
 

 

 

 

 

Master Thesis 
 

 

 

 

 

 

 

Household power consumption 
monitoring and modeling 

 

 

 

 

 

 

 

 

 

 

 

Supervisor: Koji OKAMOTO, Prof 
 

 

 

 

Meng LI 
 

 

 

Dept. of Human and Engineered Environmental Studies 
Graduate School of Frontier Sciences 

The University of Tokyo 

 



1 
 

Acknowledgement 

First and foremost, I would like to express my particular thanks to Prof. Koji 

OKAMOTO, who advised my work and thesis with great patience and has been taking 

care of me throughout the master course. Only with his enlightenment can I manage to 

complete the procedure, here I would like to present my highest appreciation for his 

kindness as well as his help. 

 

I would like to express my sincere gratitude to those who are and who were with 

me both in the research and my daily life during the two years I spent here at 

Visualization Laboratory in Human and Engineered Environmental Studies, GSFS of 

the University of Tokyo. 

 

I would also like to thank Satoshi SOMEYA-sensei, for his valuable suggestions 

and constructive comments on lab meetings. 

 

A lot of contributive ideas in the discussion part were provided by Yasuhiro 

HASHIMOTO-sensei, his enthusiastic help is greatly appreciated. 

 

Special thanks to my senior Mr. Takanori FUJIWARA, who worked on the same 

project, many ideas were produced in our discussions and cooperation. 

 

Lastly I want to thank my friends including all my lab fellows (especially Yanrong 

LI-san, Naoki NISHIKAWA-kun, and Qiang XU-kun) who made my adventure in 

Japan a pleasant journey; and professors on lectures, secretaries (especially Noriko 

SHIMOKAWA-san), for their assists that made my school life an enjoyable one. 



2 
 

Table of contents 

Acknowledgement .............................................................................................................. 1 

Table of contents ................................................................................................................ 2 

Chapter 1. Introduction and Objectives ............................................................................ 4 

1.1. Background ............................................................................................................... 5 

1.2. Necessity for a new simulation system .................................................................... 10 

1.3. Objectives ................................................................................................................... 11 

Chapter 2. Methodology ................................................................................................... 12 

2.1. Power monitoring system .......................................................................................... 13 

2.1.1. Overview ................................................................................................................. 13 

2.1.2. Hardware components ........................................................................................... 13 

2.1.2.1. Metering devices .................................................................................................. 14 

2.1.2.2. Raw data gatherer ............................................................................................... 16 

2.1.2.3. Database Server .................................................................................................. 17 

2.1.3. Software components ............................................................................................. 18 

2.1.3.1. Work flow of PMS ................................................................................................ 19 

2.1.3.2. Table design ......................................................................................................... 19 

2.1.3.3. Modules and file structure .................................................................................. 21 

2.1.4. Result ...................................................................................................................... 26 

2.2. Simulation environment ........................................................................................... 32 

2.2.1. Overview ................................................................................................................. 32 

2.2.2. Appliance simulators .............................................................................................. 34 

2.2.2.1. State machine in modeling appliance ................................................................. 34 

2.2.2.2. Non-interactive and interactive appliances ....................................................... 35 

2.2.2.3. Permissions on interactive appliances ............................................................... 36 

2.2.2.4. Power consumption functions ............................................................................. 37 

2.2.2.5. Control logic of appliance simulator ................................................................... 38 

2.2.2.6. Parameters in profiles ......................................................................................... 40 

2.2.2.7. Profiling of appliances ......................................................................................... 42 

2.2.3. Agents ..................................................................................................................... 44 



3 
 

2.2.3.1. Layer structure in modeling user behavior ........................................................ 44 

2.2.3.2. Randomness in human behavior ........................................................................ 45 

2.2.3.3. Control logic of agent simulator .......................................................................... 46 

2.2.3.4. Parameters in profiles ......................................................................................... 47 

2.2.3.5. Profiling for agent................................................................................................ 49 

2.2.4. Implementation ...................................................................................................... 50 

2.2.5. Result ...................................................................................................................... 52 

Chapter 3. Discussion ...................................................................................................... 55 

3.1. Application of the simulation environment .............................................................. 56 

3.2. Policy design on supplier end .................................................................................... 57 

3.2.1. Existing pricing policies ......................................................................................... 57 

3.2.2. Pricing function in smart grid ............................................................................... 63 

3.3. Task scheduling mechanism on appliance end ........................................................ 65 

3.3.1. Non-emergent tasks and background usage ......................................................... 65 

3.3.2. Schedule algorithm for non-emergent tasks ......................................................... 67 

3.4. Test examples ............................................................................................................ 70 

3.4.1. Environment setting .............................................................................................. 70 

3.4.2. Simulation result and discussion .......................................................................... 72 

3.4.2.1. Test of schedulable tasks in different quantity .................................................. 72 

3.4.2.2. Test of price stabilizing effect ............................................................................. 75 

3.4.2.3. Test of effective conditions .................................................................................. 78 

3.5. Summary ................................................................................................................... 83 

Chapter 4. Conclusion ...................................................................................................... 84 

4.1. Research summary .................................................................................................... 85 

4.2. Conclusion.................................................................................................................. 86 

4.3. Future work ............................................................................................................... 87 

Chapter 5. References ...................................................................................................... 88 

Chapter 6. Appendix ........................................................................................................ 90 

Part A: Source code of PMS ............................................................................................. 92 

Part B: Source code of SE ............................................................................................... 102 

Part C: the monitored appliances are: ........................................................................... 125 

Part D: template profiles for each appliance: ................................................................ 132 



4 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 1. Introduction and Objectives 



5 
 

1.1. Background 

As electronics continuously come to our daily life in an ever increasing number, 

and their usage become an indispensable part of our working and life experience, the 

demand for a reliable, and capacious power supply is being paid more and more 

attention. In modern power grid, the typical configuration can be illustrated as in 

figure 1.1: 

 

 
Fig.1.1. Electricity grid schematic 

(Image source: Electricity grid schema by Stefan Riepl (originally in German, English 

version by J JMesserly), Wikimedia foundation, 2008 



6 
 

In this setup, the controlling is all centralized in the power generation end, power 

supplier runs the supervisory control and data acquisition (SCADA ) and generate 

power according to usage estimation and system feedback, the generation is demand 

following. 

 

There are few problems with this schematic, one key example is that, the grid AC 

frequency may drift up or down from the nominal value. The grid has an effective 

physical rotating inertia from the combined total of all the rotating generators 

connected to the grid. If more power is coming in from generation than going out to 

loads, there will be a net torque on the system that causes all the generators to speed 

up, increasing the grid frequency [1]. Figure 1.2 shows a sample time history of the 

frequency on the grid in the western US, sampled six times a second. The slope of the 

frequency trace is a measure of the overall imbalance of generation and load at any 

given moment. 

 

 
Fig.1.2. Grid power imbalance causes changes in frequency 

 

On the other hand, with depletion problem of fossil fuels and public's worrying 

about nuclear power, the popularization of renewable energy resources is emerging. 

However, the new devices' entering, such as household solar panels, small scale wind 

turbines, could disastrously magnify the instable effect, because the net energy 

consumption will be more unpredictable, which makes it more difficult to regulate the 

grid with demand following. 

 

The nature of renewable energy resources decides their output quite unstable 

compares to traditional coal and nuclear power generation. For example, wind 

generation profiles are different every day, with the time of day of peak generation 

varying by many hours from day to day [1]. Figure 1.3 is one month's worth of daily 

wind generation profiles in the PG&E territory. 



7 
 

 
Fig.1.3. Tehachapi California wind production for each day of April 2009. 

(Image courtesy of Cal ISO.) 

 

The electric power industry in the 21st Century will see dramatic changes in both 

its physical infrastructure and its control and communication infrastructure. These 

changes are the result of mainly three factors [2]: 

1. The push toward a deregulated industry 

2. The development of more efficient and/or less polluting energy resources 

3. The continued electrification and integration of information technology into 

the most facets of our everyday lives 

 

Besides of these, traditional SCADA is facing challenges, as people require the 

following features in the next generation power grid [3]: 

1. Better reliability 

2. High quality power supply 

3. Integration with more distributed energy resources (DERs) 

4. Consumer participation 

5. Optimized assets 

 

Smart grid is proposed as whole solution to meet these requirements. The term 

“Smart grid” has been in use since at least 2005, when “Toward A Smart Grid”, 

authored by S. Massoud Amin and Bruce F. Wollenberg appeared in the 

September/October issue of IEEE P&E Magazine(Vol. 3, No.3, p34-41). 



8 
 

A smart grid delivers electricity from supplier to consumers using two-way digital 

technology to control appliances at consumers' home to save energy, reduce cost and 

increase reliability and transparency [3]. The electricity distribution grid is overlaid 

with an information and net metering system that keeps track of all electricity flowing 

in the grid. The grid also incorporates the capability of integration DER by utilizing 

local power storages [5][6]. The conceptual formation is shown in the following figure 

1.4: 

 

 
Fig.1.4. Conceptual schematic of smart gird with mechanisms 

The Smart Grid Frontier: Wide Open, by David Heyerman 

(Image source: tinycomb.com，2009) 

 

By utilizing modern communication technologies, dynamic regulating mechanism 

becomes more effective in smart grid, with reliable failure resisting mechanism. 

Integration with DER and data transmission mechanism will enable power market 

[4][7], a new feature in future power grid. Both passive demand following and active 

demand controlling will be applied in smart grid for making regulating tasks easier to 

achieve. Floating price feature will be introduced to help individual consumer in saving 

costs on the power market and help power supplier in managing customer consumption 

of electricity in response to supply conditions, so the desired behavior of the whole 

power grid can be achieved, for example, having electricity customers reduce their 

consumption at critical times or in response to market prices. 



9 
 

In smart grid, consumers participate actively to save cost in the meanwhile of 

optimizing the usage in the whole grid. It is achieved by allowing appliances and DERs 

in the grid respond to signals broadcasted by the supplier, which can be controlling 

signals and/or power price, as shown in figure 1.5. 

 

 
Fig.1.5. Signal broadcasting and usage control 

 

In this configuration, individual consumers are viewed as independent entities 

with accessing to power grid features such as power supplying and signal receiving. A 

number of consumer and DERs form a small scale grid that integrates local controlling, 

optimization, which is defined as miro-grid. The controlling in future smart grid is 

majorly implemented at this level [5]. As power consumers in micro-grid are 

independent to each other (though more or less information exchanging is designed for 

achieving individual’s usage stragey as well as a greater goal such as usage balancing), 

and distributed control is used, the micro-grid control can be described and researched 

as a multi-agent system controlling problem [5][6][7][8]. 

 

Demand response (DR) respond to explicit requests to shut off appliances, 

whereas power price is just a moderate controlling encourages/discourages appliances 

to manage usage according to their own strategies [13]. 

 

Floating price is another way of realizing usage control in a power grid [14][15]. 

Unlike in DR, the mendatory controlling signal is directly sent to the appliances, 

floating price is just a moderate approach encouraging usage scheduling at individual 

consumer’s, utilizing people’s concern about saving power cost. 



10 
 

1.2. Necessity for a new simulation system 

With the radical changes that taking place in the power grid, it is important to 

build a load simulation system for: 

1. Prototyping smart grid for new regulating mechanisms 

2. Validating the usefulness of smart appliances and DERs 

3. Validating the effectiveness of different policy design 

 

Existing simulation systems built based on statistics of historical consumption 

data are lack of credit when considering the new changes that would happen in the 

future power grid. Future changes would happen not only in the scale but also in the 

composition of electricity infrastructure. Appliances such as electric vehicles and local 

power storage are yet uncertain of their behaviors; Types of DER are coming to our life 

with different quantities and capabilities. 

 

Therefore, experiential model is not competent to make accurate load estimation 

and is not flexible in modifying the composition. 

 

It is necessary to build a new simulation system that can do the work of load 

estimation with integration of new appliances and DERs, we proposed a multi-agent 

system approach in build such a simulation environment, which is flexible to change 

the composition at a resolution of single device, as well as to adjust the scale from one 

single room to tens of thousands of rooms. The simulation environment can be used not 

only as a power forecasting tool with improved resolution but also the testing and 

verifying platform of new policies and strategy design on the large-scale. We expect the 

system to be a useful tool to aid future power grid design and evaluation of smart grid 

features. 



11 
 

1.3. Objectives 

This research aims for providing a useful tool in designing future smart grid and 

eventually facilitates building a more robust and intelligent power grid that makes 

people’s life more convenient and efficient. 

 

In this paper, we examined the method of multi-agent system (MAS) in building a 

load simulation environment (SE). We utilized advanced metering devices (AMI) and 

readymade information system in building a power monitoring system (PMS), and 

based on the practical data captured by PMS, we built the SE. 

 

On the system application layer, we discussed the advantage of bringing in 

micro-scale controlling algorithm on smart appliances, and examine its effectiveness on 

SE. The overall process is shown in the figure 1.6: 

 

 
Fig.1.6. Overview of the research, processes and objectives 



12 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 2. Methodology 



13 
 

2.1. Power monitoring system 

2.1.1. Overview 

In this part, we implemented the power monitoring system (PMS) based on 

ready-made smart metering system, in order to get practical data for next step 

appliance modeling. 

 

2.1.2. Hardware components 

We use smart metering system provided by Eicoh (www.eicoh.com), which 

includes smart meters and a raw data gatherer. The metering devices are used for 

measuring the current power of appliances plugged in, and send the power measures to 

the raw data gatherer through wireless network, as shown in figure 2.1. We built up 

the database server to retrieving raw data files from raw data gather, the data records 

are stored in the database for later inquiries. 

 

 
Fig.2.1. Hardware components in PMS 



14 
 

2.1.2.1. Metering devices 

There are two models of meter in our experiment setup: 3-slot model and 4-slot 

meter. Compares to the 4-slot model, 3-slot model has fewer slots or plugging with 

appliances but with an extra temperature and humidity sensor built in. Figure 2.2 

shows the picture of 3-slot (left) and 4-slot (right) 

 

 
Fig.2.2. Smart metering devices 

 

The maximum current should be limited to 15A. A breaker of 20A is built in for 

security considerations. 

 

When the meter is powered, it automatically starts sending data after 10-13 

seconds (to avoid concurrent conflict in network), the interval of data sending can be 

set from 1-10 minutes. In our experiment, this interval is set to 10 minutes for 

releasing the load in wireless network. When the interval is set to 0, the meter will stop 

sending power measures. 

 

The statuses of the meter are: setting wireless module, connecting, sending data, 

an indicator near the antenna shows the current status of the meter: 

 

Indicator Status 

Switching (Irregular interval) Setting wireless module 

Switching (Regular interval) Connecting 

On Sending data 

Table.2.1. Correspondence between indicator and meter status 

 

When setting up the device, software driver provided by Eicoh is needed to be 

installed on a Windows PC. Then connect the meter and PC with a USB cable and set 

via command lines on terminal software (we used TeraTerm), as shown example in 

figure 2.3, the commands are listed in table 2.2. Settings are saved when the meter is 

power off. 



15 
 

 
Fig.2.3. Example of setting up a meter on terminal software. 

 

Function Command 

IP address setting setip XXX.XXX.XXX.XXX 

Subnet mask setting setmask XXX.XXX.XXX.XXX 

Gateway setting setgate XXX.XXX.XXX.XXX 

Server IP address setting setsv XXX.XXX.XXX.XXX 

Server port setting setport n 

DHCP setting dhcp on/off 

Password mode setting smode wep/wpa 

SSID setting ssid s 

WEP key setting (characters) wep s 

WEP key setting (hexadecimal) weph hh 

WPA key setting (characters) wpa s 

WPA key setting (hexadecimal) wpah hh 

Authorization mode  

(0:open/1:shared) 

auth 0/1 

Data sending interval setting 

(0:stop/1-10:mins) 

setstm n 

Display settings adsp 

Display firmware version ver 

Display help help/? 

Table.2.2. List of setting command 



16 
 

2.1.2.2. Raw data gatherer 

The raw data gatherer is used to gather the power measure from the meters, 

figure 2.4 shows the picture of raw data gatherer and wireless network access point: 

 
Fig.2.4. Raw data gatherer and wireless network access point 

 

The raw data gatherer is running CentOS 5 Linux distribution, with Apache 

HTTP server and PHP runtime. On the raw data gatherer, directory and file structure 

is organized as shown in the figure 2.5: 

 

 
Fig.2.5. Directory and file structure on raw data gatherer 

 



17 
 

Temporary data file in work directory is updated whenever measures come from 

the meters, and mk1Hdata.php is scheduled to run every hour and write a XML file 

from these temporary files and delete the source temporary files. The XML files are 

named in the following format: YYYYMMDD-hh.xml, the file is contained in the 

directory of the following path:   /var/www/data/YYYY/YYYYMM/YYYYMMDD/ 

The XML record file gathered this way is of the format: 

<powerlog> 

<msg> 

 <src>(Device model)</src> 

 <uid>(MAC address)</uid> 

<date>YYYY-MM-DD</date> 

<time>hh:mm:ss</time> 

<type>(Device type)</type> 

<tempC>(temperature)</tempC> #valid on 3-slot version only 

<humidity>(humidity)</humidity> #valid on 3-slot version only 

<ch1><watts>XXXX</watts></ch1> 

<ch2><watts>XXXX</watts></ch2> 

<ch3><watts>XXXX</watts></ch3> 

<ch4><watts>XXXX</watts></ch4> #valid on 4-slot version only 

<ext></ext> 

</msg> 

… 

</powerlog> 

As the raw data gather is only for storing raw power records, querying single or 

multiple appliance’s power over time is difficult, so we build the database for all the 

appliances measured this way, in order to easily get the power-time chart for later 

analysis. 

2.1.2.3. Database Server 

The database server stores a duplication of power data in an organized way, and 

periodically synchronizes power data with raw data gather. It is based on the 

consideration that the crash of database server would not affect the original data. The 

database server is also a web server for querying the database and returning the result 

to user’s browser window. 

 
Fig.2.6. Database server, Dell PowerEdge T310 



18 
 

2.1.3. Software components 

We use the popular “LAMP” environment for the database server setup: Red Hat 

Enterprise Linux 5 for the L, Apache HTTP server for the A, MySQL database manages 

system for the M, and Python scripts for the P. 

 

We choose Python as the server end scripting language, as it is a powerful, 

general-purpose high-level programming language, especially suitable for fast 

prototyping. Its design philosophy emphasizes code readability, which is believed to be 

beneficial for further development even by different group of programmers. What more 

is that it has a large number of free and comprehensive third party libraries, which 

enables us to do more work with less coding. 



19 
 

2.1.3.1. Work flow of PMS 

The work flow in the database server is shown in the figure 2.7: 

 
Fig.2.7. Work flow in database server 

 

The database initiation is executed only once at installing the system. When 

building the system after the initiation, we specify the start time and run the building 

module only once. After the database is built up, updating is performed automatically 

once every day to write the data of the previous day into the database. The inquiry may 

happen several times a day depending to users’ requests. 

 

2.1.3.2. Table design 

As the core part of database designing, the tables are designed according to the 

following guidelines: 

 

1. Explicit and comprehensive form 

2. Good performance in updating and querying 

3. Acceptable size of storage 

 

The raw XML file on data gather server contains the messages from all the meters 

within one hour in the reception order. The meter and time order may slightly vary 

depending on the network condition, as shown in figure 2.8. So for the sake of explicit 

format, we parse the XML file into message groups according to the meter identifier, 

which is its hardware MAC address. Within the same message group, messages are 

sorted in the time order. 

 



20 
 

 
Fig.2.8. XML data file parsed into message groups 

 

Each piece of message contains the following information: 

1. Meter ID 

2. Time stamp 

3. Power measures for channel 1,2,3,4 (channel 4 is valid only on 4-slot version) 

4. Temperature measure (valid only on 3-slot version) 

5. Humidity measure (valid only on 3-slot version) 

 

We made 4 types of tables in our PMS, the power data table, temperature data 

table and humidity data table, and the registry table. 

 

In the power data table, there are two columns: time stamp (date and time) and 

power, the type of time stamp is the datetime type provided in MySQL DBMS, whereas 

the power is of integer type, the unit is Watt. As there may be multiple power measures 

for different channels/appliances in one piece of message, for convenience, we make a 

table for each channel/appliance; figure 2.9 (left) shows the procedure. 

 



21 
 

 
Fig. 2.9. Message updating into: power data table (left), temperature table (center), 

humidity table (right). 

 

The temperature and humidity table are of similar design to power data table, the 

value is also integer in order to do fast access. 

 

Besides the data tables, a registry table is also maintained in the DBMS, the 

registry is for storing the information of appliances plugged in, the columns in the table 

are: mac_address, location, channel1, channel2, channel3, channel4. Channel 4 is left 

blank if the meter is of a 3-slot type. 

 

2.1.3.3. Modules and file structure 

The building of PMS includes MySQL DBMS and modules programmed in python. 

We use MySQLdb, a python library to access MySQL from python programs; the 

python modules perform tasks such as db creating, table creating, raw XML file 

parsing and table updating. 

On the querying part, we use inquiry module through CGI on the Apache HTTP 

server. The configuration of modules is shown in the figure 2.10. 

 



22 
 

 
Fig.2.10. Python modules in PMS 

 

The initiators in initiate module are used for create database and then in that 

database, create tables for power, temperature, humidity data and registry. The tables 

are empty after the creation; the building procedure is needed, which involves using 

the update module. 

 

The update module performs both tasks for building the database for the first 

time run, and its periodical updating. The periodical updating is scheduled to run at 

5:00 AM every day, the XML raw files gathered from 01:00:00 in the previous day to 

03:00:00 in the current day, are retrieved and written into database after parse. Note 

the raw gatherer system may need some time to make the XML file, so some time 

should be allowed to wait for it finishes the task, little overlap in the period is designed 

to avoid data loss. The tables for power, temperature and humidity data are updated in 

this procedure. The registry table is not automatically updated with other tables; 

therefore, when building the table for the first run or the setup changes, it needs to be 

manually modified. The periodical updating is achieved by the cron job-scheduler on 

Linux, the crontab for doing this is written as: 

 

 0 5 * * * /home/user1/PMS/update/update_tables_data.py 

 0 5 * * * /home/user1/PMS/update/update_tables_temp_humidity.py 

 

(The PMS folder is placed in the user’s home folder in this example, all the files’ 

permission should be set to free access for everyone so as the system can use them) 

 



23 
 

The inquiry module is used for querying the database and writing the results into 

a local CSV format file, or sending the results to a remote browser who requested the 

inquiry. The files are placed in the path: /var/www/cgi-bin/. (This module may be 

invoked by system; all the files’ permission should be set to free access for everyone.) 

 

The file structure of modules is shown in the figure 2.11 and 2.12, the call 

relations among the files, with functions noted, are shown in figure 2.13, 2.14 and 2.15. 

Detailed function descriptions are listed in the table 2.3. 

 

 
Fig.2.11. File structure of initiation module and update module 

 

 

Name Location Parameters Return value Function 

connect ops_db.py hostname, 

username, 

pswd 

connection(obj) connect to 

MySQL server 

lst ops_db.py connection(obj) dbn_lst(list) list DB names 

select ops_db.py connection(obj), 

dbn 

N/A select DB whose 

name is dbn 

create ops_db.py connection(obj), 

dbn 

N/A create DB named 

dbn 

drop ops_db.py connection(obj), 

dbn 

N/A drop DB named 

dbn 

lst ops_table.py connection(obj), 

dbn 

tbn_lst(list) list table names 

in DB 

create ops_table.py connection(obj), 

tbn 

N/A create table 

named tbn 



24 
 

reg_create ops_table.py connection(obj), 

tbn 

N/A create registry 

table named tbn 

drop ops_table.py connection(obj), 

tbn 

N/A drop table named 

tbn in DB 

read ops_table.py connection(obj), 

tbn, st, et 

val_lst(list) read records from 

start time st to 

end time et 

write ops_table.py connection(obj), 

tbn, datetime, 

val(int) 

N/A insert record 

with datetime 

and value, 

overwrite if 

record exists 

csv2lst init_tables 

_data.py 

fn lst(list) convert csv file of 

name fn’s content 

to mac address 

list 

lst2chlst init_tables 

_data.py 

lstn chlst(list) convert mac 

address list to 

table names 

csv2lst init_tables 

_temp_ 

humidity.py 

fn lst(list) convert csv file of 

name fn’s content 

to mac address 

list 

lst2chlst init_tables 

_temp_ 

humidity.py 

lstn chlst(list) convert mac 

address list to 

table names 

 

datespan util.py st, et, 

delta(int) 

datetime 

_lst(list) 

make list of 

datetime strings 

between st and et 

file_lst util.py st, et, url_dir fn_lst get file name list 

between 

datetime st and 

et 

retrieve util.py url file_lines(list) 

/0 

get contents of 

remote file into a 

list, or 0 if not 

successful 

xml_parser util.py xml_str xml_dict(dict) parse xml string 

into a dictionary 

ch inquiry.py connection(obj), 

tbn,st,et 

val_lst(list) return sorted 

value list within 

table tbn , where 

the datetime is in 

between st and et 

sort inquiry.py lst(list) sorted_lst(list) sort list into a 

increasing order 

of the first value 

str2time inquiry.py str datetime(obj) convert string to 



25 
 

datetime object 

scale_ 

generate 

inquiry.py st, et, 

interval(int) 

scale(list) generate scale 

between st and 

et, with an 

interval 

merge inquiry.py scale(list), 

data(list) 

data_lst(list) sort data 

according to the 

scale 

power_sum inquiry.py lst(list) sum(list) get energy list 

with power list 

view inquiry.py connection(obj), 

tbn,st,et, 

interval(int), 

raw 

val_list(list) 

/sum(list) 

get power data 

list if raw flag is 

“true”, energy 

data list if raw 

flag is “false” 

Table.2.3. Detailed description of functions, parameters are strings if not specified, N/A 

in return value column means no return value 



26 
 

2.1.4. Result 

The result of local access to DBMS is shown in figure 2.12-2.15. The result of 

intranet access to PMS is shown in figure 2.16-2.19. The result of local visualizer is 

shown in figure 2.20, 2.21. 

 

 
Fig.2.12. Data records of an appliance for one week in DBMS, view from local 

access 

 

 
Fig.2.13. Humidity data from a meter for one week in DBMS, the integer value is 

100 times of actual value, for integer operation is much efficient than floats. 



27 
 

 

 
Fig.2.14. Temperature data from a meter for one week in DBMS, the integer 

value is used for the same consideration as in humidity table. 

 

 

 
Fig.2.15. Registry table in DBMS 



28 
 

The data records can be accessed within the intranet, the format of URL is 

(parameters are contained in “<>”): 

 

http://<host_url>/cgi-bin/<filename>? 

ch=<meter ID>_<channel>& 

st=<YYYY>d<MM>d<DD>s<hh>c<mm>c<ss>& 

et=<YYYY>d<MM>d<DD>s<hh>c<mm>c<ss>& 

interval=<seconds>&raw=<true/false> 

  

Filename can be: 

1. power_single.py: return single/multiple power data records, channels are 

separated by ”-” 

2. humidity_single.py: return single humidity data records 

3. humidity_multi.py: return multiple humidity data records, channels are 

separated by ”-” 

4. temp_single.py: return single temperature data records 

5. temp_multi.py: return multiple temperature data records, channels are 

separated by ”-” 

 

Meter ID and the channel must be consistent with file type, for example, value 

and/or unit mismatch will happen when intend to get power data from a humidity 

channel. When in the energy mode, data displayed on the browser are summed with 

interval parameter, measured in seconds. The raw flag must be set to false. The 

following are examples: 

 

 
Fig.2.16 Power data view for a single appliance on browser within intranet, the 

unit of power data is Watt 



29 
 

 

 
Fig.2.17.Energy data view of a single appliance with 1 hour’s interval, the unit is 

J, the first zero line has no meaning 

 

 
Fig.2.18.Humidity data view of a single meter, the unit is percent. 



30 
 

 
Fig.2.19 Temperature data view of a single meter, the unit is Celsius degress 

 

When the power/energy data are copied in to plain text file, the local visualize can 

be used to demonstrate the data chart simply. The following are examples: 

 

 
Fig.2.20. Power view of an appliance on local visualizer 



31 
 

 
Fig.2.21. Energy view of an appliance on local visualize 



32 
 

2.2. Simulation environment 

2.2.1. Overview 

Considering a real power consuming environment, such as a community, is consist 

of cells. The cells are classified such as houses, apartments, offices, research rooms, 

stores… The class of a cell is decided by its main components: human users. Within 

each class, there can be a number of instances, representing power consuming units of 

the same type in practical. Figure 2.22 shows the composition example of a community. 

 

 
Fig.2.22. Compositions of cells in a community 

 

The human users in cells can be classified according to their power consuming 

behaviors. This configuration is based on the observation that people’s behaviors 

normally vary with factors such as work, age, gender of the person. 

 

Within a cell of class research room, as shown in figure 2.23, for example, there 

are human users of class students and appliances of a variety of classes, such as 

lightening, desktop PCs, displays, fridges and so on. Human users are the indirect 

power consumers, whereas the appliances are actually the direct power consumers. 



33 
 

 
Fig.2.23. Cell composition example: research room 

 

According to the observation above, in a simulated power consuming environment, 

the components are appliance simulators and human behavior agents. We can have 

flexibility in modifying the composition, in both the quantities and types of appliances. 

Instead of fixed power curves, we consider interactions between human agents and 

power appliances. 

 

A multi-agent system is suitable for building such a kind of simulation 

environment. 



34 
 

2.2.2. Appliance simulators 

2.2.2.1. State machine in modeling appliance 

In power behaviors, appliances may be of several working phases, as shown in 

figure 2.24: 

 

 
Fig 2.24. Working phases of a refrigerator, purple part: pre-high phase, red part: high 

power phase, green part: standby phase, yellow part: low power phase 

 

Each phase has a start time and end time, and the transitions between working 

phases are decide by some factors such as internal timer or external access. Identical 

appliance on different working phase behaves differently, which result in different 

appearances in power curves. The working phases here are defined according to the 

appliance’s external power behaviors, for the consideration that, its detailed internal 

mechanism are invisible for ordinary users, so the modeling can be done conveniently. 

 

In our approach, we model the appliance with state machines. A state machine 

possesses several states, representing working phases of a practical appliance. The 

transitions between working phases are modeled as a set of rules to transit between 

states in the state machine as shown in figure 2.25. 



35 
 

 
Fig.2.25 State machine modeling for refrigerator 

2.2.2.2. Non-interactive and interactive appliances 

Appliances can be classified into non-interactive and interactive, according to 

whether its transitions are responses to human user’s requests. Figure 2.26 shows an 

example of comparison of non-interactive and interactive appliances’ power curves. 

 

 
Fig 2.26 Comparison of non-interactive and interactive appliances’ power curves 

 

Non-interactive appliance’s transitions happening or not depends only on its 

internal timer(s), whereas interactive appliances’ transitions are caused by not only 

internal timer but also users’ requests. Non-interactive type appliances include: fridge, 

kettle, phone, server, router and so on; Interactive type appliances includes: microwave 

oven, air conditioner, desktop PC, laptop PC, display, printer, TV and so on. Note that 

appliances such as phones and kettles, are of the non-interactive type, that does not 

mean they do not respond to user’s request, however, on power consuming behaviors, 

phones are normally periodically charged, kettles are normally periodically powered, 

regardless of users’ accessing. 



36 
 

2.2.2.3. Permissions on interactive appliances 

As for interactive appliances, some appliances can only serve one user at one time, 

whereas some can serve multiple users at one time. Some appliances serve their 

owners only, whereas some serve a group of users. We further classify interactive 

appliances into non-mutual exclusive and mutual exclusive according to the number of 

users they serve at one time; shared and personal according to who the appliances 

serve. Figure 2.27 shows the design. 

 

 
Fig.2.27 Personal/shared and non-mutual/mutual exclusive appliances 

 

The interactions between human users are mainly presented in the competitive 

usage of shared appliances. When time conflicting usages happen to a shared mutual 

exclusive appliance, the tasks for users’ requests are queued and executed one by one. 

When time conflicting usages happen to a shared non-mutual exclusive appliance, the 

working time usually extends to satisfy the longest time requests, as shown in figure 

2.28. 

 

 
Fig.2.28 Mutex/non-mutex appliance’s response to time conflicting requests 

 

Examples of shared mutual exclusive appliances are: microwave oven, printer, etc. 

Examples of shared non-mutual exclusive appliances are lightening, air conditioning, 

etc. 

 



37 
 

2.2.2.4. Power consumption functions 

Within each working phase, the power measures of appliance can be viewed as a 

power consumption function with the timer under current state and/or external timer 

(such as local time) as variables. The function is manually selected to make a base line 

best fitting the power curve, all we need to do is to find the parameters for the function. 

Figure below shows an example of using an exponential curve to fit a power curve. 

 

 
Fig.2.29. Power consumption function of time, red curve is the plot of output data, 

fitting the practical data in blue lines under a working phase 

 

In practical data, the power curve is discrete as: the capturing of power measure is 

limited to several seconds in time resolution and data loss happens due to network 

instability sometime. The fitting function, however, generates a smooth base line that 

only approximately agrees with the practical one. 

 

Usually the power value of an appliance distorts, and abnormal conditions 

(example shown in figure 2.30) happen in the curve; it is especially obvious in 

appliances of drastic power fluctuations. In modeling the usage into the power 

consumption function, they are treated as distortions and abnormal conditions of the 

fitting curve. 

 



38 
 

 
Fig.2.30. Abnormal conditions in long term captured practical data 

 

2.2.2.5. Control logic of appliance simulator 

To act as an appliance of specific class, the simulator reads profiles, which 

contains the information about working phases and transitions, time and power 

parameters of each phase. The work flow of an appliance simulator is described as the 

following: 

 

1. Initiating appliance simulator, read parameters from profile. 

2. Check if there is a pending request from agent in request buffer, if yes go to 

step 8, if no, go to step 3. 

3. Check transition chart, under current state, if the timer exceeds the wait 

limit, if yes go to step 7, if no, go to step 4. 

4. Output power measure using current power consumption function and 

current timer. 

5. Timer increases. 

6. Loop to step 2. 

7. Reset timer under current state,  

Find next applicable state in transition chart,  

Set power consumption function of that state the current power consumption 

function,  

Switch to the state found, go to step 5 

8. Pop the request out from the request buffer as the current request. 

9. Check route table with current request, under current state, if the timer 

exceeds the wait limit, if yes go to step 10, if no, go to step 4. 

10. Reset timer under current state,  

Find next applicable state in route table,  

Set power consumption function of that state the current power consumption 

function,  

Switch to the state found, go to step 5 

 



39 
 

The request may come to appliance anytime, a request buffer inside appliance is 

used to store incoming requests, and may later allow the simulator perform task 

scheduling. When the appliance simulator run in a time frame, it checks the request in 

the buffer, and decides whether to respond to the request. 

 

A detailed function list in the appliance simulator is in the table 2.4: 

 

Name Parameter Return Value Function 

config_file_read profile_filename params_d 

(dictionary) 

Call all 

applicable 

parameter 

reading functions 

node_table_read param_str node_table 

(dictionary) 

Read node table 

string into a 

dictionary 

transition_chart_read param_str transition_chart 

(dictionary) 

Read transition 

chart string into 

a dictionary 

route_table_read param_str route_table 

(dictionary) 

Read route table 

string into a 

dictionary 

pcf_params_read param_str pcf_params 

(dictionary) 

Read power 

consumption 

function 

parameter string 

into a dictionary 

distortor base_val (int), 

distortion_rate (float) 

distorted_val (int) Add distortion to 

power measure 

value 

pcf pcf_params, 

current_timer (int), 

global_timer (int) 

pwr_val (int) Get current 

power measure 

value, distortions 

not included 

__init__ 

(in class function) 

profile_filename, 

init_state 

N/A Initiate instance 

for appliance 

simulator class 

run 

(in class function) 

N/A N/A Output power 

measure value 

for a time point 

rcv 

(in class function) 

request_str N/A Receive user 

request (only in 

interactive 

appliance) 

get_request 

(in class function) 

N/A request_str/ 

”n/a” 

Read next 

request from 

request buffer 

new_day 

(in class function) 

N/A N/A Reset global 

timer 

Table 2.4. Functions in appliance simulator 

 



40 
 

2.2.2.6. Parameters in profiles 

The appliance profile contains the following information: 

1. Transitions, it is usually decided by the type, the internal functioning 

mechanism of the appliance. 

2. Time parameters in the transitions, including minimum wait limit for each 

state, and periods for periodically appearing states. 

3. The power consumption function type and parameters at each state, this 

information instructs the simulator how to give out the power value 

specifically 

4. A route table is in the profile of a interactive appliance, it resembles the 

transition table but with a different meaning, it instructs the simulator how 

to transit when a request incomes. 

 

The format of the profile is demonstrated by the following example of an air 

conditioner’s (interactive appliance) profile: 

 

node_table=off:0,0; 

w1:12000,0.2; 

w2:0,0; 

working:0,0 

  

transition_chart=off,w1:n/a; 

w1,off:0,0; 

w1,w2:0,0; 

w2,working:0,0; 

working,w1:0,0 

 

route_table=working,off,w1:0,0; 

working,w1,w2:2500,0.1; 

working,w2,working:1000,0 

 

pcf_params=off:0|0/0/+|0,0,0; 

w1:0|10/0.2,0.01/+|0,0,0; 

w2:0|500/0.2,0.03/+|0,0,0; 

working:2|260,90,46000,10000/0.05,0.01/+|0,0,0 

 

Node table contains the information of states, with the state name and minimum 

wait time parameters, the parameters are the mean, and variance of the wait time, 

which will be decided randomly according to these parameters in runtime. Transition 

chart specifies the switching among states, the names before the colon are the current 

state and the next state names, the parameters after the colon are the mean and 

variance of the period of the transition, which will be decided randomly according to 

these parameters in runtime. The “n/a” in node table and transition chart means the 

unlimited wait time, in another word, the state would never end/ the transition would 

never happen, this design is used for interactive appliances, that only when a incoming 

request can trigger a state change (as transiting according to the route table). 

 

In the route table, parameters before the colon are the desired working state 



41 
 

name, current state name, the next state name; parameters after the colon are the 

mean and variance parameters of wait limit. “n/a” in route table means “wait for the 

current state end”. 

 

Power consumption function parameters for each state are separated by “/” into 3 

parts accordingly: base function parameters, distortion parameters, abnormal 

condition parameters. In the first part of base function parameters, the number before 

“|” specifies the type of function, and the numbers after it specifies the parameters for 

the function. There are 3 types of function currently: 

 

1. ptpcf )( , type 0, t is timer under current state 

2. 
tp

epptpcf


 3

21)( , type 1, t is timer under current state 

3. 
2
4

2
3 )(

21)(
p

pt

epptpcf




 , type 2, t is a global timer  

 

The distortion part specifies the rate of distortion. In the abnormal condition part, 

the symbol before “|” specifies the condition of abnormal values, “+” for only higher 

values are made to the final output, “-” for the lower, “?” for all. The parameters after 

“|” are the base value, distortion rate, happening probability of the abnormal contion. 



42 
 

2.2.2.7. Profiling of appliances 

To allow more flexibility for future expansion, the data is separated apart from 

program. The appliance simulators use profiles made according to practical data as the 

basis to generate simulation data. The typical procedure of making such a profile is 

shown in figure 2.31. 

 

 
Fig.2.31 Procedure of making a profile for an appliance: Get the practical power curve 

of the appliance (upper left), abstract to working phases (lower left), decide state 

transitions and set parameters (lower right), compare the simulation result and modify 

the parameters (upper right) 

 

The first step is to abstract working phases, according to the external power 

behaviors. Then determine the transitions of states for the state machine in modeling. 

Every node has a minimum wait limit: the internal timer can trigger transitions only 

when exceeds the wait limit. For nodes branching in directions to next states, there is a 

period timer for each transition, transition with a longer period is of a higher priority to 

be conducted. After determining the transitions and parameters for each node and for 

branching transitions, we need to decide the type and parameters for the power 

consumption function of each state. The type is quite arbitrarily decided, in most cases 

the base line of the power consumption is just a simple linear line. In refrigerator’s 

working phases, an exponentially decreasing style line form is used as the base line. 

The distortion and abnormal conditions are also included in the parameters; they are 

usually given with certain randomness. 

 

For interactive appliances, the transitions happen not only on when the timer 



43 
 

trigging them, but also on incoming of user’s requests. When responding a request, the 

transitions of an appliance can be different from that in transiting without requests. 

For example, appliance may be turned on to some state that it would never go to itself. 

Based on this consideration, a routing table is made for interactive appliances, 

describing their transitions when requests present. The routing contains the wait 

limits for each state, without branching conditions (the destination of next node must 

always be decided). 

 

As appliances of the same class usually behave similarly in working phases (if not, 

make a new profile as a new class), the structural parameters are the same among all 

the instances of the class, difference in appearances of models (within same class) are 

presented by the difference in numerical parameters such as time lengths and power 

consumption function parameters. The numerical parameters on runtime are decided 

by the parameters in profile with randomness. The randomness is also used in making 

different appearances of the power curve for identical appliance. 

 



44 
 

2.2.3. Agents 

Human agents in simulation environment play the role of request generators, 

their requests are the causal factor of usage from interactive appliances. They make 

the simulation of cells more realistic, with different classes and numbers of human 

agent contained, the cells can be different in appearances. 

 

2.2.3.1. Layer structure in modeling user behavior 

Human users can be modeled as a set of behaviors. At different time of a day, 

human user performs approximately the same behavior. For example, people usually 

start working in the morning and having lunch around noon. What types of behaviors a 

human perform, from when and for how long the behavior is performed is decided by 

the class of human user. Human users of the same class perform similar behavior with 

close time parameter. 

 

For individual users, some behavior happens only in another behavior’s 

performing. For example, in an office, usage with PC usually happens when working is 

started, usage of printer always happen during the usage of PC. 

 

Base on this observation, in agent, we model the behaviors as layered structure of 

procedures, each procedure represent a behavior of human user, as shown in figure 

2.32. 

 

 
Fig.2.32 Example of procedures of a student type agent in a day 

 

Human user’s behaviors are recorded into a list in surveying. The dependence and 

temporal parameters are decided manually for each procedure in the list. There are 



45 
 

two types of procedures, grouped according to: whether it involves usage of certain 

appliances. The procedure that does not involve usage of appliances, which means no 

power usage, is called status. The procedure that does not involve usage of appliances, 

which means no power usage, is called activity. Though status are not power 

consuming, it provides a dependency for other statuses and activities. For example, at 

work is a status that does not consume power directly, but it is the parent procedure for 

the usage of PC and grand-parent for the usage of printer. 

 

2.2.3.2. Randomness in human behavior 

Exact time parameters of individual human users’ behaviors seem to be random 

and are difficult to predict, but in case of a large number of agent, certain behavior’s 

parameters is normally distributed. With this statistic assumption, time parameters of 

behaviors of a group of human users within a same class should be predictable. Agent 

simulators use the parameters to generate appearances of human user within certain 

class. 

 

We also noticed that even the identical person, may perform the same behavior at 

different time day to day. As shown in figure 2.33, wake up time of a human during a 

year. 

 

 
Fig. 2.33. Example of a human’s wakeup time during a year, with mean value of 8:00 

and variance of 1 hour 

 

Similarly to the case of different persons, in case of the identical person, the 

distribution of certain time parameters accords with normal distribution. Thus the 

agent simulator may generate request at different times during a day according to the 

type of human user it emulates and the randomness in runtime. 



46 
 

2.2.3.3. Control logic of agent simulator 

Similarly as appliance simulator, agent simulator read profiles of human users to 

present different behaviors of individual users. Users of the same class usually 

possesses similar behaviors (if not, a new class of users should be made), the 

procedures in the agent profiles are the same among all the instances of the class, 

difference in appearances of individuals (within same class) are presented by the 

difference in probability and/or the time parameters of these processes. The 

parameters on runtime are decided by the parameters in profile with randomness. The 

randomness is also used in making different appearances of identical agent in different 

days. The work flow of agent simulator is described as the following: 

 

1. Initiating agent simulator, read parameters from profile. 

2. Check current procedure in procedure list, if the procedure satisfies 

transition conditions, go to step 3, if not, go to step 4. 

3. Perform transit actions for current procedure 

4. Set the next procedure as current procedure, loop to step 2. 

 

Each procedure has two status: running and waiting, on each time frame, agent 

checks every procedure in its procedure list, and set procedures satisfied transition 

conditions into transited status after conducting transit actions, as shown in figure 

2.34: 

 

 
Fig.2.34. Control logic of each procedure in agent 

 

A detailed function list is in the table 2.5: 

Name Parameters Return values Function 

nd mu(int), 

sigma(float) 

X(int) return random 

variable X with 



47 
 

normal distribution 

specified by mu and 

sigma 

read_profile profile_name params(dictionary) read profile and 

return a dictionary 

of parameters 

is_blocked group, 

proc(dictionary) 

True/False check whether the 

procedure is blocked 

by another 

procedure in the 

same group 

in_prob p(float) True/False check whether a it 

is in the probability 

specified by p 

__init__ 

(in class function) 

profile_name N/A initiate an agent 

class instance using 

profile named 

profile_name 

act 

(in class function) 

N/A N/A behave in every 

time frame 

send_req 

(in class function) 

proc_key N/A send request for 

procedure of which 

the key is proc_key 

Table 2.5. Functions in agent simulator 

2.2.3.4. Parameters in profiles 

For each procedure possesses parameters such as: 

 

1. Procedure ID 

2. Parent procedure ID 

3. Type, status/activity 

4. Start time/start probability 

5. End time/duration 

6. Target appliance (Activity procedures only) 

7. Target appliance working phase (Activity procedures only) 

 

Procedure ID and parent procedure ID specifies the dependency structure of 

procedures. Type parameter specifies the procedure type: status or activity. Start time 

is relative to the parent’s timer. For some procedures, such as using a printer, start 

time is not fixed; the start probability specifies the chance a procedure is started 

execution at any the current moment. End time, similar to start time, is relative to the 

parent’s timer. When the start time is not fixed to a range of time, the end time usually 

is not fixed as well; the duration is used as trigger to finish procedures: when the timer 

of current procedure exceeds duration, the procedure is ended, otherwise, continue 

counting. 

 

For activities, appliances desired to be used are also specified in the parameter, 

with the working phase. This requires the agent has knowledge of what phase the 



48 
 

appliance has. The format of the profile is demonstrated by the following example of a 

student class agent’s profile: 

 

PID=1,PPID=n/a,GROUP=1,TYPE=s,MULTI=1, 

START_PARAMS=32400/3600,END_PARAMS=68400/3600 

 

PID=2,PPID=n/a,GROUP=2,TYPE=s,MULTI=1, 

START_PARAMS=43200/1800,END_PARAMS=46800/1800 

 

PID=3,PPID=1,GROUP=3,TYPE=a,MULTI=1, 

TARGET_APP=laptop,TARGET_MOD=working,PRIORITY=0, 

START_PARAMS=300/600,DURATION_PARAMS=n/a 

 

PID=4,PPID=1,GROUP=4,TYPE=a,MULTI=1, 

TARGET_APP=desktop,TARGET_MOD=working,PRIORITY=0, 

START_PARAMS=300/600,DURATION_PARAMS=n/a 

 

PID=5,PPID=4,GROUP=5,TYPE=a,MULTI=1, 

TARGET_APP=display,TARGET_MOD=working,PRIORITY=0, 

PROBABILITY=1,DURATION_PARAMS=n/a 

 

PID=6,PPID=4,GROUP=6,TYPE=a,MULTI=10, 

TARGET_APP=printer,TARGET_MOD=working,PRIORITY=0, 

PROBABILITY=0.0001,DURATION_PARAMS=60/20 

PID=7,PPID=2,GROUP=7,TYPE=a,MULTI=3, 

TARGET_APP=microwave_oven,TARGET_MOD=on,PRIORITY=0, 

PROBABILITY=0.002,DURATION_PARAMS=120/60 

 

PID=8,PPID=1,GROUP=8,TYPE=a,MULTI=1, 

TARGET_APP=light,TARGET_MOD=working,PRIORITY=0, 

PROBABILITY=1,DURATION_PARAMS=n/a 

 

There are 8 procedures in a student class agent. The first 2 procedures are status: 

“working time” and “having lunch”, they do not involve appliance usage but to provide 

a dependency for other statuses or activities only. The dependency information is given 

in the PPID field, as it stands for “Parent PID”. MULTI field is to specify the maximum 

times of the procedure run. The start time and end time parameters are specified in 

“mu/sigma” format. Procedure 3-8 are activities, the target appliance and its working 

mode are specified. Probability field is used to specify the possibility of starting the 

procedure at current time point when there are no start time parameters. Duration 

parameters are used to specify the task duration when there are no end time 

parameters, it is specified in “mu/sigma” format. 

 

When an activity is eligible to start, the agent sends a request for using specified 

appliance, the format of request pasted into the environment possesses parameters as: 

 

1. Agent ID 

2. Desired appliance 

3. Desired working mode 

4. Desired working time 



49 
 

2.2.3.5. Profiling for agent 

These parameters are externally decided in a profiling procedure, the separation 

of data and simulator program is for the convenience in future expansion. 

 

We surveyed individual users’ behaviors (in our case, student type users in lab). 

And make a standard profile, and based on the standard profile, generate profiles for 

individual agents in simulation environment. The workflow is shown in figure 2.35: 

 

 
Fig.2.35.Profile making process 

 



50 
 

2.2.4. Implementation 

The simulation environment consists of several modules as listed, and shown in 

figure 2.36: 

 

1. Initiation module, getting input from configuration file and generate runtime 

profiles for later use 

2. Request generating module, use agent profiles and agent simulator to 

generate request logs for all the agents 

3. World simulator module, make instances for appliances using appliance 

profiles and appliance simulator, and pass the requests to them 

4. Visualization module, visualize data output 

 

 
Fig.2.36 Modules and work flow 

 

In the initiation step, the simulation environment (SE) reads parameters such as 

time length of the whole simulation, scale in cells types and quantities from an 

initiation configuration file. SE decides the types and quantities of all the necessary 

appliances and agents according to the configuration file of cells (cell templates). Then 

SE takes standard appliance and agent profiles (templates) of the decided type and 

their configuration files as input, and generates the runtime profiles for appliances and 

agents in appropriate number in the initiation step. The configuration files are used to 

guarantee different appearances for appliances and agents by generating their profiles 

with set randomness. 



51 
 

 

In request generating step, request generator uses profiles of agents and agent 

simulator to create instances, and gather the output requests into a request log for 

later use. 

 

In world simulator module, the request log is used as a source to pass request to 

appliances instances created by the world simulator. The permission control and 

interactions between agents and appliances are implemented in this step. If the time of 

a request came, the world simulator sends it to the appliance, with higher priority for a 

personal appliance than a shared one. 

 

The file structure of SE is shown as below: 

 
Fig.2.37.File structure 

 



52 
 

2.2.5. Result 

Based on the power monitoring results, we made 13 classes of appliances’ profiles: 

refrigerator, kettle, router, server, phone, air conditioner, microwave oven, desktop PC, 

laptop PC, display, printer, TV, TV recorder (Actual template profiles in Appendix). The 

profiles are tested in a comparison between generated simulation data and practical 

data. 

 

In an example of simulation result of a research room’s power during a day, is 

shown as below, the research room contains a number of students and common 

appliances, such as refrigerator, microwave ovens, desktop and laptop PCs. 

 

 
Fig.2.38. Power curve of a research room 

 

The power curve of 100 research rooms during 10 days is shown in figure 2.39: 



53 
 

 
Fig.2.39. Total power of 100 research room in 10 days. 

 

As the simulation is designed at a resolution of single appliance, the power/energy 

consumption of each appliance can be seen using local visualize. Figure 2.40 shows the 

example of each appliance’s energy consumption in a room during a day. 

 



54 
 

 
Fig.2.40.Energy consumption of each appliance in a room during a day 

 

The accumulation of these consumptions is shown in figure 2.41. 

 
Fig.2.41. Accumulative consumption graph of appliances in a room during a day 



55 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 3. Discussion 



56 
 

3.1. Application of the simulation environment 

In power grid, unrestrained concurrent power consumption usually causes drastic 

fluctuations in power curve and indirectly makes it difficult for generation to match.  

 

Traditionally, the fluctuation is expected to be flattened mainly by massive usage 

from individual appliances with randomness in start time and power. The regulating 

mechanism is designed for eliminating the minor instability when generation works 

according to the guide lines made by statistic power forecasting model. This 

macro-scale controlling approach, does not try to eliminate time conflict usage, which is 

the substantial reason of the drastic fluctuation, instead, it increases tolerance of 

fluctuations. When the power grid is increasing in scale, and a higher stability is 

demanded, the approach encounters difficulties in agile responding and flexible 

extending. 

 

In future smart grid, floating price can also be used as a regulating tool for 

balancing usage or encouraging the usage to be distributed in a desired style. This 

approach, in contrast to using a regulating system, aims at eliminating the fluctuation 

from at the usage distribution level. 

 

Merit of using floating price as a regulating tool is that participation of consumers 

will increase when the usage scheduling is directly related to their own interest. The 

demerit, however, as the price is floating, it becomes difficult for industrial users to 

predict the cost. 

 

In this part, we want to discuss the pricing policies and corresponding consumer 

strategies. We want to utilize the merit of floating price while try to minimize the 

demerit. So we proposed a simple design of floating price and consumer strategy, and 

we tried to use our multi-agent simulation environment to verify its effectiveness on 

reducing the peak height in grid power as well as the price stabilizing effect in daily 

usage. 



57 
 

3.2. Policy design on supplier end 

3.2.1. Existing pricing policies 

In power grid, pricing is an important feature to embody energy policy. The power 

price p (unit: Yen/kwh) is defined as the cost c (unit: Yen) of unit usage u (unit: kwh).  

Thus the cost of total usage is: 
puc   

More specifically, in a time period ],[ es tt , the usage is an integration of power 

over time: 

   
e

s

t

t
es dttpwrttu )(,  

)(tpwr  is the power (unit: kw) at time t. 

 

There three basic pricing policies for deciding p , they: constant pricing, step 

pricing, and time-of-use (TOU) pricing. 

 

In constant pricing the price is a constant: 
kp   

That means the cost c  is linear to usage u : ukc   

 
Fig.3.1. Constant pricing: price and cost 

 

This pricing is simple and the cost is perfectly predictable, but has the short 

coming that: it does not put any constrain on the cost of usage from individual 

consumers. As the price is always the same, consumers may consume energy as much 

as they want. 

 

To restrain the power consumption in the grid in a billing period of time (usually a 

month), step pricing is introduced. A so far usage su  is defined as the usage from the 

beginning of the billing period 0t to the current time point ct :  

 cs ttuu ,0  

The price p  is a piecewise function of the so far usage su : 



58 
 





















......

],(

],(

],0[

)(
322

211

10

vvuk

vvuk

vuk

up
s

s

s

 

ik  is a constant price value (unit: Yen) on usage interval ],( 1ii vv . 

iv  is the valve value (unit: kwh) the price step changes. 

Therefore, the total cost c is also a piecewise function of the so far usage 
su , as 

shown in figure 3.2: 

 





















......

],()()(

],()(

],0[

322212110

211110

10

vvuvukvvkvk

vvuvukvk

vuuk

c
ss

ss

ss

 

 
Fig.3.2. Step pricing: price (left) and cost (right), price for usage from 0 to 1v  is 

0k , 

price for usage from 1v  to 2v  is 1k , price for usage from 2v  to 
3v  is 2k . The gradient 

of cost curve 
ik  is usually increasing so as to avoid power over use. 

 

In step pricing, unit price climbs step by step when the amount of usage increases. 

The gradient of increasing cost is the price. As the price goes up when the usage with a 

billing period increase, consumer may consider not consuming all the necessary energy 

within one billing period, thus a relief for the grid is achieved. However, for concurrent 

usage, the pricing does not provide any control or guidance. Thus an intensive usage 

may still happen on peak hours. 

 

To balance power usage during a day, time-of-use (TOU) pricing is introduced. The 

idea is to encourage more balanced power usage distribution by setting different power 

prices during periods of a day. Under this policy, the power cost depends not only on the 

amount of consumption but also the time of usage.  

 

In TOU pricing, price p  is a piecewise function of current time ct  in a day 

(shown in figure 3.3.): 

 



59 
 





















......

],(

],(

],[

)(
322

211

100

tttk

tttk

tttk

up
c

c

c

 

ik  is constant price value (unit: Yen) on time interval ],( 1ii tt . 

it  is the time point in a day from where a different pricing take place.  

 

In TOU pricing, the cost varies not only with the amount of energy consumed, but 

also the time when the usage occur. The start time and end time of the pricing time 

period is fixed, so the consumer can predict the cost accurately according to the price 

table issued from power companies. Usually the price is cheaper in idling time (e.g., 

late night) than in the peak hours (e.g., daytime). Under such a pricing policy, 

consumers would consider to move some usage to periods of a cheaper price, to save 

some cost. 

 
Fig.3.3. Time-of-use (TOU) pricing schematic: price varies in different time periods of a 

day.  

 

In practical, modern power companies may use step pricing, TOU pricing and 

sometimes combined pricing policies. For example, Tokyo Electricity Power Company 

(TEPCO) in Japan, provides a variety of pricing plans for consumers to choose: Rate of 

Meter-Rate Lightening (Monthly), Time-Specific Lightening “8/10-Hour Night Service” 

(“Otokuna Night 8/10”), Season and time specific lightening (“Denka Jozu”). 

 

In Rate of Meter-Rate Lightening (Monthly) pricing plan, step pricing policy is 

used. A residential customer’s contract will be classified as Meter-Rate Lightening B or 

C, the pricing table is shown as following: 

 



60 
 

 
 Table 3.1. Pricing table of plan: Rate of Meter-Rate Lightening (Monthly) (Data 

source: TEPCO website, Aug. 2011) 

 

Both Meter-Rate Lightening B and C are step pricing, the billing period is one 

month. During a month, the step prices for usage in 0-120kwh, 120-300kwh and over 

300kwh are 17.87 Yen/khw, 22.86 Yen/kwh and 24.13 Yen/kwh respectively, which 

means more charge for unit power consumption when the usage increase. 

 

In Time-Specific Lightening “8/10-Hour Night Service” (“Otokuna Night 8/10”) 

pricing plans, the pricing policy is TOU pricing (2 pricing period) combined a step 

pricing policy during daytime. The difference is: in 8-Hour Service, the night time is 

counted from 11pm to 7am, whereas in 10-Hour Service, the night time is counted from 

10pm to 8am. The detailed pricing tables are shown as following: 

 



61 
 

 

 
Table 3.2. Pricing table of plan: Time-Specific Lightening “8 (upper table)/10 (lower 

table)-Hour Night Service” (“Otokuna Night 8/10”) (Data source: TEPCO website, Aug. 

2011) 

The price during night time is around one-third of the price in the day. A much 

cheaper price encourages consumers to use electricity more in the night and reduce the 

consumption during the day. In day time the price policy is step pricing similar to that 

in the Rate of Meter-Rate Lightening (Monthly), but with a little higher charge than 

ordinary step pricing. 

 

In Season and time specific lightening (“Denka Jozu”) pricing plan, the pricing 

policy is TOU pricing with 3 pricing periods, a detailed pricing table is shown as 

following: 

 



62 
 

 
Table 3.3. Season and time specific lightening (“Denka Jozu”) (Data source: TEPCO 

website, Aug. 2011) 

 

The periods of a day in this plan are more subtly specified than in ordinary step 

pricing plans:  

1. Daytime: from 10am-5pm 

2. Morning and evening hours: 7am-10am and 5pm-11pm 

3. Nighttime hours: 11pm-7am.  

 

Since the daytime price in this plan is already high enough, it does not vary 

according to the power usage (step pricing), instead, it changes only when season of 

power consumption is different: in summer days, the price is higher than in days from 

other seasons. 



63 
 

3.2.2. Pricing function in smart grid 

In future smart grid, floating pricing is used for a faster responding usage 

regulation mechanism in the grid. The following figure below shows a possible system 

configuration of future power grid. 

 

 
Fig.3.4. Schematic of a smart grid: Price broadcasting and task scheduling in smart 

grid. Blue lines are the power lines, power supplier gather power usage data by 

measuring the power on these lines. Red lines are the information channels, used for 

broadcasting price information; it may be non-physical if using existing information 

infrastructures. 

 

In such a configuration, consumer end appliances act as independent agent in the 

grid. Doing task scheduling for non-emergent tasks according to price information 

received from power supplier. The appliances do not have communication with each 

other; the coordination of appliances is implemented using the broadcasted price 

information. 

 

Similar to TOU pricing, the price in floating pricing is varying with time periods. 

The difference is that in floating pricing, there are more periods, for instance, there can 

be periods for each hour, and thus a day is divided into 24 pricing period: 

)...,( 2310 pppP   

P is a price vector, the components ip  are the price during hour i and i+1. 

Different to TOU pricing, ip  is a variable, rather than a set price value. That 

means even a price for a specific hour may vary in value day to day. And the period of 

cheap power price is not fixed. 

 

On the power supplier end, a pricing function is designed to provide such price 

information in the grid. Power supplier gathers past usage data of a day, and gets the 

price vector for the next day using the pricing function. The price vector is then sent to 

individual appliances for guiding the usage. This progressive procedure can be 

described in the following figure: 

 



64 
 

 
Fig.3.5. Progressive procedure of floating pricing from power supplier’s view 

 

To get the price vector with instructive information for usage scheduling, the 

pricing function takes the usage data U as an input: 

)...,( 2310 uuuU   

U is a usage vector, the components iu  (unit: kwh) are the total usage in the grid 

during hour i and i+1. 

 

Thus the pricing function F can be described as: 

)(1 ii UFP 
 

i is the day count. 

 

This design aims to provide not only the temporal guidance for usage, but also the 

usage information during periods of a day. In our experiment, we set the pricing 

function F a linear transform from usage vector to the price vector: 

kUPF :  

k is a constant (unit: Yen/ 2)(kwh ), in case of more complicated designs, for example, 

guarantee basic power supply with a low price and restrain excessive usage with a 

higher price, k can be set to piecewise function as in step pricing. 

 

In this design, the price for current hour is decided by the usage from same hour 

in the previous day. Since the usage is dynamic, the price is floating at same time may 

vary in different days. 

 

Advantage of conducting such a pricing-scheduling-pricing process is that, the 

system can dynamically adapt itself to changes. Practically, the fluctuating of grid 

power is happening all the time. The pricing should be able to re-adjust the policy to 

adapt to an ever-changing environment automatically, whether the time is in the day 

or night, winter or summer. 

 

On consumer end, appliances receive the price vector and perform task scheduling. 

Floating price becomes the driving force for achieving a loose control of power usage in 

the grid, though it is just a supervisory guide and much freedom is left for appliances to 

decide their actual behaviors. Additionally, power company may artificially modify the 

price vector so as to achieve more complicated controls, such as making the demand 

somewhat follows the generation. 



65 
 

3.3. Task scheduling mechanism on appliance end 

3.3.1. Non-emergent tasks and background usage 

On consumer end, the usage balancing effect is based on the idea: if usage from a 

unit in certain level (like a house or a community) is balanced, the totaled usage of 

these units should be balanced. 

 

More specifically, the balancing is achieved by scheduling tasks into later 

execution. For example, in our simulation result of power usages of a cell, we noticed 

that, if some usage can be scheduled from the peak hour to idling time, the total usage 

can be balanced as shown in the following figure: 

 

 
Fig.3.6. Power balancing effect of task scheduling 

 

In practical power consuming environment, the usage of appliances that can be 

scheduled is usually not exactly only one in quantity; also the number of cells is 

normally in the scale of tens of thousands. The balancing effect would be obvious when 

the number of schedulable usage in each cell and the number of the cells increase. 

 

From the view of human users, interactive appliance usages are grouped into the 

two types: emergent and non-emergent tasks. The task that needs immediate execution 

right after committed is defined as emergent task. An example is usage of a PC, when 

we want to use a PC, we expect the PC turns on right after the power button is pressed, 

so it is an emergent usage. The task that can be scheduled to later execution is defined 

as non-emergent task. On good candidate for such kind of task is the usage of a 

washing machine, when we want to use a washing machine, we usually put the 

laundries into the machine and leave for something else to do, usually we are not really 

hurry about having the work done as long as it can be done by the time we come back, 

so it is not emergent. 

 

The schedulable usage mainly consists of non-emergent tasks, in a household 

scenario. A background usage is formed by the power consumption from emergent 



66 
 

tasks (non-schedulable) and the usage of non-interactive appliances. The background 

usage can be predicted either from monitoring of past practical power consumption 

data or from our simulation work. 

 

For non-emergent tasks, the usage can be scheduled to avoid the peaks in the 

background usage. The design is implemented by enabling a time window for 

scheduling the actual start time within. The window is specified by a task commit time 

(usually the present in runtime, as the appliance does not know in advance when a 

request incomes), and a deadline (time length after commit time). The execution time of 

non-emergent task should be shorter than the window size so that space of scheduling 

is allowed. In case of emergent tasks, the time window is tightly from the commit time 

to the deadline, which means no scheduling is allowed, as shown in figure 3.7: 

 

 
Fig.3.7. Emergent task (left) and non-emergent task scheduling within a time window 

(right), the contour in blue represents the background usage (sum of non-interactive 

appliance usage and emergent (non-schedulable) task usage), the red part is 

non-emergent (schedulable) task. 

 



67 
 

3.3.2. Schedule algorithm for non-emergent tasks 

The usage balancing in the grid is achieved by scheduling non-emergent tasks. On 

individual appliances, this macro-scale effect is achieved by enabling a micro-scaling 

task scheduling mechanism on appliances. To make the most of the micro-scale 

controlling, an automatic scheduling algorithm is designed on the appliance end to 

perform consumer strategy. Compares to the manual task scheduling in step pricing 

and TOU pricing, this design means more effective cost saving for individual 

consumers. Meanwhile, automatic control makes the grid more responsive and 

resistant to power fluctuations. 

 

This algorithm, receives the price vector from power supplier, and when a 

non-emergent task incomes, set the start time of actual task execution time according 

to the scheduling algorithm, the procedure is shown in the figure below: 

 

 
Fig.3.8. Procedure of scheduling from individual appliance’s view 

 

The power grid of appliances can be viewed as a multi-agent system (agent here 

refers to appliance). Each agent behaves independently to achieve their own goal in the 

floating pricing environment. There is no communication between agents, so no 

coordination explicitly exists when scheduling a task, but agents are aware of the 

existence of others. 

 

From the view of appliances, the scheduling algorithm for non-emergent tasks is 

to help saving the cost, therefore the objectives of the algorithm are:  

1. To avoid the peak hours in background usage (background usage is the usage 

formed from power consumption of non-interactive appliances and emergent 

tasks) 

2. To avoid time crash usage from other agent as much as possible, when no 

explicit coordination exists. 

 

To achieve the first objective, we schedule tasks following the guiding information 



68 
 

provided by the usage-related price vector. However, if all tasks are scheduled for the 

most optimized cost, their usage would crash in time and another peak usage would be 

created in the following day. To avoid this social disaster, which is also to achieve the 

second objective, we use a moderate random algorithm to decide the practical start 

time of a task. 

 

In the scheduling algorithm, price vector is only guiding information. The 

practical start time of a task is decided with in a time window by the following 

procedures: 

 

1. Get the price vector and find the greatest component 
mp  in the price vector: 

)...,max( 2321 ppppm   

2. Get the probability weight vector. Its components are the complementary of 

price vector’s components to 
mp : 

)...,( 2310 ppppppPW mmm   

3. When a non-emergent task incomes, with the task start time st schedulable on 

a time window ],[ es tt ( durationdle ttt  ， dlt  is the deadline time of the task, 

durationt  is the task duration), get normalized cumulative distribution function by 

integrating the probability weight function: 

dttPW

dttPW

stcdf
e

s

s

t

t

st

t











)(

)(

)(
 

st is the start time of task, ],[ es ttst . 

4. Uniformly distributed random variable a  is used to decide st in practical: 

)(stcdfa   

dttPWadttPW
e

ss

t

t

st

t

  )()(  

Since the right side is a constant when the a  is given, and the left side is the 

cumulative density function of st, which is monotonically increasing. The value of st 

can be uniquely decided on time window ],[ es tt . The process is described as in figure 

3.9: 



69 
 

 

 

 
Fig.3.9. Process of deciding start time: receiving price vector (upper left), making probability 

weight vector (upper right and lower left), trim the time window part in the probability weight 

function PW as the cumulative distribution function of start time st, and use a random 

variable to decide the value of st.(lower right) 
 

In this design, the complementary shape of the prices is used as a probability 

distribution shape. The algorithm picks the start time st according to the price vector’s 

guiding information, this strategy guarantees the task usage to be scheduled away 

from the peak hours, as the probability decreases at where the price is high (also where 

the high usage is in linear floating pricing). The random walk on the distribution 

ensures the scheduling algorithm to have the best chance to avoid time crash usage 

with other tasks. 

 

From the view of power supplier, by encouraging such kind of micro-scheduling 

mechanism, schedulable usage can be removed from peak hours and distribute the 

usage as evenly as possible during the idling hour, a power balancing effect can be 

achieved. And since the price is linear to the power consumption, if the usage is 

balanced, the power price would be also stabilized. 



70 
 

3.4. Test examples 

3.4.1. Environment setting 

In our approach, the pricing policy is set according to the discussion in 3.2.2, the 

scheduling algorithm at appliance end is designed as in 3.3.2.  

 

In each room, there is a background power usage, this usage is from the daily 

constant power consumption of non-interactive appliances (such as refrigerator, electric 

kettle, router, etc), and the consumption of emergent tasks (such as daytime working 

using PC, printer, lightening, air-conditioning, etc). For simple discussion, the 

background usage is set as one virtual appliance, the power curve of this appliance is 

set to a shape of normal distribution, with basic height of 100 watts and peak height of 

150 watts. The center position is around 11am (40000 second) and the width of the 

shape (variance) is around 1.5 hours (5000 seconds), as shown in figure 3.10. 

 

In each room, there are also non-emergent tasks. For simple discussion, we set 

only one task within each room, although there can be several non-emergent tasks in 

real power consuming environments. 

 

This task may represent a usage of washing machine, water heater, or charging 

an electric vehicle. In real power consuming environment, the power curve of 

background usage and schedulable tasks are usually of a more complicated shape, but 

for simple discussion, the task is a continuous usage of an constant power: The task 

duration is around 3 hours (10000 seconds), the power of the task is averagely 500 

watts, the time window of task start time is around 11am (40000 second)-10pm (80000 

second), as shown in figure 3.10. 



71 
 

 
Fig.3.10. Background usage and task usage parameters 

 

The scheduling on the appliance end is to locate the task usage onto the 

background usage within the task start time window, as shown. The interaction 

amongst appliances is achieved via power price, which is made according to total usage 

of all the rooms using the pricing function, and then broadcasted by the power supplier. 

Appliance may adjust the start time of same task in different days using the scheduling 

algorithm. 



72 
 

3.4.2. Simulation result and discussion 

3.4.2.1. Test of schedulable tasks in different quantity 

In the simulation of 1000 rooms in 20 days, each room has a background usage 

and a task, with parameter settings in 3.4.1. When all the tasks are non-schedulable, 

the total power of all the cells is shown in figure 3.11. 

 
Fig.3.11. Total power including power from tasks (red line) and background power (blue 

line), each peak represents a daily usage 

 

When 300 out of 1000 non-emergent tasks are scheduled by the scheduling 

algorithm discussed in 3.3.2, the total power would become as shown in figure 3.12. 



73 
 

 
Fig.3.12. Total power (red line) and background power (blue line), each peak represent 

a daily usage. Schedulable tasks tend to move to into idling times. 

 

If more tasks (600 out of 1000 tasks) became schedulable, the total power is shown 

in figure 3.13. 

 
Fig.3.13 Total power (red line) and background power (blue line), each peak represent a 

daily usage. More tasks became schedulable, and they intend to move to idling times, 

which results in a reduced peak power in the grid. 

 

If all of 1000 tasks are schedulable, the total power is shown in figure 3.14. 



74 
 

 
Fig.3.14. Total power (red line) and background power (blue line), each peak represent 

a daily usage. 

 

From the result we see that, when the number of schedulable tasks increases, the 

peak power is decreasing in height. These results simulates when more and more 

appliances with a scheduling mechanism are put into usage, the balancing effect takes 

place as the non-emergent task can be scheduled into later usage. 

 

However when all the non-emergent tasks are scheduled, the peak usage begins 

to fluctuate, under our direct usage-related pricing policy and appliance scheduling 

strategy setting. 



75 
 

3.4.2.2. Test of price stabilizing effect 

In the previous test, we noticed the fluctuation becomes little and little in 

magnitude: Figure 3.15 is the power curve of 1000 rooms (with 1000 non-emergent 

tasks) under the same environment setting during the first 10 days: 

 
Fig.3.15. Power curve of 1000 rooms (with 1000 non-emergent tasks) during 10 days 

 

The corresponding power usage is shown in figure 3.16. 

 
Fig.3.16. Usage fluctuation of 1000 rooms (with 1000 non-emergent tasks) during the 

first 10 days 

In our pricing policy, the price is made according to the usage in the previous day. 

The price fluctuation is shown in figure 3.17. The initial price in the first day was set 

according the background use. Therefore the first peak looks relatively little than the 

following days as it does not consider usage from tasks. The pricing rate (k in our 

pricing function) on power supplier end in this example is set to 0.1 Yen/ 2)(kwh , when 

the scale of grid increases, this rate decreases as to make the price acceptable for 

consumers. 



76 
 

 
Fig.3.17. Price fluctuation during the first 10 days 

 

The price becomes more and more stabilized when as time goes by, in the example 

of 30 days, as shown in figure 3.18, the power curve in the grid and in figure 3.19, the 

price: 

 
Fig.3.18. power curve of 1000 rooms (with 1000 non-emergent tasks) during 30 days 



77 
 

 
Fig.3.19. Price fluctuation in 30 days 

 

In these figures, we see the price is being stabilized during the day of power usage. 

As the price goes more and more stabilized, consumers can predict the cost of their 

power usage, just as under normal TOU pricing. 



78 
 

3.4.2.3. Test of effective conditions 

If the parameters of tasks and/or background changes, the proportion of usages 

from task to the usage from background may vary. In that case, the effectiveness of our 

pricing policy and scheduling algorithm may be different than in the test of 3.4.2.1 and 

3.4.2.3 

 

For instance, under the environment setting described in 3.4.1, if the task energy 

usage does not change in amount, when the task duration decreases, the average power 

of the task would increases. Figure 3.20-3.22 shows a comparison with different task 

parameters. 

 
Fig.3.20. Total power curve of 1000 rooms (contains 1000 schedulable tasks) during 7 

days. The task duration is 1000, average task power is 500 watts. 



79 
 

 
Fig.3.21. Total power curve of 1000 rooms (contains 1000 schedulable tasks) during 7 

days. The task duration is decreased 250, the average task power is 2000 watts. 

 
Fig.3.22. Total power curve of 1000 rooms (contains 1000 schedulable tasks) during 7 

days. The task duration is decreased 100, the average task power is 5000 watts. 

 

We noticed the fluctuation of power peak heights becomes less drastic when the 

task duration is decreased. As the ratio of task duration to its time window decreases, 

more freedom is allowed in scheduling, the tasks can have better chance to avoid time 



80 
 

crash with others. But in the case of decreased task duration, the power curve become 

not smooth when there are not enough tasks to fill the time window. 

 

When the task duration decreases, task power has to increase if the energy 

demand remains the same. Currently, for the safety considering, the power of a single 

household task is not likely to be raised to as high as 5000 watts, but is possible in 

future for big power consumers like electric vehicles.  

 

If the task duration increases, there would not be much significance in designing 

such task scheduling mechanism as the usage is always happen in a relatively narrow 

time window. 

 

Another important thing is the ratio of usage from background to the usage from 

schedulable tasks. Under the same environment setting discussed in 3.4.1, to get a 

comparison of different task/background usage ratio, we modify the background usage, 

the peak value of the background usage is set from 150 (100+50) watts to 300 (100+200) 

watts and then to 600 (100+500) watts as shown in figure 3.23-3.25: 

 
Fig.3.23. Total power curve of 1000 rooms (contains 1000 schedulable tasks) during 7 

days. Background usage is of a peak value of 150 (100+50) watts 



81 
 

 
Fig.3.24. Total power curve of 1000 rooms (contains 1000 schedulable tasks) during 7 

days. Background usage is of a peak value of 300 (100+200) watts 

 
Fig.3.25. Total power curve of 1000 rooms (contains 1000 schedulable tasks) during 7 

days. Background usage is of a peak value of 600 (100+500) watts 

 

From the results we know that, when the background usage increases compares 

to the task usage (or the task usage decreases compares to the background usage), the 

scheduling is would be of little significance, as the major factor caused unbalanced 

usage is not the tasks, but the background usage. 

 

On the contrary, if the task usage is much more than that from background, the 

effect of background usage on the usage fluctuation is relatively small. The only thing 



82 
 

task scheduling needs to consider about is avoid time crash usage with other tasks. A 

simple random walk scheduling would be sufficient enough to achieve this objective, 

thus there are no need to set a progressive pricing policy; a constant pricing should be 

the best to guide the scheduling. 

 

From this test, we know that our pricing policy and scheduling strategy design is 

effective only when the usage from tasks is comparable to the usage from background. 

Thus we suggest that under such a pricing policy and scheduling strategy design, if 

there are tasks enough in number, reduce the task duration (or even divide a task into 

short duration sub-tasks) would be beneficial in the balancing the grid power usage. 

Meanwhile, this design is best effective when the task usage and background usage are 

comparable, when the situation is different, we need to modify the pricing policy and/or 

scheduling algorithm. 



83 
 

3.5. Summary 

In this chapter, we discussed a usage-related floating pricing policy, and working 

with price information received, we designed a simple task scheduling mechanism on 

appliance end. As an application of our multi-agent system simulation environment, we 

discussed about this design of policy and corresponding strategy, by examing the usage 

balancing effect in the virtual grid: 

 

1. In the first test, we see effectiveness of the scheduling mechanism under a 

floating pricing policy: when more non-emergent tasks become schedulable 

using the scheduling algorithm built in the smart appliances, the grid power 

can be balanced. 

 

2. In the second test, we see under floating pricing policy, the fluctuation of grid 

power peak heights, decreas in magnitude along with time passage. In our 

power-related pricing, the stabilizing effect is also shown in power prices, which 

is crucial for consumers to budget their energy usage cost. 

 

3. In the third test, we examined the effective conditions of our policy/strategy 

setting. The method is best effective when the usage from schedulable tasks 

and usage from background are comparable. When the number of schedulable 

tasks is great enough, long time window for scheduling task execution is 

recommended. 



84 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 4. Conclusion 



85 
 

4.1. Research summary 

As a beginning of our work, we developed a power monitoring system using 

ready-made smart metering devices and database software components. Using this 

system, we are able to accurately record the power measures of specific types of 

appliances and monitor their usage in real time. The system is well-functioning and 

sufficient for performing power data collecting tasks. 

 

In the power consumption simulation part, we proposed a multi-agent system 

modeling approach. We view the power grid as a set of cells containing two types of 

entities: appliance simulators and user agents. Interaction between human users such 

as permission and blockage in competitive usage are considered, as well as the 

interaction between human users and appliances. On implementation, we model 

appliance simulator as state machines that exhibits different working phases on its 

external power behavior. For human users, we model human behavior as a layered 

structure of procedures, agent simulator generate requests according its own internal 

procedure table. 

 

We apply a profiling mechanism for enabling the appliance and agent simulator to 

behave as different class of appliance and human user. We make the profiles according 

the practical data captured by our power monitoring system, and the agent profile 

according to user behavior surveys. This design enables a more flexible parameter 

setting for the multi-agent system, and adapt to different environment setups by 

modifying the overall composition and adjusting the behaviors for individual 

appliances and human user agents in their profiles. 

 

Randomness is introduced to generate more appearances of appliances and agents 

in their profiles, as well as bringing some uncertainty on runtime. 

 

The simulation environment design is competent in modeling a power 

consumption environment in any scale, and is able to provide the power consuming 

data at a resolution of individual appliance level. 

 

On the application layer, the simulation environment can be used as testing 

platform for some advanced features of smart grid. As an example, we discussed the 

advantage of bringing micro-scale task scheduling mechanism in balancing the grid 

power usage under the floating pricing policy. The system is proven a useful tool for 

analyzing these features. 



86 
 

4.2. Conclusion 

We developed a power monitoring system based onthe advanced metering 

devices.Using existing software component, we designed areal timepowerdata 

capturingand storing mechanism. It is shown that thismethod to be applicablein 

building a database system forapower grid. 

 

Multi-agent system is a useful approach for building a flexible and expansible 

power consumption simulationsystem in a largescale.With appropriate profiling, the 

system is able to perform power consuming simulation at a resolution of individual 

appliances. 

 

Using the simulation environment built this way, we confirmedthe effectiveness of 

floating pricingpolicyand corresponding scheduling mechanism in balancing grid power 

usage.We may design, and test quantitively the advanced features of future smart grid, 

such as grid pricing policy and appliance end strategy. Multi-agent system approach is 

suitable not only in building a power forecasting system but alsoa policy/strategy 

testing platform as well. 



87 
 

4.3. Future work 

Our work aims to discuss about a multi-agent system approach for building a 

more realistic and flexible power consumption simulation environment. The simulation 

environment built this way is expected to be used not only a consumption forecasting 

tool, but also a platform for discuss about pricing policy designing and consumer 

strategy making in the grid. 

 

Before putting into practical use, a careful profiling of the appliances’ power 

behavior and human agents’ activities is needed. Detailed profiles may guarantee a 

more accurate simulation result. 

 

Multi-agent system controlling methods can be applied in a context of smart grid 

using our simulation environment. A further research about pricing policies under 

different situations may be conducted with verification from simulation data. On the 

appliance end, a more effective scheduling algorithm considering detailed task 

information can be researched, as a micro-scale controlling problem. 

 

Also, this work provides a possible way to anticipate the emerging of new 

appliances and distribute energy resources: their impacts on power consuming 

environment and grid policy/strategy making. 



88 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 5. References 



89 
 

1. Demand dispatch, A. Brooks, E. Lu, D. Reicher, C. Spirakis, B. Weihl, Power and 

Energy magazine, IEEE, Vol.8.Issue 3, 20-29p 

2. Scalable Multi-Agent System for Real-Time Electric Power Management, L. M. 

Tolbert, H. Qi, F. Z. Peng, Power Engineering Society Summer Meeting, 2001, 

IEEE, Vol.3, 1676-1679p 

3. Grid of the future, A. Ipakchi, F. Albuyeh, Power and Energy magazine, IEEE, 

Vol.7.Issue 2,52-62p 

4. Power Load Management as a Computational Market, F. Ygge, H. Akkermans, 

the 2nd International Conference on Multi-Agent System ICMAS’96 

5. Operation of a Multiagent System for Microgrid Control, A. L. Dimeas, N. D. 

Hatziargyriou, Power Systems, IEEE Transactions on, Vol.20.Issue 3, 

1447-1455p 

6. Agent based Micro Grid Management System, J. Oyarzabal, J. Jimeno, J. Ruela, 

A. Engler, C. Hardt, Future Power Systems, 2005 International Conference on 

7. Distributed Control Concepts using Multi-Agent technology and Automatic 

Markets: An indispensable feature of smart power grids, M. P. F. Hommelberg, C. 

J. Warmer, I. G. Kamphuis, J. K. Kok, G. J. Schaeffer, Power Engineering 

Society General Meeting, 2007, IEEE, 1-7p 

8. Multi-Agent System in a Distributed Smart Grid: Design and Implementation, 

M. Pipattanasomporn, H. Feroze, S. Rahman, Power Systems Conference and 

Exposition, 2009. PSCE '09. IEEE/PES, 1-8p 

9. Whole-House Measurements of Standby Power Consumption, P. Bertoldi, A. 

Ricci, A. T. de Almeida, Energy efficiency in household appliances and lighting, 

278-285p 

10. Household electricity end-use consumption: results from econometric and 

engineering models, B. M. Larsen, R. Nesbakken, Energy Economics Vol.26, 

Issue 2, 179-200p 

11. Principles of Compositional Multi-Agent System Development, F. M. T. Brazier, 

C. M. Jonker, J. Treur, Proc. of the IFIP’98 Conference IT&KNOWS’98. 

12. Residential end-use energy simulation at city scale, Y. Shimoda, T. Fujii, T. 

Morikawa, M. Mizuno, Building and Environment Vol.39, Issue 8, 959-967p 

13. Functions of a Local Controller to Coordinate Distributed Resources in a Smart 

Grid, A. Chuang, M. McGranaghan, Power and Energy Society General Meeting 

- Conversion and Delivery of Electrical Energy in the 21st Century, 2008 

IEEE,1-6p 

14. Dynamic Pricing and Stabilization of Supply and Demand in Modern Electric 

Power Grids, M. Roozbehani, M. Dahleh, S. Mitter, Smart Grid Communications 

(SmartGridComm), 2010 First IEEE International Conference on,543-548p 

15. Optimal Real-time Pricing Algorithm Based on Utility Maximization for Smart 

Grid, P. Samadi, A. Mohsenian-Rad, R. Schober, V. W. S. Wong, J. Jatskevich, 

415-420p 

16. Optimal and Autonomous Incentive-based Energy Consumption Scheduling 

Algorithm for Smart Grid, A.-H.Mohsenian-Rad, V. W. S. Wong, J. Jatskevich, R. 

Schober, 1-6p 



90 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 6. Appendix 



91 
 

In this appendix, the contents are: 

Part A: Source code of PMS 

Part B: Source code of SE 

Part C: Sample monitoring result of 13 classes of appliances 

Part D: Template profiles for the 13 classes of appliances 

 

In part A, the files attached are: 

  ops_db.py 

  ops_table.py 

  init_db.py 

  init_tables_data.py 

  init_table_registry.py 

  util.py 

  update_tables_data.py 

  update_table_registry.py 

  inquiry.py 

  power_single.py 

  practical_visualizer.py 

 

The privacy information about the DBMS, such as username and password is 

replaced by “******”. 

 

In part B, the files attached are: 

  appliance.py 

  agent.py 

  init.py 

  profile_gen.py 

  req_gen.py 

  world.py 

 

In part C, the monitored appliances are: 

 refrigerator 

kettle 

microwave oven 

router 

server 

phone 

air conditioner 

desktop PC 

laptop PC 

display 

printer 

TV 

TV recorder 

 

In part D, template profiles for each appliance listed in part C are attached in the 

same order as in part C. 



92 
 

Part A: Source code of PMS 

ops_db.py 

 

import MySQLdb 

#dbms ops 

def connect(hostname,username,pswd): 

 return MySQLdb.connect(hostname,username,pswd) 

def lst(connection): 

 cursor=connection.cursor() 

 cursor.execute("""SHOW DATABASES""") 

 lst=[] 

 for i in cursor.fetchall(): 

  lst.append(i[0]) 

 return lst 

def select(connection,dbn): 

 sql="""USE %s""" % dbn 

 connection.cursor().execute(sql) 

#db ops 

def create(connection,dbn): 

 sql="""CREATE DATABASE %s""" % dbn 

 connection.cursor().execute(sql) 

def drop(connection,dbn): 

 sql= """DROP DATABASE %s""" % dbn 

 connection.cursor().execute(sql) 

 

ops_table.py 

 

import ops_db 

#db ops 

def lst(connection,dbn):#connection: db must be selected 

 ops_db.select(connection,dbn) 

 cursor=connection.cursor() 

 cursor.execute("""SHOW TABLES""") 

 lst=[] 

 for i in cursor.fetchall(): 

  lst.append(i[0]) 

 return lst 

#table ops 

def create(connection,tbn): 

 sql="""CREATE TABLE %s (datetime  DATETIME NOT NULL, val INT)""" % tbn 

 connection.cursor().execute(sql) 

def reg_create(connection,tbn): 

 sql="""CREATE TABLE %s (owner CHAR(50),app CHAR(50),ch CHAR(50),location 

CHAR(50))""" % tbn 

 connection.cursor().execute(sql) 

def drop(connection,tbn): 

 sql="""DROP TABLE %s""" % tbn 



93 
 

 connection.cursor().execute(sql) 

#data ops 

def write(connection,tbn,datetime,val): 

 sql ="""DELETE FROM %s WHERE (datetime='%s')""" % (tbn,datetime) 

 connection.cursor().execute(sql) 

 sql ="""INSERT INTO %s (datetime, val) VALUES ('%s', '%d')""" % 

(tbn,datetime,val) 

 connection.cursor().execute(sql) 

def read(connection,tbn,st,et): 

 sql="""SELECT * FROM %s WHERE datetime>='%s' AND datetime<='%s'""" % 

(tbn,st,et) 

 cursor=connection.cursor() 

 cursor.execute(sql) 

 return cursor.fetchall() 

 

init_db.py 

 

#params 

hostname="localhost" 

username="******" 

pswd="******" 

dbn="powerdb" 

 

#script 

import ops_db 

connection=ops_db.connect(hostname,username,pswd) 

if dbn not in ops_db.lst(connection): 

 ops_db.create(connection,dbn) 

 print "Database %s added" % dbn 

else: 

 print "%s already exist" % dbn 

connection.close() 

 

init_tables_data.py 

 

#params 

hostname="localhost" 

username="******" 

pswd="******" 

dbn="powerdb" 

mac_address="mac_address_data.csv" 

 

#util 

def csv2lst(fn):#csv->lst 

 l=[] 

 for i in open(fn,'r').readlines(): 

  l.append(i.split(',')[1]) 

 return l 

def lst2chlst(l):#lst->chlst 

 chlst=[] 



94 
 

 for i in l: 

  chlst.append(i+ "_ch1") 

  chlst.append(i+ "_ch2") 

  chlst.append(i+ "_ch3") 

  chlst.append(i+ "_ch4") 

 return chlst 

 

#script 

import ops_db 

import ops_table 

connection=ops_db.connect(hostname,username,pswd) 

if dbn in ops_db.lst(connection): 

 ops_db.select(connection,dbn) 

 for i in lst2chlst(csv2lst(mac_address)): 

  if i not in ops_table.lst(connection,dbn): 

   ops_table.create(connection,i) 

   print "Table %s added" % i 

  else: 

   print "Table %s already exist" % i 

else: 

 print "Database %s not exist" % dbn 

connection.close() 

 

init_table_registry.py 

 

#params 

hostname="localhost" 

username="******" 

pswd="******" 

dbn="powerdb" 

registry="owner_app_ch_loc" 

 

#script 

import ops_db 

import ops_table 

connection=ops_db.connect(hostname,username,pswd) 

if dbn in ops_db.lst(connection): 

 ops_db.select(connection,dbn) 

 if registry not in ops_table.lst(connection,dbn): 

  ops_table.reg_create(connection,registry) 

  print "Table %s added" % registry 

 else: 

  print "Table %s already exist" % registry 

else: 

 print "Database %s not exist" % dbn 

connection.close() 

 

util.py 

 

#make file list 



95 
 

from datetime import datetime, timedelta 

def datespan(start,end,delta): 

 sl,el=start.split(),end.split() 

 sy,smon,sd=int(sl[0].split("-")[0]),int(sl[0].split("-")[1]),int(sl[0].split("-")[2]) 

 sh,smin,ss=int(sl[1].split(":")[0]),int(sl[1].split(":")[1]),int(sl[1].split(":")[2]), 

 ey,emon,ed=int(el[0].split("-")[0]),int(el[0].split("-")[1]),int(el[0].split("-")[2]) 

 eh,emin,es=int(el[1].split(":")[0]),int(el[1].split(":")[1]),int(el[1].split(":")[2]) 

 l=[] 

 current=datetime(sy,smon,sd,sh,smin,ss) 

 while current<datetime(ey,emon,ed,eh,emin,es): 

  l.append(current) 

  current+=timedelta(seconds=delta) 

 return l 

def file_lst(start,end,url_dir): 

 l=[] 

 for i in datespan(start,end,3600): 

  year=str(i.year) 

  if i.month<10: 

   month="0"+str(i.month) 

  else: 

   month=str(i.month) 

  if i.day<10: 

   day="0"+str(i.day) 

  else: 

   day=str(i.day) 

  if i.hour<10: 

   hour="0"+str(i.hour) 

  else: 

   hour=str(i.hour) 

  l.append("%s/%s/%s/%s/%s-%s.xml" % 

(url_dir,year,year+month,year+month+day,year+month+day,hour)) 

 return l 

#retrieve file (file2lst) 

import urllib 

def retrieve(url): 

 l=urllib.urlopen(url).readlines() 

 if l[0]=="<powerlog>\n": 

  l.pop() 

  l.pop(0) 

  return l 

 else: 

  print "%s not found" % url 

  return 0 

#parse (record2dic) 

def xml_parser(str): 

 dict={} 

 start,end=str.index("<src>"),str.index("</src>") 

 dict["src"]=str[start+5:end] 

 start,end=str.index("<uid>"),str.index("</uid>") 

 dict["uid"]=str[start+5:end] 



96 
 

 start,end=str.index("<date>"),str.index("</date>") 

 dict["date"]=str[start+6:end] 

 start,end=str.index("<time>"),str.index("</time>") 

 dict["time"]=str[start+6:end] 

 start,end=str.index("<type>"),str.index("</type>") 

 dict["type"]=str[start+6:end] 

 start,end=str.index("<tempC>"),str.index("</tempC>") 

 dict["tempC"]=str[start+7:end] 

 start,end=str.index("<humidity>"),str.index("</humidity>") 

 dict["humidity"]=str[start+10:end] 

 #power measure 

 start,end=str.index("<ch1><watts>"),str.index("</watts></ch1>") 

 dict["ch1"]=str[start+12:end] 

 start,end=str.index("<ch2><watts>"),str.index("</watts></ch2>") 

 dict["ch2"]=str[start+12:end] 

 start,end=str.index("<ch3><watts>"),str.index("</watts></ch3>") 

 dict["ch3"]=str[start+12:end] 

 start,end=str.index("<ch4><watts>"),str.index("</watts></ch4>") 

 dict["ch4"]=str[start+12:end] 

 if dict["ch1"]=='': 

  dict["ch1"]='0' 

 if dict["ch2"]=='': 

  dict["ch2"]='0' 

 if dict["ch3"]=='': 

  dict["ch3"]='0' 

 if dict["ch4"]=='': 

  dict["ch4"]='0' 

 dict["ch1"]=int(dict["ch1"]) 

 dict["ch2"]=int(dict["ch2"]) 

 dict["ch3"]=int(dict["ch3"]) 

 dict["ch4"]=int(dict["ch4"]) 

 return dict 

 

update_tables_data.py 

 

#!/usr/bin/python 

 

#params 

hostname="localhost" 

username="******" 

pswd="******" 

dbn="powerdb" 

url_dir="******" 

delta=93600#86400+7200 

delta2=7200 

 

#script 

#relative time: for updating 

import time 

from datetime import datetime, timedelta 



97 
 

t=time.localtime() 

cur_t=datetime(t[0],t[1],t[2],t[3],t[4],t[5])-timedelta(seconds=delta2)#today.3am, if 

executed at 5am 

start,end=(cur_t-timedelta(seconds=delta)).isoformat(' '),cur_t.isoformat(' 

')#yesterday.1am-today.3am 

#absolute time: for initializing 

#start,end="2011-02-19 08:00:00","2011-02-20 12:00:00" 

import ops_db 

import ops_table 

connection=ops_db.connect(hostname,username,pswd) 

ops_db.select(connection,dbn) 

import util 

for fn in util.file_lst(start,end,url_dir): 

 if util.retrieve(fn)==0: 

  continue 

 for record in util.retrieve(fn): 

  dict=util.xml_parser(record) 

  uid=dict["uid"].upper() 

  t=dict["date"]+' '+dict["time"] 

  ops_table.write(connection,uid+'_ch1',t,dict["ch1"]) 

  print "%s updated at %s" % (uid+'_ch1',t) 

  ops_table.write(connection,uid+'_ch2',t,dict["ch2"]) 

  print "%s updated at %s" % (uid+'_ch2',t) 

  ops_table.write(connection,uid+'_ch3',t,dict["ch3"]) 

  print "%s updated at %s" % (uid+'_ch3',t) 

  ops_table.write(connection,uid+'_ch4',t,dict["ch4"]) 

  print "%s updated at %s" % (uid+'_ch4',t) 

 

update_table_registry.py 

 

#params 

hostname="localhost" 

username="******" 

pswd="******" 

dbn="powerdb" 

registry_fn,sheet_name='registry.xls','registry' 

registry_tbn='owner_app_ch_loc' 

 

#script 

import xlrd 

sheet=xlrd.open_workbook(registry_fn).sheet_by_name(sheet_name) 

import ops_db 

import ops_table 

connection=ops_db.connect(hostname,username,pswd) 

if dbn in ops_db.lst(connection): 

 ops_db.select(connection,dbn) 

 sql="""DELETE FROM %s""" % registry_tbn 

 connection.cursor().execute(sql)#delete duplicated entries 

 for i in range(1,sheet.nrows):#insert updated entries for each device 

  raw=sheet.row_values(i) 



98 
 

  mac_address,location=raw[0],raw[1] 

  for j in range(2,6): 

   if raw[j]=='': 

    continue 

   else: 

    app_info=raw[j].split(".") 

    owner=app_info[0] 

    app_type=app_info[1] 

    if len(app_info)==2: 

     app_id='' 

    elif len(app_info)>=3: 

     app_id=app_info[2] 

   sql="""INSERT INTO %s (owner,app,ch,location) VALUES 

('%s','%s','%s','%s')""" % 

(registry_tbn,owner,app_type+'.'+app_id,mac_address+"_ch"+str(j-1),location) 

   connection.cursor().execute(sql) 

 print "Table owner_app_ch_loc updated" 

else: 

 print "Database %s not exist" % dbn 

connection.close() 

 

inquiry.py 

 

import ops_db 

import ops_table 

def ch(connection,ch,st,et): 

 return sort(ops_table.read(connection,ch,st,et)) 

def sort(t): 

 dict={} 

 for i in t: 

  dict[i[0]]=i[1] 

 l=dict.keys() 

 l.sort() 

 ll=[] 

 for i in l: 

  ll.append((i,dict[i])) 

 return ll 

#util 

import time 

import datetime 

def str2datetime(s): 

 date,time=s.split(' ')[0],s.split(' ')[1] 

 year,month,day=date.split('-')[0],date.split('-')[1],date.split('-')[2] 

 hour,minute,second=time.split(':')[0],time.split(':')[1],time.split(':')[2] 

 return 

datetime.datetime(int(year),int(month),int(day),int(hour),int(minute),int(second)) 

def scale_generate(s,e,interval):#s,e:datetime str. 

 st,et=str2datetime(s),str2datetime(e) 

 i=datetime.timedelta(seconds=interval) 

 l=[] 



99 
 

 while st<=et: 

  l.append(st) 

  st+=i 

 return l 

def merge(scale,data): 

 l=[] 

 while len(scale)!=0 and len(data)!=0: 

  s,d=scale.pop(0),data.pop(0) 

  if s<=d[0]: 

   l.append(s) 

   data.insert(0,d) 

  else: 

   l.append(d) 

   scale.insert(0,s) 

 if len(scale)==0: 

  for i in data: 

   l.append(i) 

 elif len(data)==0: 

  for i in scale: 

   l.append(i) 

 return l 

def power_sum(l): 

 p=[] 

 sum=0 

 for i in l: 

  if type(i)==type(()):#if tuple 

   sum+=i[1]*10#10secs 

  else: 

   p.append((i,sum)) 

   sum=0 

 return p 

def view(connection,channel,st,et,interval,raw): 

 data=ch(connection,channel,st,et) 

 if raw=='true': 

  return data 

 elif raw=='false': 

  scale=scale_generate(st,et,interval) 

  l=merge(scale,data) 

  return power_sum(l) 

 

power_single.py 

 

#!/usr/bin/python 

 

#params 

hostname="localhost" 

username="******" 

pswd="******" 

dbn="powerdb" 

#script db connection 



100 
 

import ops_db 

import ops_table 

connection=ops_db.connect(hostname,username,pswd) 

ops_db.select(connection,dbn) 

#script get params 

import cgi 

form=cgi.FieldStorage() 

print "Content-type: text/html" 

print 

print "<html>" 

print "</html>" 

ch=form["ch"].value 

st,et=form["st"].value.replace('s',' 

').replace('d','-').replace('c',':'),form["et"].value.replace('s',' ').replace('d','-').replace('c',':') 

interval=int(form["interval"].value) 

raw=form["raw"].value 

#script make inquiries 

import inquiry 

l=inquiry.view(connection,ch,st,et,interval,raw) 

if raw=='true': 

 for i in l: 

  print "<p>" 

  print i[0],i[1],"Watts" 

  print "</p>" 

elif raw=='false': 

 for i in l: 

  print "<p>" 

  print i[0],i[1],"J" 

  print "</p>" 

 

practical_visualizer.py 

 

#config & read file 

fn="20110520.txt" 

mode="humidity" 

interval=3600 

 

 

st=fn[0:4]+"-"+fn[4:6]+"-"+fn[6:8]+" 00:00:00" 

############SCRIPT STARTS FROM HERE############ 

import matplotlib.pyplot as plt 

import datetime 

import os 

 

#make data list 

st_d=datetime.datetime.strptime(st,"%Y-%m-%d %H:%M:%S") 

et_d=st_d+datetime.timedelta(days=1) 

d=datetime.timedelta(seconds=1) 

c_t=st_d 

data={} 



101 
 

while c_t<=et_d: 

 data[c_t]=0 

 c_t+=d 

#read data file 

for l in open(fn,'r').readlines(): 

 l=l.strip() 

 if l=="": continue 

 dt=l.split(" ")[0]+" "+l.split(" ")[1] 

 data[datetime.datetime.strptime(dt,"%Y-%m-%d %H:%M:%S")]=float(l.split(" ")[2]) 

#make data 

data1=[] 

for i in data.keys(): 

 data1.append([i,data[i]]) 

data1.sort() 

data2=[] 

for i in data1: 

 data2.append(i[1]) 

#discrete/process data: interpolation between two data 

#plot 

fig=plt.figure() 

ax=fig.add_subplot(111) 

if mode=="power": 

 ax.plot(range(len(data2)),data2) 

 ax.set_xlabel("Time:s") 

 ax.set_ylabel("Power:Watts") 

elif mode=="humidity": 

 ax.plot(range(len(data2)),data2) 

 ax.set_xlabel("Time:s") 

 ax.set_ylabel("HUmidity:Percents") 

elif mode=="energy": 

 data3=[] 

 while len(data2)!=0: 

  sum=0 

  for i in range(interval): 

   if len(data2)!=0: 

    sum+=data2.pop(0) 

  sum=sum/3600000. 

  data3.append(sum) 

 ax.bar(range(len(data3)),data3,alpha=0.5) 

 ax.set_xlabel("Time:"+str(interval)+"s") 

 ax.set_ylabel("Energy:kwh") 

ax.grid(True) 

plt.show() 



102 
 

Part B: Source code of SE 

appliance.py 

 

############PARAMS READER#################### 

#common 

def config_file_read(fn): 

 d={} 

 for line in [i.strip() for i in open(fn,'r').readlines()]: 

  if line=="" or line[0]=="#":continue#take out 

  l=line.split("=") 

  if l[0]=="node_table": 

   d["node_table"]=node_table_read(l[1]) 

  elif l[0]=="transition_chart": 

   d["transition_chart"]=transition_chart_read(l[1]) 

  elif l[0]=="route_table": 

   d["route_table"]=route_table_read(l[1]) 

  elif l[0]=="pcf_params": 

   d["pcf_params"]=pcf_params_read(l[1]) 

 return d 

def node_table_read(str): 

 dict={} 

 for i in str.split(";"): 

  dict[i.split(":")[0]]=[i.split(":")[1],0] 

 return dict 

def transition_chart_read(str): 

 dict={} 

 for i in str.split(";"): 

  dict[i.split(":")[0]]=[i.split(":")[1],0,0] 

 return dict 

def route_table_read(str):#des_node,cur_node,nex_node,wait_limit; 

 dict={} 

 for i in str.split(";"): 

  dict[i.split(":")[0]]=[i.split(":")[1],0] 

 return dict 

def pcf_params_read(str): 

 dict={} 

 for i in str.split(";"): 

  t=[] 

  for j in i.split(":")[1].split("/"): 

   t.append(j) 

  dict[i.split(":")[0]]=t 

 return dict 

##############PCF & RANDOM FUNCS####################### 

import random 

import math 

def distortor(base,r):#non-negative 

 result=base*(1+random.uniform(-r,r)) 



103 
 

 if result<0: return 0 

 else: return result 

def pcf(p,cur_t,glb_t): 

 func,distortion,abnormal=p 

 func_type,func_p=func.split("|") 

 ###FUNC TYPES### 

 if func_type=='0':#func type 0 

  val=float(func_p) 

 elif func_type=='1':#func type 1 

  p1,p2,p3=func_p.split(",") 

  p1,p2,p3=float(p1),float(p2),float(p3) 

  val=p1+p2*math.exp(p3*cur_t) 

 elif func_type=='2': 

  p1,p2,p3,p4=func_p.split(",") 

  p1,p2,p3,p4=float(p1),float(p2),float(p3),float(p4) 

  val=p1+p2*math.exp((glb_t-p3)*(p3-glb_t)/p4/p4) 

 ###DISTORTION### 

 if "," in distortion: 

  dis_r,dis_p=distortion.split(",") 

  dis_r,dis_p=float(dis_r),float(dis_p) 

  if random.uniform(0,1)<float(dis_p): 

   val=val*(1+random.uniform(-dis_r,dis_r)) 

 else: 

  dis_r=float(distortion) 

  val=val*(1+random.uniform(-dis_r,dis_r)) 

 ###ABNORMAL### 

 abnormal_type,abnormal_p=abnormal.split("|") 

 ab_base,ab_r,ab_prob=abnormal_p.split(",") 

 if random.uniform(0,1)<float(ab_prob): 

  ab_base,ab_r=float(ab_base),float(ab_r) 

  ab=ab_base*(1+random.uniform(-ab_r,ab_r)) 

  if abnormal_type=="+" and ab>val: 

   return int(ab) 

  elif abnormal_type=="-" and ab<val: 

   return int(ab) 

  elif abnormal_type=="?": 

   return int(ab) 

 return int(val) 

################UTILITY######################## 

import os 

def s2d(s): 

 d={} 

 for item in s.split(","):#sep1 

  key,val=item.split("=")#sep2 

  d[key]=val 

 return d 

##################CLASS APPLIANCE################# 

class appliance: 

 def __init__(self,config_fn,init_stat): 

  self.cur_stat=init_stat 



104 
 

  self.cur_timer=0 

  self.global_timer=0 

  #self.internal_stat="idling" 

  self.cls=config_fn.split(os.sep).pop().split(".")[2].split("|")[1] 

  self.pwr=0 

  self.req_lst=[] 

  self.req="n/a" 

  self.params=config_file_read(config_fn) 

  #init node_table 

  for i in self.params["node_table"].keys(): 

   if self.params["node_table"][i][0]=="n/a":continue 

   t=self.params["node_table"][i][0].split(",") 

   self.params["node_table"][i][1]=distortor(float(t[0]),float(t[1])) 

  #init transition_chart 

  for i in self.params["transition_chart"].keys(): 

   if self.params["transition_chart"][i][0]=="n/a":continue###5.26 

   t=self.params["transition_chart"][i][0].split(",")#re-calculate a wl in 

transition_chart 

   self.params["transition_chart"][i][1]=distortor(float(t[0]),float(t[1])) 

  #init route_table if be 

  if self.params.has_key("route_table"): 

   for i in self.params["route_table"].keys(): 

    if self.params["route_table"][i][0]=="n/a":continue 

    t=self.params["route_table"][i][0].split(",")#re-calculate a wl in 

route_table 

    self.params["route_table"][i][1]=distortor(float(t[0]),float(t[1])) 

 

 def run(self): 

  #output pwr, if abnormal is greater, output ab_pwr 

  p=self.params["pcf_params"][self.cur_stat] 

  self.pwr=pcf(p,self.cur_timer,self.global_timer) 

  #timer increase 

  self.cur_timer+=1 

  self.global_timer+=1 

  for i in self.params["transition_chart"].keys(): 

   if self.params["transition_chart"][i][0]=="n/a":continue###5.26 

   self.params["transition_chart"][i][2]+=1 

  #get req if none 

  if self.req=="n/a": 

   self.req=self.get_req() 

  ########SWITCH########### 

  #behave according to transition chart only 

  if self.req=="n/a": 

   #condition, no switch 

   if self.params["node_table"][self.cur_stat][0]=="n/a" or 

self.cur_timer<self.params["node_table"][self.cur_stat][1]: return 

   #find the next node of the highest period which is eligible to be switched to 

   key="" 

   for k in self.params["transition_chart"].keys(): 

    if k.split(",")[0]!=self.cur_stat: continue 



105 
 

    if self.params["transition_chart"][k][0]=="n/a": continue###5.26 

    if 

float(self.params["transition_chart"][k][1])>float(self.params["transition_chart"][k][2]): 

continue 

    if key=="": key=k 

    elif 

float(self.params["transition_chart"][key][1])<float(self.params["transition_chart"][k][

1]): key=k 

    else: pass 

   #action 

   if key=="": return 

   #reset timers 

   self.cur_timer=0 

   self.params["transition_chart"][key][2]=0 

   #change wait limit of old cur_stat in node_table 

   node_p=self.params["node_table"][self.cur_stat][0].split(",") 

  

 self.params["node_table"][self.cur_stat][1]=distortor(float(node_p[0]),float(node_p[

1])) 

   #change wait limit in transition_chart 

   t=self.params["transition_chart"][key][0].split(",")#re-calculate a wl in 

transition_chart 

   self.params["transition_chart"][key][1]=distortor(float(t[0]),float(t[1])) 

   #change cur_stat 

   self.cur_stat=key.split(",")[1] 

  #behave according to route table and transition chart 

  elif self.req!="n/a": 

   d=s2d(self.req) 

   #target_mod,duration=d["TARGET_MOD"],d["DURATION"]###5.26 

   #condition 

   #if not desired mode, in routing 

   if self.cur_stat!=d["TARGET_MOD"]: 

    #find the transition(key) in route table 

    key="" 

    for i in self.params["route_table"].keys(): 

     l=i.split(",") 

     #print i,"====",d["TARGET_MOD"],self.cur_stat 

     if l[0]==d["TARGET_MOD"] and l[1]==self.cur_stat: 

      key=i 

    #print key 

    #find wait limit 

    wl=0 

    if self.params["route_table"][key][0]=="n/a":#according to the node table 

     wl=self.params["node_table"][self.cur_stat][1] 

     #re-calculate a wl in node_table 

     t=self.params["node_table"][self.cur_stat][0].split(",") 

    

 self.params["node_table"][self.cur_stat][1]=distortor(float(t[0]),float(t[1])) 

    elif self.params["route_table"][key][0]!="n/a":#according to the route 

table 



106 
 

     wl=self.params["route_table"][key][1] 

     #re-calculate a wl in route_table 

     t=self.params["route_table"][key][0].split(",") 

     self.params["route_table"][key][1]=distortor(float(t[0]),float(t[1])) 

    #switch, if cur_timer exceeds wait limit 

    if self.cur_timer>=wl: 

     #reset timers 

     self.cur_timer=0 

    

 self.params["transition_chart"][self.cur_stat+","+key.split(",")[2]][2]=0 

     #change wait limit in transition_chart if it be 

     if 

self.params["transition_chart"][self.cur_stat+","+key.split(",")[2]][0]!="n/a": 

     

 t=self.params["transition_chart"][self.cur_stat+","+key.split(",")[2]][0].split(",")#re-c

alculate a wl in transition_chart 

     

 self.params["transition_chart"][self.cur_stat+","+key.split(",")[2]][1]=distortor(float(

t[0]),float(t[1])) 

     #change cur_stat 

     self.cur_stat=key.split(",")[2] 

   #condition 

   #if desired mode, in working 

   elif self.cur_stat==d["TARGET_MOD"]: 

    #find wait limit 

    wl=0 

    if d["DURATION"]=="n/a":#according to node table 

     wl=self.params["node_table"][self.cur_stat][1] 

     #re-calculate a wl in node_table 

     t=self.params["node_table"][self.cur_stat][0].split(",") 

    

 self.params["node_table"][self.cur_stat][1]=distortor(float(t[0]),float(t[1])) 

    #select longer wl if requested duration is not n/a 

    elif d["DURATION"]!="n/a" and 

self.params["node_table"][self.cur_stat][0]=="n/a": 

     wl=int(d["DURATION"]) 

    elif d["DURATION"]!="n/a" and 

self.params["node_table"][self.cur_stat][0]!="n/a": 

     if 

int(d["DURATION"])>=self.params["node_table"][self.cur_stat][1]: 

      wl=int(d["DURATION"]) 

     elif 

int(d["DURATION"])<self.params["node_table"][self.cur_stat][1]: 

      wl=self.params["node_table"][self.cur_stat][1] 

     

 t=self.params["node_table"][self.cur_stat][0].split(",")#re-calculate a wl in 

node_table 

     

 self.params["node_table"][self.cur_stat][1]=distortor(float(t[0]),float(t[1])) 

    #switch, if exceeds wait limit 



107 
 

    if self.cur_timer>=wl: 

     #find next req 

     if len(self.req_lst)==0: 

      self.req="n/a" 

     else: 

      self.req=self.req_lst[0] 

     #if no next req 

     if self.req=="n/a": 

      #fall back according to transition chart 

      #find the next node of the highest period which is eligible to be 

switched to 

      key="" 

      for k in self.params["transition_chart"].keys(): 

       if k.split(",")[0]!=self.cur_stat: continue 

       if self.params["transition_chart"][k][0]=="n/a": 

continue###5.26 never goes to where it would never go 

       if 

float(self.params["transition_chart"][k][2])<float(self.params["transition_chart"][k][1]): 

continue 

       if key=="": key=k 

       elif 

float(self.params["transition_chart"][key][1])<float(self.params["transition_chart"][k][

1]): key=k 

       else: pass 

      #action 

      if key=="": return 

      #reset timers 

      self.cur_timer=0 

      self.params["transition_chart"][key][2]=0 

      #change wait limit in transition_chart 

      t=self.params["transition_chart"][key][0].split(",")#re-calculate 

a wl in transition_chart 

     

 self.params["transition_chart"][key][1]=distortor(float(t[0]),float(t[1])) 

      #change cur_stat 

      self.cur_stat=key.split(",")[1] 

      self.req="n/a" 

     #if next req be 

     elif self.req!="n/a": 

      #check target_mod 

      d=s2d(self.req) 

      #if next target_mod different, fall back according to transition 

chart 

      if d["TARGET_MOD"]!=self.cur_stat: 

       #fall back according to transition chart 

       #find the next node of the highest period which is eligible to 

be switched to 

       key="" 

       for k in self.params["transition_chart"].keys(): 

        if k.split(",")[0]!=self.cur_stat: continue 



108 
 

        if self.params["transition_chart"][k][0]=="n/a": 

continue###5.26 never goes to where it would never go 

        if 

float(self.params["transition_chart"][k][2])<float(self.params["transition_chart"][k][1]): 

continue 

        if key=="": key=k 

        elif 

float(self.params["transition_chart"][key][1])<float(self.params["transition_chart"][k][

1]): key=k 

        else: pass 

       #action 

       if key=="": return 

       #reset timers 

       self.cur_timer=0 

       self.params["transition_chart"][key][2]=0 

       #change wait limit in transition_chart 

      

 t=self.params["transition_chart"][key][0].split(",")#re-calculate a wl in 

transition_chart 

      

 self.params["transition_chart"][key][1]=distortor(float(t[0]),float(t[1])) 

       #change cur_stat 

       self.cur_stat=key.split(",")[1] 

       self.req="n/a" 

      #if next target_mod same, serve 

      elif d["TARGET_MOD"]==self.cur_stat: 

       #action 

       #reset timer 

       self.req=self.get_req() 

       self.cur_timer=0 

 

 def rcv(self,req): 

  #shared 

  if self.cls=="shared": 

   if self.req=="n/a": 

    self.req_lst.append(req) 

   elif self.req!="n/a": 

    cur_d=s2d(self.req) 

    req_d=s2d(req) 

    if req_d["TARGET_MOD"]==cur_d["TARGET_MOD"] and 

int(req_d["DURATION"])>=(int(cur_d["DURATION"])-self.cur_timer): 

     #reset duration 

    

 save=self.req.split("DURATION=")[0]+"DURATION="+req_d["DURATION"] 

     self.req=save 

     #reset timer 

     self.cur_timer=0 

  #mutex 

  if self.cls=="mutex": 

   self.req_lst.append(req) 



109 
 

  #personal 

  if self.cls=="personal": 

   self.req_lst.append(req) 

 def get_req(self):#############SCHEDULING HERE 

  if len(self.req_lst)==0: 

   return "n/a" 

  else: 

   req=self.req_lst.pop(0) 

   return req 

 def new_day(self): 

  self.global_timer=0 

 

agent.py 

 

import random 

import numpy as np 

import os 

 

def nd(mu,sigma): 

 X=np.random.normal(mu,sigma) 

 return int(X) 

 

def params2val(p): 

 mu,sigma=[int(i) for i in p.split("/")]#sep3 

 return nd(mu,sigma) 

 

def read_profile(fn): 

 d={} 

 lines=[i.strip() for i in open(fn).readlines()] 

 for line in lines: 

  if line=="" or line[0]=="#":continue#take out empty or comment line 

  dict={} 

  for item in line.split(","):#sep1 

   key,val=item.split("=")#sep2 

   dict[key]=val 

  #runtime parameters 

  dict["TIMER"]=0 

  dict["COUNTER"]=0#maxium run count, int 

  dict["STATUS"]="waiting" 

  #start options 

  if dict.has_key("START_PARAMS"): 

   dict["START"]=params2val(dict["START_PARAMS"])#calculate a new start, 

int 

  if dict.has_key("PROBABILITY"): 

   dict["PROBABILITY"]=float(dict["PROBABILITY"])#probability, float 

  #end options 

  if dict.has_key("END_PARAMS"): 

  

 dict["DURATION"]=params2val(dict["END_PARAMS"])-dict["START"]#calculate a 

new end, then duration, int 



110 
 

  if dict.has_key("DURATION_PARAMS") and 

dict["DURATION_PARAMS"]!="n/a": 

   dict["DURATION"]=params2val(dict["DURATION_PARAMS"])#calculate a 

new duration, int 

  d[dict["PID"]]=dict 

 return d 

 

def is_blocked(group,d):#test whether the group is blocked 

 for i in d.keys(): 

  if d[i]["GROUP"]==group and d[i]["STATUS"]=="running": 

   return True 

 return False 

 

def in_prob(p):#test whether to start if prob is given 

 if random.random()<p: 

  return True 

 else: 

  return False 

 

def req2d(r): 

 d={} 

 for i in r.split(","): 

  key,val=i.split("=") 

  d[key]=val 

 return d 

 

class agent: 

 def __init__(self,fn): 

  self.fn=fn 

  self.t=0 

  self.p=read_profile(fn) 

  self.rdy_lst=[] 

  self.req_log=[] 

 

 def act(self): 

  self.t+=1 

  for k in self.p.keys(): 

   if self.p[k]["STATUS"]=="waiting": 

    change_flag=False 

    #condition 1 

    if self.p[k]["PPID"]=="n/a" or 

self.p[self.p[k]["PPID"]]["STATUS"]=="running":pass 

    else:continue 

    #condition 2 

    if self.p[k]["COUNTER"]<int(self.p[k]["MULTI"]):pass 

    else:continue 

    #condition 3 

    if self.p[k].has_key("START"): 

     if self.p[k]["PPID"]=="n/a": 

      t=self.t 



111 
 

     else: 

      t=self.p[self.p[k]["PPID"]]["TIMER"] 

     if t>self.p[k]["START"]:#if parent process TIMER exceeds START 

      change_flag=True 

    elif self.p[k].has_key("PROBABILITY"): 

     if in_prob(float(self.p[k]["PROBABILITY"])): 

      change_flag=True 

    #action:waiting-->running/ready 

    if change_flag==True: 

     #reset timer 

     self.p[k]["TIMER"]=0 

     #change status 

     self.p[k]["COUNTER"]+=1 

     #re-calculate start if be 

     if self.p[k].has_key("START"): 

      self.p[k]["START"]=params2val(self.p[k]["START_PARAMS"]) 

     #decides destination: running/ready 

     if is_blocked(self.p[k]["GROUP"],self.p)==False: 

      self.p[k]["STATUS"]="running" 

      ########SEND REQUEST HERE######## 

      self.send_req(k) 

     elif is_blocked(self.p[k]["GROUP"],self.p)==True: 

      self.p[k]["STATUS"]="ready" 

      self.rdy_lst.append(self.p[k]["PID"]) 

      ########READY INFO######## 

      #print "PID ",self.p[k]["PID"]," READY AT ",self.t 

   elif self.p[k]["STATUS"]=="running": 

    self.p[k]["TIMER"]+=1#running timer 

    change_flag=False 

    #condition 1 

    if self.p[k]["PPID"]=="n/a":pass 

    elif self.p[self.p[k]["PPID"]]["STATUS"]!="running": 

     change_flag=True 

    #condition 2 

    if self.p[k].has_key("DURATION")==True and 

self.p[k]["TIMER"]>self.p[k]["DURATION"]: 

     change_flag=True 

    #action:running-->waiting 

    if change_flag==True: 

     #reset timer 

     self.p[k]["TIMER"]=0 

     #change status 

     self.p[k]["STATUS"]="waiting" 

     #re-calculate duration 

     if self.p[k].has_key("END_PARAMS"): 

     

 self.p[k]["DURATION"]=params2val(self.p[k]["END_PARAMS"])-self.p[k]["START"

]#calculate a new end, then duration, int 

     if self.p[k].has_key("DURATION_PARAMS") and 

self.p[k]["DURATION_PARAMS"]!="n/a": 



112 
 

     

 self.p[k]["DURATION"]=params2val(self.p[k]["DURATION_PARAMS"])#calculate 

a new duration, int 

     for kk in self.p.keys(): 

      if self.p[k]["PID"]==self.p[kk]["PPID"]: 

       self.p[kk]["COUNTER"]=0 

     ########WRITE DURATION INFO WHEN END######## 

     for i in range(len(self.req_log)): 

      req=req2d(self.req_log[i]) 

      if req["PID"]==self.p[k]["PID"] and req["DURATION"]=="n/a": 

       self.chg_dur(i) 

     #print "PID ",self.p[k]["PID"]," FINISHED AT ",self.t 

   if len(self.rdy_lst)!=0: 

    for i in range(len(self.rdy_lst)): 

     pid=self.rdy_lst[i] 

     #condition 1 

     if self.p[pid]["PPID"]=="n/a":pass 

     elif self.p[self.p[pid]["PPID"]]["STATUS"]!="running": 

      self.p[pid]["TIMER"]=0 

      self.p[pid]["STATUS"]="waiting" 

      self.rdy_lst[i]="deleted" 

      ########CANCELED INFO######## 

      #print "PID ",self.p[pid]["PID"]," CANCELED AT ",self.t 

      continue 

     else:pass 

     #condition 2 

     if is_blocked(self.p[pid]["GROUP"],self.p)==True:pass 

     else: 

      self.p[pid]["TIMER"]=0 

      self.p[pid]["STATUS"]="running" 

      self.rdy_lst[i]="deleted" 

      ########SEND REQUEST HERE######## 

      self.send_req(k) 

      #print "PID ",self.p[pid]["PID"]," READY-->STARTED AT ",self.t 

      continue 

    #clean up rdy_lst 

    l=[] 

    for i in self.rdy_lst: 

     if i!="deleted": 

      l.append(i) 

    self.rdy_lst=l 

 

 def restart(self): 

  self.t=0 

  self.p=read_profile(self.fn) 

  self.rdy_lst=[] 

  self.req_log=[] 

 

 def send_req(self,k): 

  """ 



113 
 

  if self.p[k]["TYPE"]=="a": 

   print "TIME ",self.t," ", 

   print "AGENT ",self.fn.split(".")[1]+"."+self.fn.split(".")[2]," ", 

   print "TARGET_APP ",self.p[k]["TARGET_APP"]," ", 

   print "TARGET_MOD ",self.p[k]["TARGET_MOD"]," ", 

   if self.p[k].has_key("DURATION"): 

    print "DURATION ",self.p[k]["DURATION"]," ", 

   else: 

    print "DURATION ","n/a"," ", 

   print "PRIORITY",self.p[k]["PRIORITY"] 

  """ 

  if self.p[k]["TYPE"]=="a": 

   time="TIME="+str(self.t)+"," 

  

 aid="AGENT="+self.fn.split(".")[1]+"."+self.fn.split(".")[2]+"."+self.fn.split(".")[3]+"."

+self.fn.split(".")[4]+"," 

   pid="PID="+self.p[k]["PID"]+"," 

   app="TARGET_APP="+self.p[k]["TARGET_APP"]+"," 

   mod="TARGET_MOD="+self.p[k]["TARGET_MOD"]+"," 

   if self.p[k].has_key("DURATION"): 

    dur="DURATION="+str(self.p[k]["DURATION"])+"," 

   else: 

    dur="DURATION=n/a," 

   pri="PRIORITY="+self.p[k]["PRIORITY"] 

   req=time+aid+pid+app+mod+dur+pri 

   #print req 

   self.req_log.append(req) 

 

 def chg_dur(self,i): 

  req=req2d(self.req_log[i]) 

  time="TIME="+req["TIME"]+"," 

  aid="AGENT="+req["AGENT"]+"," 

  pid="PID="+req["PID"]+"," 

  app="TARGET_APP="+req["TARGET_APP"]+"," 

  mod="TARGET_MOD="+req["TARGET_MOD"]+"," 

  dur="DURATION="+str(self.t-int(req["TIME"]))+"," 

  pri="PRIORITY="+req["PRIORITY"] 

  req_s=time+aid+pid+app+mod+dur+pri 

  self.req_log.pop(i) 

  self.req_log.insert(i,req_s) 

 

init.py 

 

import random 

import os 

 

def quantity(s):#get quantities of agents and appliances in a cell 

 l=[] 

 for i in s.split("|"): 

  val=int(i.split(":")[0]) 



114 
 

  count=int(float(i.split(":")[1])*100) 

  for i in range(count): 

   l.append(val) 

 return random.sample(l,1)[0] 

 

def f2l_d(fn): 

 l=[] 

 lines=[i.strip() for i in open(fn,'r').readlines()] 

 for line in lines: 

  if line=="" or line[0]=="#":continue#take out empty or comment line 

  if line.split("=")[0]=="DAYS":continue#ignore key "DAYS" 

  d={} 

  for item in line.split(","):#sep1 

   key,val=item.split("=")#sep2 

   d[key]=val 

  l.append(d) 

 return l 

 

############SCRIPT STARTS HERE################ 

#make cell name list 

cells=[] 

for i in f2l_d("init.cfg"): 

 count=int(i["COUNT"]) 

 for ii in range(count): 

  cells.append(i["TYPE"]+"."+str(ii+1)) 

 

#make agent and appliance name list for each cell in cells 

agents=[] 

appliances=[] 

prefix=os.getcwd()+os.sep+"templates_cell"+os.sep+"cell."#path & fn format 

for cell in cells: 

 entities=f2l_d(prefix+cell.split(".")[0]) 

 for entity in entities: 

  count=quantity(entity["COUNT"]) 

  if entity.has_key("MEMBER"): 

   for i in range(count): 

    agents.append("agent."+entity["MEMBER"]+"."+str(i+1)+"."+cell) 

  if entity.has_key("APPLIANCE"): 

   for i in range(count): 

   

 appliances.append("appliance."+entity["APPLIANCE"]+"."+entity["TYPE"]+"."+str

(i+1)+"."+cell) 

 

#make list of cells: [{cell_name:str,member:[str,...],appliance:[str,...]}...] 

cells2=[] 

for i in cells: 

 d={} 

 d["CELL"]=i 

 d["MEMBER"]=[] 

 d["APPLIANCE"]=[] 



115 
 

 for a in agents: 

  t=a.split(".")[-2:] 

  if i==t[0]+"."+t[1]: 

   d["MEMBER"].append(a) 

 for a in appliances: 

  t=a.split(".")[-2:] 

  if i==t[0]+"."+t[1]: 

   d["APPLIANCE"].append(a) 

 cells2.append(d) 

 

#write each cell's cfg into file 

f=open("cells.cfg",'w')#output fn 

for i in cells2: 

 s="CELL="+i["CELL"]+"," 

 for ii in i["MEMBER"]: 

  s=s+"MEMBER="+ii+"," 

 for ii in i["APPLIANCE"]: 

  s=s+"APPLIANCE="+ii+"," 

 s=s[:-1] 

 f.write(s) 

 f.write("\n") 

f.close() 

 

#end message 

print "Cells configuration generated" 

 

profile_gen.py 

 

import random 

import numpy as np 

import os 

 

#random func normal distr. 

def nd(mu,sigma): 

 if sigma==0: 

  return int(mu) 

 X=np.random.normal(mu,sigma) 

 return int(X) 

def params_nd(base,var): 

 mu1,mu2=[float(i) for i in base.split("/")]#sep3 

 rt1,rt2=[float(i) for i in var.split("/")]#sep3 

 return str(nd(mu1,mu1*rt1))+"/"+str(nd(mu2,mu2*rt2)) 

def params_nd1(base,var): 

 mu1,mu2=[float(i) for i in base.split(",")]#sep3 

 rt1,rt2=[float(i) for i in var.split(",")]#sep3 

 return str(nd(mu1,mu1*rt1))+","+str(nd(mu2,mu2*rt2)) 

def params_nd2(base,var): 

 base,var=float(base),float(var) 

 return str(nd(base,base*var)) 

#random func2 uniform distr. 



116 
 

def uniform(base,r): 

 return int(base*(1+random.uniform(-r,r))) 

def params_uniform(base,r): 

 base,r=float(base),float(r) 

 return str(uniform(base,r)) 

 

def pcf_change(str0,str1): 

 #base 

 base0,dist0,abn0=str0.split("/") 

 base_l0=base0.split("|")[1].split(",") 

 dist_l0=dist0.split(",") 

 abn_l0=abn0.split("|")[1].split(",") 

 #var 

 base1,dist1,abn1=str1.split("/") 

 base_l1=base1.split("|")[1].split(",") 

 dist_l1=dist1.split(",") 

 abn_l1=abn1.split("|")[1].split(",") 

 #output 

 base_l,dist_l,abn_l=[],[],[] 

 #get len 

 for i in range(len(base_l0)): 

  base_l.append(params_nd2(base_l0[i],base_l1[i])) 

 for i in range(len(dist_l0)): 

  dist_l.append(params_nd2(dist_l0[i],dist_l1[i])) 

 for i in range(len(abn_l0)): 

  abn_l.append(params_nd2(abn_l0[i],abn_l1[i])) 

 #result str 

 #pcf 

 s="" 

 s+=base0.split("|")[0]+"|" 

 for i in base_l: 

  s+=i+"," 

 s=s[:-1] 

 #dist 

 s+="/" 

 for i in dist_l: 

  s+=i+"," 

 s=s[:-1] 

 #abn 

 s+="/" 

 s+=abn0.split("|")[0]+"|" 

 for i in abn_l: 

  s+=i+"," 

 s=s[:-1] 

 return s 

 

def d2s(d): 

 s="" 

 for k in d.keys(): 

  s+=k 



117 
 

  s+=":" 

  s+=d[k] 

  s+=";" 

 return s[:-1] 

 

def param_prob(base,var): 

 mu=float(base) 

 sigma=mu*float(var) 

 X=np.random.normal(mu,sigma) 

 return str(X) 

 

#delete all files in dir(under current dir) 

def remove_files(dn): 

 #os dependent 

 s=os.sep 

 path=os.getcwd()+s+dn+s 

 for i in os.listdir(path): 

  os.remove(path+i) 

 

def agent_profile_gen(std_fn,cfg_fn,output_fn): 

 #os dependent 

 s=os.sep 

 path1=os.getcwd()+s+"templates_agent"+s#input files path 

 path2=os.getcwd()+s+"profiles_agent"+s#output files path 

 #std lst of dicts 

 std_l=[] 

 lines=[i.strip() for i in open(path1+std_fn).readlines()] 

 for line in lines: 

  if line=="" or line[0]=="#":continue#take out empty or comment line 

  dict={} 

  for item in line.split(","):#sep1 

   key,val=item.split("=")#sep2 

   dict[key]=val 

  std_l.append(dict) 

 #cfg lst of dicts 

 cfg_l=[] 

 lines=[i.strip() for i in open(path1+cfg_fn).readlines()] 

 for line in lines: 

  if line=="" or line[0]=="#":continue#take out empty or comment line 

  dict={} 

  for item in line.split(","):#sep1 

   key,val=item.split("=")#sep2 

   dict[key]=val 

  cfg_l.append(dict) 

 #make changes 

 output=[] 

 for i in std_l: 

  temp=i 

  for ii in cfg_l: 

   if i["PID"]==ii["PID"]: 



118 
 

    if ii.has_key("START_PARAMS"): 

    

 temp["START_PARAMS"]=params_nd(i["START_PARAMS"],ii["START_PARAMS"

]) 

    if ii.has_key("PROBABILITY"): 

    

 temp["PROBABILITY"]=param_prob(i["PROBABILITY"],ii["PROBABILITY"]) 

    if ii.has_key("END_PARAMS"): 

    

 temp["END_PARAMS"]=params_nd(i["END_PARAMS"],ii["END_PARAMS"]) 

    if ii.has_key("DURATION_PARAMS"): 

    

 temp["DURATION_PARAMS"]=params_nd(i["DURATION_PARAMS"],ii["DURATI

ON_PARAMS"]) 

  output.append(temp) 

 #write file 

 #cls=std_fn.split(".")[0] 

 f=open(path2+output_fn,"w") 

 for i in output: 

  f.write("PID="+i["PID"]+",") 

  f.write("PPID="+i["PPID"]+",") 

  f.write("GROUP="+i["GROUP"]+",") 

  f.write("TYPE="+i["TYPE"]+",") 

  if i["TYPE"]=="a": 

   f.write("MULTI="+i["MULTI"]+",") 

   f.write("TARGET_APP="+i["TARGET_APP"]+",") 

   f.write("TARGET_MOD="+i["TARGET_MOD"]+",") 

   f.write("PRIORITY="+i["PRIORITY"]+",") 

  elif i["TYPE"]=="s": 

   f.write("MULTI="+i["MULTI"]+",") 

  if i.has_key("START_PARAMS"): 

   f.write("START_PARAMS="+i["START_PARAMS"]+",") 

  if i.has_key("PROBABILITY"): 

   f.write("PROBABILITY="+i["PROBABILITY"]+",") 

  if i.has_key("END_PARAMS"): 

   f.write("END_PARAMS="+i["END_PARAMS"]) 

  if i.has_key("DURATION_PARAMS"): 

   f.write("DURATION_PARAMS="+i["DURATION_PARAMS"]) 

  f.write("\n") 

 f.close() 

 

def appliance_profile_gen(std_fn,cfg_fn,output_fn): 

 #os dependent 

 s=os.sep 

 path1=os.getcwd()+s+"templates_appliance"+s#input files path 

 path2=os.getcwd()+s+"profiles_appliance"+s#output files path 

 #std lst of dicts 

 std_d={} 

 lines=[i.strip() for i in open(path1+std_fn).readlines()] 

 for line in lines: 



119 
 

  if line=="" or line[0]=="#":continue#take out empty or comment line 

  d={} 

  for item in line.split("=")[1].split(";"): 

   key,val=item.split(":") 

   d[key]=val 

  std_d[line.split("=")[0]]=d 

 #cfg lst of dicts 

 cfg_d={} 

 lines=[i.strip() for i in open(path1+cfg_fn).readlines()] 

 for line in lines: 

  if line=="" or line[0]=="#":continue#take out empty or comment line 

  d={} 

  for item in line.split("=")[1].split(";"): 

   key,val=item.split(":") 

   d[key]=val 

  cfg_d[line.split("=")[0]]=d 

 #print std_d 

 #print cfg_d 

 #make changes 

 output={} 

 for k in std_d.keys(): 

  output[k]=std_d[k] 

  if cfg_d.has_key(k)==False: continue#continue if no such a key 

  if k!="pcf_params": 

   for kk in cfg_d[k].keys(): 

    output[k][kk]=params_nd1(output[k][kk],cfg_d[k][kk]) 

  elif k=="pcf_params": 

   for kk in cfg_d[k].keys(): 

    output[k][kk]=pcf_change(std_d[k][kk],cfg_d[k][kk]) 

 #write file 

 #?cls=std_fn.split(".")[0] 

 f=open(path2+output_fn,"w") 

 f.write("node_table=") 

 f.write(d2s(output["node_table"])) 

 f.write("\n") 

 f.write("transition_chart=") 

 f.write(d2s(output["transition_chart"])) 

 f.write("\n") 

 if output.has_key("route_table"): 

  f.write("route_table=") 

  f.write(d2s(output["route_table"])) 

  f.write("\n") 

 f.write("pcf_params=") 

 f.write(d2s(output["pcf_params"])) 

 f.write("\n") 

 f.close() 

 

def f2l_l(fn): 

 l=[] 

 lines=[i.strip() for i in open(fn,'r').readlines()] 



120 
 

 for line in lines: 

  if line=="" or line[0]=="#":continue#take out empty or comment line 

  #if line.split("=")[0]=="CELL":continue#ignore key "CELL" 

  ll=[] 

  for item in line.split(","):#sep1 

   ll.append(item) 

  l.append(ll) 

 return l 

#appliance_profile_gen("appliance.microwave_oven","appliance.microwave_oven.cfg","

123") 

 

############SCRIPT STARTS HERE########### 

#read cfg 

agents=[] 

appliances=[] 

for items in f2l_l("cells.cfg"): 

 for item in items: 

  if item.split("=")[0]=="MEMBER": 

   agents.append(item.split("=")[1]) 

  if item.split("=")[0]=="APPLIANCE": 

   appliances.append(item.split("=")[1]) 

#make agent profile 

remove_files("profiles_agent") 

for a in agents: 

 t=a.split(".") 

 input_fn=t[0]+"."+t[1] 

 agent_profile_gen(input_fn,input_fn+".cfg",a) 

print "Agent profiles generated" 

#make appliance profile 

remove_files("profiles_appliance") 

for a in appliances: 

 t=a.split(".") 

 input_fn=t[0]+"."+t[1] 

 appliance_profile_gen(input_fn,input_fn+".cfg",a) 

#end message 

print "Appliance profiles generated" 

 

req_gen.py 

 

import agent 

import os 

 

def params_in_comment(fn): 

 d={} 

 for line in [i.strip() for i in open(fn,'r').readlines()]: 

  if line[0]=="#": 

   l=line[1:].split("=") 

   d[l[0]]=l[1] 

 return d 

 



121 
 

def remove_files(dn): 

 #os dependent 

 s=os.sep 

 path=os.getcwd()+s+dn+s 

 for i in os.listdir(path): 

  os.remove(path+i) 

 

#input 

s=os.sep 

for i in open("init.cfg",'r').readlines(): 

 if i.split("=")[0]=="DAYS": 

  days=int(i.split("=")[1]) 

path1=os.getcwd()+s+"profiles_agent" 

path2=os.getcwd()+s+"logs_req" 

profiles=os.listdir(path1) 

#actions 

remove_files("logs_req") 

#create req_logs 

print "Generating logs" 

for day in range(1,days+1): 

 for profile in profiles: 

  print "Generating req_log for "+profile+" at day "+str(day) 

  a=agent.agent(path1+s+profile) 

  for sec in range(1,86401): 

   a.act() 

  f=open(path2+s+profile.split(".")[3]+"."+profile.split(".")[4]+".day."+str(day),'a+') 

  for req in a.req_log: 

   f.write(req) 

   f.write("\n") 

 

world.py 

 

import os 

import random 

import appliance 

 

def re_time(s,d): 

 l=s.split(",AGENT") 

 ll=l[0].split("=") 

 new_s="TIME="+str(d*86400+int(ll[1]))+",AGENT"+l[1] 

 return new_s 

 

def t(s): 

 l=s.split(",AGENT") 

 ll=l[0].split("=") 

 t=int(ll[1]) 

 return t 

 

def sort_log(l):#insert sort 

 for i in range(1, len(l)): 



122 
 

  save=l[i] 

  j=i 

  while j>0 and t(l[j-1])>t(save): 

   l[j]=l[j - 1] 

   j-=1 

  l[j]=save 

 return l 

 

def remove_files(dn): 

 #os dependent 

 s=os.sep 

 path=os.getcwd()+s+dn+s 

 for i in os.listdir(path): 

  os.remove(path+i) 

 

def req_handler(cell,req,t): 

 #read req 

 agent,target_app,target_mod,duration="","","","" 

 items=req.split(",") 

 for item in items: 

  if item.split("=")[0]=="AGENT": 

   agent=item.split("=")[1] 

  elif item.split("=")[0]=="TARGET_APP": 

   target_app=item.split("=")[1] 

  elif item.split("=")[0]=="TARGET_MOD": 

   target_mod=item.split("=")[1] 

  elif item.split("=")[0]=="DURATION": 

   duration=item.split("=")[1] 

 agent_type=agent.split(".")[0] 

 agent_n=agent.split(".")[1] 

 rq="TARGET_MOD="+target_mod+","+"DURATION="+duration 

 #match appliance 

 #print "rcved" 

 for app_name in cell.keys(): 

  l=app_name.split(".") 

  app_type=l[1] 

  app_user_group=l[2].split("|")[0] 

  app_cls=l[2].split("|")[1] 

  app_n=l[3] 

  if app_type!=target_app:continue#appliance type must be matched 

  if app_user_group==agent_type and app_cls=="personal" and app_n==agent_n: 

   cell[app_name].rcv(rq)#use own 

   print agent+" using personal "+app_type+" at time "+str(t) 

   break 

  elif app_user_group==agent_type and app_cls=="personal" and 

app_n!=agent_n: 

   continue#use other's, not permitted 

  elif app_user_group==agent_type and app_cls!="personal": 

   cell[app_name].rcv(rq)#use group shared 

   print agent+" using group shared "+app_type+" at time "+str(t) 



123 
 

   break 

  elif app_user_group!=agent_type and app_cls=="personal": 

   continue#use other group member's, not permitted 

  elif app_user_group!=agent_type and app_cls!="personal": 

   if app_user_group=="all":#use gloabal shared 

    cell[app_name].rcv(rq) 

    print agent+" using gloabal shared "+app_type+" at time "+str(t) 

    break 

   elif app_user_group!="all":#use other group shared,not this app 

    continue 

 #ignore req 

 

#create objs for appliance in cells 

path1=os.getcwd()+os.sep+"profiles_appliance"+os.sep 

profiles=os.listdir(path1) 

cells={} 

for profile in profiles: 

 l=profile.split(".") 

 if cells.has_key(l[4]+"."+l[5])==False: 

  cells[l[4]+"."+l[5]]=[] 

 cells[l[4]+"."+l[5]].append(profile) 

for k in cells.keys(): 

 cell={} 

 for i in cells[k]: 

  cell[i]=appliance.appliance(path1+i,"off") 

 cells[k]=cell 

#read req_log and integrate it into a sorted one 

path2=os.getcwd()+os.sep+"logs_req"+os.sep 

logs=os.listdir(path2) 

cells_log={} 

for log in logs: 

 l=log.split(".") 

 if cells_log.has_key(l[0]+"."+l[1])==False: 

  cells_log[l[0]+"."+l[1]]=[] 

 cells_log[l[0]+"."+l[1]].append(log) 

for cell_n in cells_log.keys(): 

 cell_log=[] 

 for cell_day in cells_log[cell_n]: 

  lines=open(path2+cell_day,"r").readlines() 

  for line in lines: 

   day=int(cell_day.split(".")[3])-1 

   new_line=re_time(line,day)[:-1] 

   cell_log.append(new_line) 

 cells_log[cell_n]=sort_log(cell_log) 

#create output logs 

path3=os.getcwd()+os.sep+"data"+os.sep 

outputs={} 

for i in profiles: 

 outputs[i]=[] 

######RUN############# 



124 
 

#get days 

for i in open("init.cfg",'r').readlines(): 

 if i.split("=")[0]=="DAYS": 

  days=int(i.split("=")[1]) 

#delay phases 

for loc in cells.keys(): 

 for app in cells[loc].keys(): 

  for i in range(random.randint(0,86400)): 

   cells[loc][app].run() 

for loc in cells.keys(): 

 for app in cells[loc].keys(): 

  cells[loc][app].new_day() 

#run for every second 

for timer in range(1,days*86400+1): 

 #timer increase 

 #print "Time: "+str(timer)+"/"+str(days*86400) 

 timer+=1 

 for loc in cells.keys(): 

  #print "Generating power data for %s" % loc 

  for app in cells[loc].keys(): 

   #print "Generating power data for %s" % app 

   cells[loc][app].run() 

   outputs[app].append(cells[loc][app].pwr) 

 #send req 

 for loc in cells_log.keys(): 

  if len(cells_log[loc])==0: continue 

  if t(cells_log[loc][0])<=timer: 

   req=cells_log[loc].pop(0) 

   #REQ HANDLING HERE 

   req_handler(cells[loc],req,timer) 

#####WRITE DATA########### 

print "===========================================" 

remove_files("data") 

for output in outputs.keys(): 

 f=open(path3+output,"w") 

 for i in range(len(outputs[output])): 

  f.write(str(i)+","+str(outputs[output][i])) 

  f.write("\n") 

 f.close() 

 print "Writing data file %s" %output 

print "Data files generated" 



125 
 

Part C: the monitored appliances are: 

 
Fig.6.1. Power curve of refrigerator 

 
Fig.6.2. Power curve of kettle 



126 
 

 
Fig.6.3. Power curve of microwave oven 

 
Fig.6.4. Power curve of router 



127 
 

 
Fig.6.5. Power curve of server 

 
Fig.6.6. Power curve of phone 



128 
 

 
Fig.6.7. Power curve of air conditioner 

 
Fig.6.8. Power curve of desktop PC 



129 
 

 
Fig.6.9. Power curve of laptop PC 

 
Fig.6.10. Power curve of display 



130 
 

 
Fig.6.11. Power curve of printer 

 
Fig.6.12. Power curve of TV 



131 
 

 
Fig.6.13. Power curve of TV recorder 



132 
 

Part D: template profiles for each appliance: 

Refrigerator 

node_table=off:0,0.1;stdby:480,0.3;w1:1200,0.3;w2:1200,0.5;w3:3600,0.3 

transition_chart=off,stdby:0,0;stdby,w1:0,0;w1,stdby:0,0;stdby,w2:52000,0;w2,w3:0,0;w

3,stdby:0,0 

 

pcf_params=off:0|0/0/+|0,0,0;stdby:0|5/0/+|0,0,0;w1:1|95,10,-0.004/0.01/+|430,0.2,0.

0002;w2:1|140,10,-0.008/0.01/+|430,0.2,0.0001;w3:1|100,55,-0.002/0.01/+|0,0,0 

 

Kettle 

 

node_table=off:360,0.3;on:130,0.3 

transition_chart=off,on:0,0;on,off:0,0 

 

pcf_params=off:0|0/0/+|0,0,0;on:0|67/0.03/+|0,0,0 

 

Microwave oven 

 

node_table=off:n/a;on:0,0 

transition_chart=off,on:0,0;on,off:0,0 

 

route_table=on,off,on:0,0 

 

pcf_params=off:0|0/0/+|0,0,0;on:0|900/0.05/+|0,0,0 

 

Router 

 

node_table=off:0,0;w1:40000,0.5;w2:30000,0.5 

transition_chart=off,w1:0,0;w1,w2:0,0;w2,w1:0,0 

 

pcf_params=off:0|0/0/+|0,0,0;w1:0|3/0/+|0,0,0;w2:0|3/0/+|5,0,0.001 

 

Server 

 

node_table=off:400,0.1;on:40000,0.5 

transition_chart=off,on:0,0;on,off:0,0 

 

pcf_params=off:0|0/0/+|0,0,0;on:0|43/0.07/+|0,0,0 

 

Phone 

 

node_table=off:0,0;stdby:25000,0.3;charging:50000,0.3 

transition_chart=off,stdby:0,0;stdby,charging:0,0;charging,stdby:0,0 

 

pcf_params=off:0|0/0/+|0,0,0;stdby:0|3/0/+|0,0,0;charging:0|3/0/+|5,0,0.001 

 

Air conditioner 



133 
 

 

node_table=off:0,0;w1:12000,0.2;w2:0,0;working:0,0 

transition_chart=off,w1:n/a;w1,off:0,0;w1,w2:0,0;w2,working:0,0;working,w1:0,0 

 

route_table=working,off,w1:0,0;working,w1,w2:2500,0.1;working,w2,working:1000,0 

 

pcf_params=off:0|0/0/+|0,0,0;w1:0|10/0.2,0.01/+|0,0,0;w2:0|500/0.2,0.03/+|0,0,0;wor

king:2|260,90,46000,10000/0.05,0.01/+|0,0,0 

 

Desktop PC 

 

node_table=off:n/a;stdby:108000,0;w1:0,0;w2:0,0 

transition_chart=off,stdby:n/a;stdby,off:0,0;stdby,w1:n/a;stdby,w2:n/a;w1,stdby:0,0;w1,

w2:n/a;w2,stdby:0,0;w2,w1:n/a 

 

route_table=w1,off,stdby:0,0;w1,stdby,w1:0,0;w1,w2,w1:0,0;w2,off,stdby:0,0;w2,stdby,w

2:0,0;w2,w1,w2:0,0 

 

pcf_params=off:0|0/0/+|0,0,0;stdby:0|50/0/+|50,0.6,0.005;w1:0|100/0/?|100,0.05,0.01

;w2:0|110/0/?|115,0.1,0.01 

 

Laptop PC 

 

node_table=off:n/a;stdby:45000,0;w1:0,0;w2:0,0 

transition_chart=off,stdby:n/a;stdby,off:0,0;stdby,w1:n/a;stdby,w2:n/a;w1,stdby:0,0;w1,

w2:n/a;w2,stdby:0,0;w2,w1:n/a 

 

route_table=w1,off,stdby:0,0;w1,stdby,w1:0,0;w1,w2,w1:0,0;w2,off,stdby:0,0;w2,stdby,w

2:0,0;w2,w1,w2:0,0 

 

pcf_params=off:0|0/0/+|0,0,0;stdby:0|2/0/+|0,0,0;w1:0|20/0/+|20,0.5,0.01;w2:0|30/0/

+|35,0.14,0.01 

 

Display 

 

node_table=off:0,0;stdby:n/a;working:0,0 

transition_chart=off,stdby:0,0;stdby,working:0,0;working,stdby:0,0 

 

route_table=working,stdby,working:0,0;working,off,stdby:0,0 

 

pcf_params=off:0|0/0/+|0,0,0;stdby:0|1/0/+|0,0,0;working:0|27/0/+|29,0.03,0.005 

 

Printer 

 

node_table=off:n/a;ready:1000,0.5;working:0,0 

transition_chart=off,ready:0,0;ready,off:0,0;ready,working:n/a;working,ready:0,0 

 

route_table=working,off,ready:0,0;working,ready,working:100,0.5 

 

pcf_params=off:0|0/0/+|0,0,0;ready:0|20/0/+|0,0,0;working:0|900/0.3/+|0,0,0 



134 
 

 

TV 

 

node_table=off:n/a;on:0,0 

transition_chart=off,on:0,0;on,off:0,0 

 

route_table=on,off,on:0,0 

 

pcf_params=off:0|0/0,1/+|0,0,0;on:2|110,30,43200,10000/0.05,0.01/+|0,0,0 

 

TV recorder 

 

node_table=off:n/a;on:0,0 

transition_chart=off,on:0,0;on,off:0,0 

 

route_table=on,off,on:0,0 

 

pcf_params=off:0|0/0/+|0,0,0;on:0|110/0.05/+|0,0,0 


