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A mathematical expression of elastic waves reflected due to slight
heterogeneity of the medium is presented explicitly to the first order ap-
proximation in the case of one-dimensional problems. The approximate
solution of elastic waves propagated through a heterogencous medium is
obtained by regarding the effect of the heterogeneity as that of equivalent
dynamical sources scattered within the medium and by applying Green’s
function to the first-order approximate wave equation.

Comparison between the approximate reflected wave and the exact
one shows the validity of the present theory.

The applications of the solution are found in such problems as attenua-
tion of elastic waves passing through a heterogeneous medium and inter-
pretation of reflected waves from a certain layered structure.

The finite difference method is applied to the wave equation with the
aid of the present theory in order to demonstrate the nature of elastic
waves propagated through a heterogeneous medium.

1. Introduction

Seismic waves are affected in their wave forms and amplitudes by scattering due
to heterogeneity of the medium. Therefore, it is of considerable importance to study
theoretically the behavior of scattering of elastic waves propagated through a hetero-
geneous elastic medium. The one-dimensional treatment of this problem concerned
with in this paper may be useful for evaluating the effect of the heterogeneity on
clastic waves and understanding the nature of scattered waves.

As OnDA (1965) pointed out, it is convenient to assume that the heterogeneous
medium is sandwiched between homogeneous half spaces so that we can distinguish
among incident, reflected and transmitted waves. Then, the medium behaves like
a filter, the characteristic of which is namely the reflectivity or the transmissivity of
the heterogeneous medium with finite width.

If the heterogeneous medium consists of homogeneous layers with different
physical constants, the theoretical characteristic can be readily calculated against a
given numerical model. Furthermore, since any structure can be sufficiently ap-
proximated with such layers, the numerical solutions of the characteristics of individual
models are practically obtainable for a given frequency band (see Fucus 1968).

On the contrary, the structure of a certain heterogeneous medium has not yet
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been directly and uniquely determined from the frequency-dependent reflectivity or
transmissivity of the medium; the trial-and-error method seems to be predominant
in today’s investigations. In other words, the inverse problem has not been solved
statisfactorily.

In order to find out the relationship between a medium structure and its reflec-
tivity and transmissivity, it is necessary to investigate the mechanism of the generation
of reflected waves. From this point of view, the present paper deals with an ap-
proximate theory of one-dimensional elastic waves propagated through a slightly
heterogeneous medium.

Previously, YosHivama (1960), Yosmivama and ONDA (1962) investigated a
similar problem concerning a structure with a sinusoidal fluctuation with special at-
tention to attenuation of a propagated wave. Their theory is based on Mathieu’s
equation in the frequency domain. An extention of their method was published by
OnDA (1964). In his paper, more general fluctuation is treated by decomposing the
fluctuation of the medium into Fourier Components. The treatment of the above
researches is quite strict, but the formulations of the results are rather complicated.

In the present paper, the author proposes another approach to this problem,
The approximate solution of reflected waves given in this paper should contribute to
understanding gross aspect of the effect of the heterogeneity on elastic waves and
may also be applicable to practical problems. Some of the results of this paper will
be compared with those of the above-mentioned researchers in later sections.

2. Theory

For brevity, let us assume the density is constant in the entire space. Then,
the parameter of heterogeneity is only the velocity of an elastic wave. Heterogeneity
is assumed to appear in the range,

0<x<L, (1)

where L means the length of the heterogeneous medium. Let us describe the velocity
distribution V(x) as follows:

V2(x)=V¥(l+ef(x)), —oo<<x<co } 2
f(x)=0, x<0 or x>L, )

where V, is the constant velocity defined in a homogeneous region and ¢f(x) denotes
a heterogeneous structure. Furthermore, let us assume that the heterogeneity is so
slight that the perturbation method can be applied to our problem.

Hence, we can put ¢ and f(x) as follows:

0<e£1 '
} (3)
Max. |f(x)|=1.
The equation of motion is
B0 (el )=
ar ' ox (V (x)ax") 0 (4)
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where u stands for displacement or particle velocity or acceleration etc.. Substituting
(2) into (4) we obtain
% a? a* 4
—bt—z—“Voza—xz’u:eyozf(x)—a}—z“U‘!—EVozfl(x)a—xu A (5)

where
_d
f’(X)=—dx f(x) .

In order to solve the partial differential Eq. (5), let us apply the perturbation
method expanding # as follows:

u(x, t):llo-]—u1+u2—|— e
' i (6)
il =0(%) , i=0,1,2,3,---,

where #; denotes the i-th-order approximate solution. Substituting expression (6) into
Eq. (5), the following partial differential equations are obtained by equating the same
order terms of ¢ on the left- and right-hand sides of the equation.

32 62

—at—z—u"—Vozgx_zu":O s (7)
i”i—Voz o lle:=5V02f(X)—zﬁui—1+eV02f’(x) 0 wiy  i=1,2,3, .- . (8)
or? o0x? ox? 0x ’

The solution z; of Eq. (8) means a wave in a homogeneous medium V=V, excited
by an exerted force proportional to the right-hand side of Eq. (8). The wave form
of the zeroth-order approximate solution u, satisfying Eq. (7), can be given arbitrarily.
Once u, is determined, the first-order approximate solution i, statisfying Eq. (8) for
i=1, the right-hand side of which is described in terms of uo, can be calculated by
the use of the Green’s function. The second-order approximate solution u; is derived
from Eq. (8) for i=2. us,us, --- are determined successively in the same way.
Let us take uo as ‘

to=5(x—Vot) , (9)

where d(x) denotes the Dirac’s delta function. This impulsive wave, which we take
as an incident wave to the heterogeneous region, in propagated with the velocity Vo
of the homogeneous medium through the entire space passing x=0 at r=0. ‘
From Egqs. (8) and (9), the first-order approximate solution u; should statisfy the
following equation
0° o*
~at—2u1—V02—a;gul':sVozf(x)B”(x—-Vot)—}—eVozf'(x)B’(x——Vot) . (10)
In order to solve the wave Eq. (10), the Green’s function Go(x,#;§,7) is in-
troduced, which satisfies the inhomogeneous partial differential equation

9% . ik . -
E‘?G?(xa t; 89 T)—“VozﬁGO(X’yts E’ T)_Voza(x_s)a(t—f) . (11)
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The solution of Eq. (11) is well known in mathematical physics. That is

0{t<f
[ o<ty |x—gI>Valt—l

Gﬁ(x, t; E» T): (12)
a %, t<lt, |x—E&|<Volt—z|.
In terms of the Green’s function, the solution of the equation
s Vo? s =V,? ‘ 13
E;u_ o Ex—zu—— o2 g(x, 1), (13)
is obtained as
u:Sw r Golx, t; &, 7)g (e, 7)déds . (14)

In our case, the above g(¢, 7) takes the form
&(&, 1)=ef(£)0" (¢—Vor)+ef"(£)0' (6—Vor) . (15)
Therefore, the solution of Eq. (10) is given as
m=v1+v:,
where,
- S“ Sm Golx, 1; &, 7) f(2)0"" (6 — Vir)dede ,
o (16)
vz:er S” Golx, 15 & ) ()6 (e — Vor)dide .

Integrating by parts and taking account of f(+c0)=0 and f(—c0)=0, we can obtain
v as follows:

pi=e S"_" [Go(x, 15 & D) f(E) (E—Var)]| de

o0
—oo

- S; 81%{60(& 1 & 1) [0 (6—Vur)dede

dr

oo

e Sfij—é{ac«x, £ &, 0 f @0~ Vor)]

o0

+e Sm SjN%{Go(x, t; &, ) f(E)6(e— Vor)dede

—co

=e§;[§;;{00(x, e, r)f(f)}] dr (17)

=V gr

By the way, from Eq. (12) we obtain the following relations:

a—i—Go(x, £ & )= %a(g—w Vot —Vor)— %5(5—x—Vor+ Ver) . (18)
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2 .
ggGo(x, s r)=%5’(§~x-l— Vot — Vo) — %5'(5—x—nt+ Ve).  (18)
- Substituting (18) and (18)/ into (17) we get the final result of ¢1 as follows,

e Vot Vot
vl=_75'(x~m)§ Fede—si(—von) | " /e
0

0

+—§—f’(i+zﬂ’—>—%f’(0), — Vot <x< Vot . (19)

In the same way, we get

e (T e x4Vt
nn=-20x Vot)go F1(E)ds —4—f’< 5 )

+ % 10), —Va<x<Vot. (20)

Eventually, the solution of Eq. (10) is

¢
<

= —‘;-[5'@— Vat) S:“’ FE)dE+3 (x— Vo) S:“t f'(g)dg]
—=f (ﬁ;iv , —Vr<x<Vat . @1)

The higher order approximate solutions than above treated have not simple forms,
because it is impossible to carry out such an integration as in (17). So that, the
formulation is limited to the first-order approximation in this paper. However, it
should be stressed that the simplicity of the result is the merit of the present method,
although the evaluation of the higher order value is difficult in this theoretical method.
The solution (21) is considered to be an impulse response of the heterogenous medium.
For an arbitrary form of the incident wave

w(x—Vot), x—Vu<0
s x—Vot>0,
the first-order approximate solution is
m={ G omez (23)
where,
e Vot Vot
6,1 =5 0= | " roastoc—e—vi | e |
0 0
& Xx=E4 Vet — —
5/ ( 3 ) , Vot<x—&< Vot . (24)

Let us go back to the solution (21). The last term means a reflected wave.
We can calculate the wave form by differentiating the structural function f(x),
lengthening its wavelength two times, multiplying it by ¢/8 and changing its sign.
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The other terms contribute to the disturbance of the transmitted wave. If the
following conditions

S“’f@df:ma
0
(25)

vaf "e)de=0(c)

hold, we can neglect such terms so far as the first-order approximation is con-
cerned. The above conditions require the heterogeneity should have an oscillatory
structure. . .

Taking the conditions (25) into account, the results of the above approximate
theory can be summarized as follows:

(i) The transmitted wave is not disturbed by the heterogeneity in its wave form
and the propagation velocity, in so far as the first order approximation is concerned;
the disturbance may be found in the higher order solutions. Therefore, the dispersion
of the propagation velocity of a transmitted wave does not occur in this approxima-
tion. These results are also found in the paper of ONDA (1964).

(i) The reflected wave can be easily obtained as already mentioned. It is con-
cluded that the amplitude of the reflectivity of a heterogeneous medium is the order
¢; its dependence on the wavelength (or frequency) is such that the intensive reflec-
tion occurs, when the wavelength of the incident wave is two times of the prominent
structural wave length of the heterogeneous medium. Figure 1 illustrates the above
nature; the incident impulse is propagated in the right direction through the hetero-
geneous medium (in the figure, the fluctuation of the structure is as follows,

.......

Fig. 1. Illustration of the nature of an elastic wave incident to a heterogeneous
medium with a certain sinusoidal fluctuation.

sin( T -x) , x>0
f0)= % . (26)
0 , x<0,

where 1, denotes the wavelength of the structure); the reflected wave is generated
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and is propagated in the left direction extending the length of its wave train in ac-
cordance with the propagation of the incident pulse.

If we take density as a parameter of a heterogeneous medium, the formulation
of the equation of motion should be somewhat altered from Eq. (4) and the structure
of the medium is described by the distributions of density and elastic constant rather
than that of velocity as given in (2). Let the distributions of density o and elastic
constant E be

p(x)=po(14¢,£(x)) } \
—oo L x < 0o [
E(x)=Eqo(1+eph(x)) @7
glx)=h(x)=0, x<0 or x>L. 5
The equation of motion corresponding to (4) is
9% 0 d \_
o) u— a—x(E(x)ng —0 . (28)

Substituting expression (27) into Eq. (28) and neglecting the higher order terms than
0(¢), Eq. (28) yields

P Ve Ly Vih() L Vih (x) 2 Veg(x) -2 29
—a—t?u— 0 E{H—SE 0 (X)E;?u-{—sg 0 (x)au——ap og(x)—@'u, ( )

where Vo=~"Ey/po, the velocity in the homogeneous region of the medium. From
Eq. (29) we can get the first-order approximate solution corresponding to (21). The
reflected wave in accordance with the incident wave represented as (9) is

' EE X—I—Vot Ep X—]—Vot
re .'-:——h, —_— =g (). 30
Hret =T7g < 2 ) 8 g( 2 ) G0)

The accoustic impedance of the medium is defined to be ~/pE, whose distribution
is obtained as

v pE=v poEo(1+-eph(x)-Fe,8(x)) » - 31

to the first order approximation. When the accoustic impedance is constant in the
whole medium, from (31) following relation holds.

eph(x)teog(x)=0, —co<x< oo, 32)
Differentiating both sides of Eq. (32) we obtain
eph! (x)+e,g'(x)=0, —oo<<x<o0. (33)

In this case the right-hand side of (30) vanishes and the reflection does not occur.

In later sections the treatment is restricted to the case of constant density, but
the more general consideration can be readily made as explained in the last part of
the present section.
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3. Examination of the Present Theory

In order to confirm the validity of the present theory, let us try to examine the
differences between the two reflectivities: the one is the approximate reflectivity ob-
tained in the present theory; the other is nearly exact one, which is computed by
the use of the method of a propagator matrix for an approximate multi-layered
model of a given heterogeneous medium.

The test models are sinusoidally fluctuated medium and a layered medium with
a periodic structure. The form of the latter structure contains intensively higher-
order Fourier components of the fluctuation. Therefore, this case serves as an ex-
ample of rather complex structures. Furthermore, for this layered structure, the
matrix method gives us exact solutions of the reflectivities.

At the beginning of the examination, let us make a comparison between the
spectrum of the reflected waves calculated by the use of the present theory and the
matrix method above mentioned in the case of the one-cycle structure of the medium.
For a following sinusoidal structure,

—~sin< ; -x) ,  0<x<is
fx)= ° (34)
0 , x<0or x>2,

The term of the reflected wave in the right-hand side of (21) yields

REFLECTIVITY €=0.3
.. £ ‘\/\— ~r X 3
~ f e ]
02 3 Lo e
-------- APPROX.
01~ 1
—— EXACT
0 ' 1 N > 3

A

Fig. 2. Amplitude and phase angle of the reflectivity versus 2,/2 obtained by
both the present theory (dotted line) and the matrix method (solid line) for
¢=0.3 and

—sin (—Z—Ex) 0<x<2)

s
0 (x<0 or x>2,) .

In the matrix method the medium is divided into 40 layers per one cycle

structure.

-
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£ 2z -cos( T_ (x4 Vot)>, Vot <x<Min. (Vat, L—Vat) v
8 As - 2s (35)

Uret, =

0 , elsewhere .

the reflectivity of the medium defined as (34) is equivalent to the spectral ratio of
 Ure.(0, 7) to 8(—Vot), which is readily obtained theoretically as

_e o (o p\, 02  —igr
R(w)—2 > sm(2 T)' T (el ez, (36)

where, o is angular frequency, T=24:/Vs and wo=2x/T.

In Fig. 2, the amplitude and the phase characteristics of the reflectivity versus
non-dimensional frequency 2,/2 are shown in the case of the sinusoidal fluctuation -
with one cycle as (34) for e=0.3, which is a considerably large value in practical
point of view and corresponds to about 14% in the velocity fluctuation. The ampli-
tude characteristic of the present theory coincides well with the exact one around
the main lobe of the spectrum. In the case of the phase characteristic the agreement
is not so good as the amplitude. The imperfection of the phase characteristic of the
present approximate theory will be made clearer in Section 5.

For the following periodic layered structure )

L 2 n b i

0 1 2 3

2
>

Fig. 3. Amplitude and phase angle of the reflectivity versus ,/2 obtained by the
present theory (dotted line) for ¢=0.2 and
-1 (0<x<2/2)
fx)= 1 (A/2<x<2)
0 (x<0 or x>1),
and by the matrix method (solid line) for
09V, (0<x<4/2)
V)=« 1.1Vy (R:/2<x<2)
vV (x<0 or x>1).
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f—l’ 0<x< 2s/2
f=+7 1, 22<x<% ‘ (37)

0, elsewhere,

the reflected wave is given by the formula

¢ x-+ Vot x+Vot % x+Vot
g = | G XN g g( XVl A Ea A LSRN 38
tret 8[5( y o) 2o =)+ (5 1)] ©8)
and the reflectivity is formulated as
R@)=2[1-2e7 5T 4eivT] (39)

where notations are the same as in (36).

1.01Ve
vix) ‘I_J—L 100V,
059%

As

0.02

£=0.02

1.0
fix) —dl 0.0
-1.0

—_—x

Q.01

0 ' T a2 B
Fig. 4. Amplitude and phase angle of the reflectivity versus 2,/2 obtained by
the present theory (dotted line) for =0.02 and
-1 (0<x<2/2)
fo= 1 (2:2<x<2)
1 0 (x<0 or x>2),
and by the matrix method (solid line) for
097, (0<x<2s/2)
W(x)=11.01¥Vy (2,/2<x<2s)
Vo (x<0 or x>2).

Figures 3 and 4 show the amplitude and phase characteristics of the reflectivity
versus 4,/A in the case of a periodic layered structure for large and small amount of
fluctuations respectively. The values indicated with solid lines are calculated exactly
by the maitrix method against the velocity structures as shown in the upper pictures in
the right parts of Fig. 3 and Fig. 4. On the other hand the theoretical reflectivities
given by (39) are based on the structure (37) and the values of ¢ are designated as
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0.2 and 0.02 in Fig. 3 and Fig. 4, respectively.

We can see the behavior of the reflectivity of a thicker heterogeneous medium
than one cycle in Fig. 5 and Fig. 6 computed by the matrix method for a sinusoidal
fluctuation and a periodic layered structure respectively. The shape of the reflectivity
does not change greatly with the thickness of the heterogeneous medium, whereas
the amplitudes of the peaks grow with the thickness of the heterogeneous medium.
Therefore, it may be sufficient to examine only the peak value of the amplitude
characteristic of the reflectivity obtained by the approximate theory.

Let L be the thickness of the heterogeneous medium, and put L as

L=nis ,

o o

I NN

S
; NN

N TN
é _\\\\\\\\\\_

/\/\/\m

$ EEERERRARNARS:
AT

A
e o

Fig. 5. Amplitude and

phase character-

~ istics of the reflectivities obtained by the

matrix method for the layered models
of sinusoidal structures for ¢=0.3.

The

medium is divided into 40 layers per one

cycle structure.

The structures given in the flgure are
described so that the' incident waves
enter into the heterogeneous structures
from the upper direction.

where n=1/2, 1, 3/2, ---
The periodic structure is defined as follows:

f)=

(oo, 2

02

0.2f

0

S
S

(40)

NN N

AN N

A\

NN

VAL

ARNE

WA Y VT
A _\‘\\\ _ \\\\ \ \\\ \

0 1 2 3 4

Fig. 6. Amplitude and phase character-
istics of the reflectivities obtained by the
matrix method for periodic layered struc-

tures.

The structures given in the figure are
described so that the incident waves
enter into the heterogeneous structures
from the upper direction.

<x

(m—+1)2,
= 2

(m=0,1,2, -+, 2n—1)

H

elsewhere .

(41)
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Table 1. Peak values of the amplitude characteristics of the
reflectivities of sinusoidal structures for ¢=0.3.

|Ra{wo)! (Sinusoidal Structure)

n(=L{2s) Matrix Method Approx. Theory
0.5 0.099 0.118
1 0.240 0.236
1.5 0.331 0.354
2 0.452 0.471
2.5 0.528 0.589
3 0.624 0.707

- Table 2. Peak values of the amplitude characteristics of the reflectivities
of periodic layered structures.
In the matrix method the velocity structures are taken as

(+¢/2) Vo (0<x<L, ma,<x< 2L zs>

2
&= 1-)7, <0<x<L, 2—'”21113<x<(m+1)23)
Vo (x<0 or x>L) (m=0,1, 2, ---, 2n—1).
|Rn(wo)| (Periodic Layered Structure)
n(=LJ2) e=0.2 e=0.02
Matrix Approx, Matrix Approx.
Method Theory Method Theory
0.5 0.094 0.100 0.009%9 0.0100
1 0.196 0.200 0.0200 0.0200
1.5 0.284 0.300 0.0299 0.0300
2 0.377 0.400 0.0400 0.0400
2.5 0.454 0.500 0.0499 0.0500
3 0.532 0.600 0.0599 0.0600
3.5 0.596 0.700 0.0698 0.0700
4 0.659 0.800 , 0.0798 0.0800
4.5 0.709 0.900 0.0897 0.0900
5 0.756 1.000 0.0997 0.100
10 0.962 0.197 0.200
20 0.999 0.380 0.400

The associated reflceted wave observed at x=0 is
g 2n—1 R 1 s .
rof ) =—— Vot —m =2 ) ceimn |
e (V== B f (G Vat—m ) e
The Fourier transform of (42) should be written as

2n-1 . o
Ulw)= 3 Folw)e ™27 .ein=
m=0

(42)

(43)
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where,
FO(G))—S Sfo ( Vol‘)e_““tdt,

and notations are the same as in (36). From Eq. (43), we get U(w) at o—=wi=xrVo/4s
(the peak frequency) as

U((,,o):igpu(wo) =21 Fo(an) - (44)

Thus, the reflectivity Ra(wo) of the medium defined as (40) and (41) can be expressed
as

Ry(wo)=n-Ri(wo) . (43)

Utilizing the above relation, the theoretical value of Ru(wo) is computed and
listed in Table 1 for sinusoidal structures in the case ¢=0.3, and in Table 2 for
periodic layered structures in the cases ¢=0.2 and ¢=0.02. We find that the peak
value obtained by the present theory is smaller than the real value, which is evaluated

by the matrix method for the approximate layered model of the structure, when the
length of the heterogeneous medium becomes great. Such difference arises from the
first-order approximation, where the reflected wave does not diminish in the rear part
as expected in reality.

4. Attenuation of Elastic Waves Propagated through a Heterogeneous Medium

Owing to reflection, the elastic waves in a heterogeneous medium attenuate during
their propagation. The extent of attenuation is closely related to the reflectivity of
the heterogeneous medium.

In the previous sections we find the characteristic of the reflectivity has a peak
for 2=24,, where 1 is the wavelength of the incident wave, and 4, is that of the
function f(x); when the structure of the heterogeneous medium contains various
components of wavelength of the fluctuation, the characteristic has many peaks cor-
responding to each component of wavelength. Then, the attenuation due to a given
heterogeneous medium should be dependent on the wavelength or the frequency of
an incident wave. To the first-order approximation, the wave with the wavelength
2 is only sensitive to the structure with the wavelength 2/2.

Let us determine the equivalent attenuation factor Q(4) of a wave passing through
a periodic structure as (40) and (41) where 1=24,. In determining the Q value it is
not necessarily assumed an exponential decay. The transmissivity T and the reflec-
tivity R, of the structure with the length L(=n4,) satisfy the following relation.

| Tu]=vT—|R,[? . (46)
From (46) and (45), the transmissivity for =22, is written as follows,
| Ta(D)| =T [R:(D)* , (47)

where T, and R; are taken as functions of the wavelength 2. On the other hand,
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the transmissivity is evaluated in terms of attenuation factor; then the following rela-
tion holds.

T T = (T2 . (48)

When # is a small number, we can rewrite (47) and (48) as follows:

T @It — 2 Ry D)

(49)

o % e“z‘e?u el Z _.n

c = ~]— .

2Q(2)
Combining the above relations, we get
1 n

——="1R()?, 50
00 " = [R1(2)] (50)

provided n|R;(2)| is small,

The relation (50) indicates that the decay of the amplitude is not exponentlal
the equivalent attenuation factor is dependent on the travel distance of the wave.
YosHIvama and ONDA (1962) and ONDA (1954) stated that the function of the attenua-
tion is of hyperbolic secant. In the previous section it is found out that the amplitude
of the real reflectivity R, is smaller than that of the present theory. Therefore the
attenuation is over-estimated in (50). The true value of Q(1) is about in the following
range as,

1
o@ <

In practical problems, the heterogeneity may be scattered in the medium; the
heterogeneous structure with small length and certain wavelength is located separately
in a homogeneous region or a heterogeneous medium with a different wavelength.

Let us divide the medium into parts where the particular structure is one by one
involved; the length of the part is Li(i=1,2, ---,1), and the length of the hetoro-
geneous structure is nid,(<L;); the cofresponding attenuation factor is Qi(1), where
A4=24,. The resultant attenuation factor Q(1) may be obtained as

IRl(E)I2 1R1( )2 (D

ZL L 52)
Q(l) f;: i1
If n is 1 or 2, the following relation holds.
1
Ru(D)?, 53
Q;(Z) l u(@)? (33)

where R:i(2) means the reflectivity of the heterogeneous structure with one cycle in
i-th part of the medium. Combining (52) and (53), we obtain Q(4) as follows,

1 < l
o~ L

i=1

-2 LiRaE< LIROE, (54)
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where |Ri(3)| is the maximum value of |Ryu(A)] (i=1,2, ---, D).

If the structure is not continuously periodic, the above result may be of use in
practical problems. In the case of a sinusoidal structure with one cycle, the reflec-
tivity is easily calculated from (36) and we have

|R1(2)|=i;—e . (55)
Then, the corresponding attenuation factor is eventually,
1 T e\ '
—— ==, 1=21. 56
o =1 (3) y G6)

If the periodic structure is thick enough, the equivalent attenuation factor discuss-
ed above is almost zero. This extreme case may not be encountered in practical
problems.

5. Finite Difference Method for Elastic Waves Propagated through a Heterogeneous
Medium

As one of the applications of the approximate theory, the numerical computation
of the present problem is carried out by the use of finite difference method. The
results will be also useful for understanding the effect of the heterogeneity on elastic
waves.

The adopted structure of the medium in this numerical study is a sinusoidally
fluctuated one. The partial differential equation and the medium structure are as
follows:

2 2 2
-gt—z— — oz%u=eV02f(x)%u—{—sVozf’(x)aixu
—sin 2n x), 0<x<L=ni, 57
2
fx)= :
0 , x<0 or x>L,

where n=1/2, 1, 3/2, -

It should be noted that discontinuities appear for x=0 and x=L in f’(x). This
situation is unfavorable for this finite difference approximation.

The difficulty is overcome by utilizing the result of Section 2. The contribution
of the right-hand side of the wave equation to the reflected wave is shown in (16),
(19) and (20). If we only notice the reflected wave, the following relation should
hold.

m=p1+v2=—01 . (58)

Thereupon, taking account of (58), the wave equation is reduced to such a simple
form as
62

# '
Ve (l—ef (x) o =0 . (59)
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Fig. 7. Wave motion propagated through
the sinusoidally fluctuated medium with
one cycle obtained by the finite difference
method.

The wave is propagated in the right
direction in the figure as time lapses.

3>

A
3 A\

Fig. 9. (A)Reflected wave obtained by the
matrix method against the incident wave
shown in Fig. 7 or Fig. 8 for ¢=0.3 and

f(x):i —sin (is x> 0<x<25)

0 (x<0 or x>2) .

(B) Wave form equivalent to the re-
flected wave for ¢=0.3 and

f0= {““(2 ")
0

except for its sign.

0<x=<25)

(x<0 or x>12,)

T. TSuKUDA

Fig. 8. Wave motion propagated through
the sinusoidally fluctuated medium with
one cycle and a half obtained by the
finite difference method.

The wave is propagated in the right
direction in the figure as time lapses.

— SYNTHETIC

--— FINITE
DIFFERENCE
METHOD

Fig. 10. Comparison between the reflected
wave obtained by the finite difference
method and (B) in Fig. 9.

Let Eq. (59) be transformed into the
finite difference form as

2
ujn+! 21!37"‘—!—”3"_1'— (% VO)

X (1—ef(x7) - Ui —2u"+ui .}, (60)

where u;» means the solution at the time
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t=t, and at x=x;; #, and x; are the discrete time and space, respectively; 4¢ and
Adx are lengths of intervals between any two grid points in space and time, respectively,
The stability condition for homogeneous medium (f(x)=0) is

At
= Vy<1.
a=—" o< (61)

In the case of our problem, the numerical examination requires

a<0.5, (62)

for ¢e=0.3. The value of « is finally chosen to be 0.2.

The incident wave is excited at the edge of the homogeneous medium.

The results are shown in Fig. 7 for L=2, and in Fig. 8 for L=1.54. The
incident waves which are propagated in the right direction produce reflected waves
while traveling through the heterogeneous medium. The wave forms of the reflected
waves are in relation to the structure of the heterogeneous medium in such a manner
that the prominent wave length of the reflected wave is twice that of the function
of the structure. The figures also indicate as predicted by the theory that the effect
of the heterogeneity on incident waves can be represented almost entirely by the
characteristics of the reflected waves, that is, by the wave forms, the amplitude and
the total length of the reflected wave trains.

The reflected wave synthesized by use of the incident wave shown in Fig. 7 or
Fig. 8 and the reflectivity computed by the matrix method in the case ¢=0.3 and (34)
is given in Fig. 9 (A). In this figure (B) indicates the wave equivalent to the reflected
wave except for its sign in the case =0.3 and

if( : {sin<iﬂ -x> , 0<x<as
) = s

0 , x<0 or x>, .

(63)

It is found that the result of the finite difference method agrees well with (B) in
Fig. 9 as shown in Fig. 10. By the present approximate theory the difference between
(A) and (B) in Fig. 9 cannot be discernible. The extent of such difference must be
decreased as the value ¢ becomes smaller.

6. Conclusion and Discussion

An approximate solution of the elastic waves propagated through a heterogeneous
medium is presented in this paper. The validity of the solution is confirmed by an
examination of the theory.

The reflection is essential in consu:lermg the eﬁ'ect of the heterogeneity on elastic
waves. The characteristic of the reflectivity is closely related to the structure of the
heterogeneous medium. In so far as the first-order approximation is concerned, the
inverse problem previously mentioned is solved by the present theory; the reflectivity
is expressed with the function of the structure.

If the length of the heterogeneous medium is large or the function of the structure
is not oscillatory, insufficiency of the approximation cannot be neglected. Never-
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theless, the first-order approximate solution has its own use; it shows gross aspect of
the true solution. Even in such a case as the two homogeneous half spaces have
different, medium constants, the approximate reflected wave obtained by the theory
describes the main feature of the true solution. For instance, in the case of the
first-order discontinuity with two different homogeneous media, the reflectivity should
be a flat function of frequency, which is also predicted by the present theory, although
the theoretical amplitude is about one-half of the real value. In the case that the
structure has linear transition layer the shape of the reflected wave is something like
a rectangle, and its spectral amplitude is proportional to f—! (f:frequency) at high
frequencies (see HIRASAwA and Berry, 1971).

The property of reflected waves is often utilized in the study of crustal structure.
The detailed structure of the Moho boundary is discussed by Fuchs (1969), who insists
that the band-limited (higher and lower frequency cut off) characteristic of the re-
flected waves from artificial earthquakes should indicate some periodic structure in
the vicinity of the Moho plane. Utilizing the present theory, we can easily elucidate
such a structure from the data of reflected waves.

In interpreting of reflected waves with band-limited spectra as above we can
adopt sinusoidally fluctuated structures as standard models of structures of hetero-
geneities, for any structure can be considered as the superposition of sinusoidat
components,

The reflection is namely the backward scattering of a wave. The forward scat-
tering is, however, negligible to the first order approximation. Even in the three
dimensional situation it is presumable that the scattered wave is intensive in the
backward direction. YAMAkKAwA (1962) investigated theoretically the nature of the
scattering of elastic waves due to elastic spherical obstacles and found that the radia-
tion patterns of the scattered waves have main lobes nearly in the direction from
which an incident wave is propagated. Therefore, it can be said that the coda of
seismic waves must mainly originate from the reflections of the initial waves, due to
certain heterogeneities.

Concerning the attenuation due to the heterogeneity, we can say that, if the
amplitude of the fluctuation of the heterogeneous medium is sufficiently small and the
thickness of the medium is not so great, the equivalent attenuation factor is propor-
tional to the travel distance of a propagating wave, That is, the waves in hetero-
geneous medium do not decay exponentially with range.

The finite difference method demonstrates the process by which the reflected
waves are generated. The wave equation used in this method is reduced to a mmple
form with the aid of the present approximate theory.

The author wishes to thank Professor Ryosuke Sato and Mr. Yasunori Suzuki
for discussions which are very helpful for examining the theoretical formulae obtained
in the present study.
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