forms. In
. the western part, indeed, where the curves lie within quaterly rocks,
they are all parallel to each other; but in other three directions they
shrink in or swell out with all possible irregularities. These irregu-
larities, however, turn to a regularity when the geological distribution
of rocks in the corresponding regions is taken into aceount. To express

in a simple terseness, i swells out where palaeozoic or belter archaean



49 S. KUSAKABE : MODULUS OE

rocks predominate and shyirks in where cainozoic: vocks extend.  This
simple law is sufficiently satisfied up to very minute portions, as the
figure proves it most clearly. _ o

An inference to be drawn from the above is that the conductivity
of seismic wave, if we are allowed to-employ such a term from some
analogies in heat and electricity, is least for cainozoic rocks and,
increasing step by step from mesozoic to palaeozoic, it becomes many
times greater for archaean rocks. As a corollary, sincs the geological
map indicates only surface distribution of rocks, we may conclude that
the seismic wave mainly transmits through the earth’s surface, or quite
probably, seismic action is mainly due to surface waves discussed by
Lord Rayliegh, and recently propounded by Lamb for isotropic medium.
Any further discussion, however, as to the seismic wave-conductivity
‘of several rocks requires more precise quantitative investigation of the

amount of hysteresis for thess rocks.

20. Qonclusions.

In so far as the present experiments extend, we have the following
conclusions.

1. In most rocks, Hooke’s law does not hold even for stress
equivalent to a few percentages of their breaking forcss.

2. Any_»' rock yields slowly but progressively under a constant
force, though the rate of yielding diminishes with the increase of
duration. It recovers from the yielding when it is released {from the
force ; but it seems fo require an i\ﬁﬁnite time to return to- its initial
state by itself. . : :

3. TIf the mcdulus of elasticily is proportional to the ratio of
the change of force to the change of flexure produced by that force-
variation, it isl wholly indetermirats, in s> far as its previous history
as well as itz present coniition is nut completely known.

4. When a piece of rock is bent further and furiher, the modulus

of elasticity firstly diminishes and then, passing through. its minimum
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value, increases again to a certain amount till the piece is broken.
The modulus of elasticity in' a virgin piece seems, as a matter of
course, to be much greater than that usually obtained by assuming
Hooke’s law, ‘ S :

5. When a piece of rock is bent right and left cyclically, the
modulus of elasticity varies not only from point to point in a eycle,
but also from ecyele to cycle, provided the amplitude of the cycle does
‘not remain constant. '

6. The mean modulus of elasticfty taken for one complete cycle
~is much greater than the modulus of elasticity estimated in the usual
manner. | ‘

7. The modulus of elasticity diminishes when the amplitude of
the cycle ipcreases, and the variation is more rapid for smaller am-
plitude than for larger one. This last fact is in contradiction to the
assumption that for small amplitude the modulus of elasticity may be
considered as a constant. , |

8. The modulus of elasticity of a piece of rock increases when
the piece is already in a strained state.

9. The modulus of elasticity generally increases from eainozoic
to archasean rocks. The amount of hysteresis, on the contrary decreases
from the new rocks to the old ones. o

The inferences to be drawn from the above results, in so far as
seismology is concerned, are as follows ;—

1. The ~velocity of propagation of seismic wave is least for
quatery rocks and, increasing with age, it becomes greatest for
archsean rocks. X

2. The velocity, as it is a function of the mean modulus of
elasticity taken for one complete vibration, must be much greater
than that estimated in the usual manner. '

4. The velocity must diminish when the amplitude of seismic,
wave increases: the rate of diminution is greater when the amplitude
is smaller than in the other case. '

4. Along some veins or dikes of old rocks running through the
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earth’s crust, the velocity pf propagation is maximum. Consequently,
the intensity as well as the direction of seismic motion may be very
different for two neighbouring stations. Further consequence results
on seismic shadow ; i.e. seismic wave may be shielded by a vein of
old rocks. |

5. Seismic wave-conductivity: of rocks is least for cainozoic rocks
and, increasing from mesozoic to palsozoic rocks, it becomes many
times greater for an archman rocks. Consequently, the curves of. iso-
frequency of .after-shocks swells out or shrinks in very rapidly ac-
cording as the region consists of archean or cainozoic rocks. -,

6. Actual coinsidence of the curves of iso-frequency with the
geological distribution of rocks in the region, which is the case, e.g.,
for Mino-Owari earthquake where the number of after-shocks during ‘
one year, 1892, amounts to 867 at its central region, may be explained
on the supposition that the seismic waves are mainly transmitted
along the earth’s surface. It is quite probable that seismic action is
mainly due to surface waves discussed by Lord Rayliegh, and recently
propounded by Lamb for isotropic medium.

7. As to the frequency of after-shocks at a central region, the
frequency F' at any time ¢ is given by
_ck KT

t4+7 ‘
where 7,¢,k, K and 7' are constants of different kinds : ie.

T

F —c.k. K log { 1+ t___}

-+

= refers to the choice of the origin of time ¢,

¢ determines the amount of strain required to produce one after-
shock, '

k  is the force produced in unit time, by accumuration of which
the primitive earthquake took place,

K is a constant specifying the rate of yielding of the rock in
the central region,

7 is time required by the dccumnrn»ting force to attain its
greatest amount. | v

Consequently, other conditions being equal, the frequency of after-
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shocks is greater for an earthquake which is slowly generated than
for rapidly generated onme. The curve of frequency is mnearly hyper-
bolic : its deviation from hyperbola is greater in the latter case than
in the former. |

REMARKS :—Preliniinary experiments with sandstone show that

the modulus of elasticity is much affected by the variation of tem-
perature : i.e. ca. 0.5 9 per degree. It does not, however, necessarily
diminish with an increase of temperature when the temperature is
low: ie. it is maximum at ca. 9%.
If the above fact be true for most rocks, the velocity of propagation
would diminish with the increase of temperature of the medium.
Consequently, any cause of the temperature-rise would also be a cause
of the velocity-diminution. For instance, as the underground tem-
perature rises very rapidly with the increase of depth, the velocity
would diminish proportionally, provided all other conditions remain
the same.

In conclusion, I wish to ‘express my great indebtedness to M.
Fukuchi for valuable informations conserning the geological characters
of the specimens. My best thanks are also due to Professor
H. Nagaoka, under whose most kind guidance I carried out this ex-

periment.
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" EXPLANATION OF PLATES.

Sketch of the modification of Kénig’s arrangement..

Sketch of the first arrangement.

Sketch of the second arrangement.

View of the four images visible in the field of telescope.
-~ Front. view of the flexure apparafus.

Side '

Plan of the same.

bRl 33 2 b - 29,

A little iron framework by which the bending force
is applied to the specimen. W, and W, are {wo
wedges, of which the former is fixed while the latter
is movable. The specimen is tightly clamped between
them by the serew S. The bending force is due to the
difference of weights suspended at the extremities of
the strings S; and. S.. }

Fig. 9-10. Sketches of the first and second arrangements re-

Fig. 11.

9.

"

12.

13.

spectively. ~ These show the geometrical relation be-
tween the bending of the specimen and the deviations
of the images within the telescope-field.

This shows the result of preliminary observation on
a pieece of micaschist. The ordinate represents the
amount of deviation of the image in first arrangement,
while the abscissa represents the corresponding effective
mass in grams weight. '

This shows the relation between the amount of

‘bending of the above specimen and the corresponding

force applied to the specimens.
This shows the amount of rotation of the specimen
as a whole during one complete cycle of bending in

the above experiment.



Pl

Pl 111
Fig. 14,
., 15,
PL IV.

ELASTICITY OF ROCKS: ETC. ETC. 45

These are the hysteresis curves for bending of a
sandstone. The resisting masses are different for the
four curves. ‘

These curves show the variation of the modulus of
elasticity due to ihe change of bending force during

one complete cycle in the above experiments. In each

. curve, the right and left branches correspond to the

.cases where the specimen was bent convex towards

righthand or lefthand side respectively, while the lower
branches correspond to the increasing stress and the
upper to the decreasing one. Comparing these four.
curveé, we may safely conclude that the presence of
resisting: mass has no seunsible influence, or, if any,

it is negligibly small.

Flgs 16 17. Yielding of sandstone under constant force, M=

”

kA

3000, M,=23300 grams. That is to say, the amount
of bending of the specimen is plotted against the
time during which the specimen was subjected to the

constant force.

18-19. Recovery from the yielding of the above speci-

- Fig. 20.

21.

men, which was loaded with A/=3000, ,= 3300

grams during 20363 minutes.

Effect of recovery from the yielding on cycles. A
piece of sandstone, loaded with M =3000, 3{,=3500
grams during 2647 minutes, was freated in cyclical
process as usual. _ ‘

Curve A i'epresents the' relation between the amount
of bending and the corresponding amount of force
actmg upon the specimen, which was initially in a

natural state. . In curves' B and (, the specimen was
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initially in a strained state; ie. in curve B, the
specimen was subjected to M= —1500 grams during
1234 minutes, while in curve C it was subjected to
the same force during 1641 minutes. Comparing these
three curves with eéch_ other we see that, in the
neighbourhood of starting point, of the three curves,
A is more steep than C which is more steep than B.

w 12, The ordinate vepresents the velocity of propagation
of ‘seismic waves through a stratum of sandstone,
while the abscissa represents the amplitude or the
maximum stress given to the rock during one com-
plete vibration.

Pl VL ‘

Figs. 22-25. In each figure, the upper curve shows the varia-
tion of temperature with time, while the lower that of
bending, under constant foree.

Fig. 26. The amount of bending is plotted-aguinst the cor-

responding temperature:
Pls. VII-IX. ’

Fig. 27-50. Examples of flexural hysteresis in several rocks of
different kinds.

Pl. X.

Fig. 51-53. The curves in these figures show how the hysteresis

curve varies when its amplitude is varied.
Pls. XI. and XIL
Figs. 54-65. In each figure, the four branched curve represents
the variation of the modulus of elasticity during one
. complete cycle of bending. Refer to the explanation
of Fig. 15. : '
Pl. XIL »
- Fig. 68. This shows how the four branched curve changes
* itg form with the amplitude of cycle.

, 70, Relation between the modulus of elasticity at the
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state of no stress with the maximum amount of stress
applied to the specimen during the cycle.
Pl. XTI, l
Fig. 66. Variation of the modulus of elasticity during one
complete cycle, calculated by parabolic formula for
sandstone.

» 67. Relation between, th; amount of bending and the
force during one complete cycle, calculated by the above
parabolic formula. This is to be compared with the
‘curves in Fig. 14, PL IIL

,» 69, The ordinate represents the modulus of elasticity and
the abscissa the ratio of the actual force to the maxi-
mumnm force applied to the ‘specimen during the cycle.
The maximun force is 300 grams weight for the upper
most curve, and increasing step by step, it is 3000
grams weight for the lowest one. '

y 11 Both curves 4 and B represent the variation of the
modulus of elasticity with the change of the amount
of forece. Curve A starts from the natural state of the
specimen, while curve B starts from a state where the
specimen was subjected under a force 3= — 3000 grams

during 2652 minutes.

Pl XIV.
Fig, 3. Curve of frequency of after-shocks of an earthquake

calculated by logarithmic formula.

,y 4. Curves of frequency of after-shocks. Curve a; ecal- ‘

' culated by hyperbolic formula. Curves 0 and c¢; eal-
culated by the formula deduced from the principle of
- residual strain,

,w 5. Geological map-of Mino, Owari and the neighbouring

districts, with the iso-frequency curves of after-shocks,
during 1892, of the Mino-Owari earthquake in 28 Oct.

1891.  The iso-frequency curves are copied from Pro-
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fessor Omori’s paper published in~ «The Jour. of the
Coll. of Sci., Imp. Univ. of Tokyo, Japan, Vol. VIL”
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