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Introduction

A knot K in an m-dimensional manifold M™ is a submanifold of M™
diffeomorphic (resp. homeomorphic or PL homeomorphic) to the (m-2)-
sphere S™% in smooth (resp. topological or PL) category. The knots in
manifolds are the object of global knot theory which is a generalization
of the knot theory in spheres. Global knot theory in each manifold is
a kind of the inner world of the manifold and varies depending on the
topological property of the manifold.

A knot K in M™ is local if K is covered by an m-disk imbedded in
M. Criterion theorems of unknottedness and localness for knots in
manifolds are fundamental in global knot theory as the unknotting the-
orem of Papakyriakopoulos and that of Levine are fundamental in the
classical knot theory and the higher dimensional knot theory respectively

([14], [11]).

Professor Itiro Tamura (1926-1991) passed away on February 21, 1991. After his death
the manuseript of this article was found in his office well prepared and ready to be
published. Because of its importance, the editorial board decided, with Mrs. Tamura’s
approval, to publish it in J. Fac. Seci. Univ. Tokyo. Sect. IA. Mathematics.

Professor Koichi Yano carefully read the manuscript prior to publication, and gave
the board some useful comments. The Editorial board thanks Professor Yano for his
benevolent efforts. Two footnotes in §2 are due to him.
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In this paper we shall prove the unknotting and the localness theo-
rems for knots in highly connected smooth manifolds by means of knot
modules (Theorems 3 and 4 in § 6), generalizing the unknotting theorem
for higher dimensional knots in the spheres by Levine. In §8, genus 1
knots in S"x S+t will be studied, and the localness and the unknotted-
ness of them will be determined by computing their knot modules
(Theorem 5), making use of fundamental theorems. The results (i) and
(ii) in Theorem 5 reveal the intrinsic difference between knot theory in
spheres and global knot theory, and the latter seems to have an un-
expected and ample nature. In §9, knot cobordisms will be considered
and the nullity of the knot cobordism C,,(S"*'x S*+) will be proved for
n=2.

The study of global knot theory arose from the two previous results
by the author. One is the solution of the Schoenflies theorem in smooth
manifolds in which the localness theorem for knots of codimension one
was considered (Tamura [18]). The fundamental theorems answer pro-
blems in [18]. The other is the existence of fibred knots in (n-1)-con-
nected closed (2n+1)-dimensional smooth manifolds which was used to
construct foliations of codimension one of them (Tamura [16]).

Recently several works on global knot theory in lower dimensions
appeared (see, for example, Lee [9], Suzuki [15], Yano [21]).

The author thanks T. Nakamura, Y. Matsumoto, Y. IThara and M. Ue
for helpful comments.

§ 1. Difinitions and notations.

Let M™ be a connected m-dimensional smooth mainifold (m=38). A
submanifold K of M™ diffeomorphic to the g-sphere S? is called a knot
of codimension m—q in M™ for 1<q<m—1. Two knots K and K’ of
codimension m—q in M™ are equivalent if there exists a diffeomorphism
h: M™——M™ such that h(K)=K"'.

A knot K of codimension m—q in M™ is said to be unknotted or
trivial if K bounds a (g+1)-disk smoothly imbedded in M™. A knot K
of codimension m—gq in M™ is said to be local or engulfable if there
exists an m-disk D™ smoothly imbedd in M™ such that

D"OK.

It is obvious that a local knot K of codimension m—q in M™ is inessen-
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tial in M™, that is, the inclusion map K——M™ is homotopic to a constant
map.

A knot of codimension 2 in M™ is simply called a knot in M™. Let
K be a knot in M™ and let N(K) be a tubular neighborhood of K in
Mm. The complement M™—K is denoted by X, and M™—Int N(K) is
called the exterior of K and is denoted by X. Obviously the natural
inclusion map X—— X, is a homotopy equivalence.

In this paper, homology groups H( ) and cohomology groups H*( )
denote always the singular homology and cohomology groups with
integer coefficient unless otherwise stated.

The homomorphism H,(X)——H,(M™) induced by the inclusion map
of the exterior X of K into M™ is injective if ¢+#1 and is bijective if
q+1,2, m.

A knot K in M™ is said to be fibred if the normal bundle of K is
trivial and there exists a smooth fibration p: X——S!' such that the
restriction p|(XNN(K)): XN N(K)—>S' is the projection onto a fibre
of the fibration aN(K)— K.

A knot K in M™ is said to be r-simple if the homotopy groups
m;(X) are as follows:

7271(X) Z,
(X)=0 for 2<i<r,

1t

that is, 7;(X)=x,(SY) for 1<i<7r, where r=1.

In case M™ is an (n—1)-connected closed (274 1)-dimensional (resp.
an (n—1)-connected closed 2n-dimensional) smooth manifold, an (n—1)-
simple (resp. (n—2)-simple) knot K in M™ is said to be simple, where
n=2 (resp. n=3). This terminology is a generalization of one used in
the higher dimensional knot theory in the spheres (see, for example,
[8]).

Let K (Mm™) denote the equivalence classes of knots in M™. K(S™)
is simply denoted by K™ For Ke K(M™) and K’€ K™, we denote by
K'-K the knot K’# K in S4 M™=M", where § denotes the connected
sum. Thus K™ operates on K(M™). For a trivial knot K, in Mn™,
K K,={K'-K,; K'c K™} is the set of local knots. We remark that the
operation K’-K depends on the choice of orientations.
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§ 2. Seifert surfaces.

Let K be a knot in a connected m-dimensional smooth manifold M™
(m=3). A compact connected (m—1)-dimensional submanifold V' of M™
such that aV=K is called a Seifert surface for K if V is transversally
orientable (that is, the normal bundle of V in M™ is trivial).

Now we prove the existence of a Seifert surface.

PROPOSITION 1. Let M™ be a connected closed m-dimensional smooth
manifold such that m=4 and H*(M™)=0, and let K be a knot in M™.
Then there exists a Seifert surface for K.

Proor. Let N(K) be a tubular neighborhood of K in M™. If m=5,
the normal bundle of K in M™ is trivial, since =, 4(0(2))=0. In case
m=4, if the normal bundle of K in M* is not trivial, we have

H,(N(K), oN(K); R)=R,
H,(0N(K); R)=0 ¢=1,2,

which imply that H?*M*) #0. Thus the normal bundle of K must be
trivial for m=4. Therefore we have

IN(K)=S"2xS! (m=4).

Let f: aN(K)——S* be the projection onto a fibre of the fibration
ON(K)—K. The only obstruction to extending f over the exterior X
lies in H*X, 0X;r(S))=H*M™ N(K)). By the cohomology exact
sequence of (M™, N(K)), it follows from the hypothesis H*M™)=0 and
m=4 that

H*(M™, N(K))=0.

Thus there exists an extension f: X——S' of f. We can choose f so
that f is smooth and transversally regular at a point p€S. Then the
connected component of f!(p) containing K determines a Seifert surface
for K. Thus this proposition is proved.

Let K be a knot in a connected m-dimensional smooth manifold and
let V be a Seifert surface for K. The complement M™—V of V is de-
noted by Y,. Let h: V——>R be a non-negative smooth function on V
such that

h-1(0)=aV =K.
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Define N={(x,t)€ VXR; |t|<h(x)}, N_={(x,t)€ VXR; t=—h(z)}, N.=
{{x,t) € VXR;t=h(x)}. Then N is a submanifold of VX R with a corner?
at K'x{0} such that

dN=N_UN,, N.AN,=aN_=aN, =Kx 0.

There exists an imbedding ¢ N——M™ satisfying ¢(x,0)=xz for zec V.
The images ¢(N), ¢(N_) and ¢(N,) will be denoted by N(V), V_ and V,
respectively. Obviously we have

K=oV=V_NnV,=0V_=0V,.

There exists a homotopy equivalence r: N(V)——V such that |V is the
identity map. We may consider N(V) as a tubular neighborhood of V
in M™. The inclusion maps V_—N(V) and V,——>N(V) are homotopy
equivalences. Let /.: V—V_ and ¢/,: V——V, denote natural diffeo-
morphisms.

Obviously it holds that

H(ON(V)=H,(V_)OH,(V,) (1=g=m—3)?

Now consider the homology exact sequence of (N(V), aN(V)):

> Hou(N(V), ON(V)) 5 HON(V)—> H(N(V))—>- - -

’

where ¢: 9N(V)——>N(V) is the inclusion map. Since, for the homomor-
phism (/,o7)y : H(N(V))—>H (0N(V)), the composition ¢yo(/ior)y is the
identity if 1<g<m—3? the above exact sequence splits into a short
exact sequence

0—H,y,(N(V), ON(V)) = H,0N(V)) 2> H,(N(V))—0

for 1<q<m—38. The kernel of ¢, above is the subgroup of H,(N(V))
consisting of the elements

(Hxa—(D)xa (@€ H(V)).

1) For N to be a submanifold with corner in the usual sense, it seems to need the con-
dition that the derivative of h to the normal direction at boundary point of V are
not zero.

2) Since dN is a closed (m—1)-dimensional manifold, the homomorphism H,_;(0N)—
H,_s(S™—2?) is surjective. So the Mayer-Vietries exact sequence shows that this iso-
morphism holds also for ¢g=m—2 as well as for 1<g<m—3. This will be needed in
the proof that the short exact sequence on this page holds for g=m—3.
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Let ¢’: ker:*—>H (V) be the isomorphism defined by
| () () sa) =a

and let 7=17'08. Then we have isomorphisms

(*) . Hyw(N(V), aN(V)—>H,(V)

for 1<q<m—3.

Let Y=M"—1Int N(V), then dY=0N(V)=V_UV, and Y is homo-
topy equivalent to Y,=M"—V. We may consider that Y is the mani-
fold obtained from M™ by cutting at V. Y is called the exterior of V
in M™.

Let

(**) e H(M™, Y)—H/(N(V), oN(V))

be the excision isomorphisms. Consider the homology exact sequence
of (M™ Y):

s Hy (M) =S5 Ho (M™, Y) =2 () =5 H (M)~ -,

where ¢« Y—>M™ and /: (M™, )—>(M™, Y) are inclusion maps. Then,
by the isomorphisms (*) and (**), this exact sequence becomes as follows
for 1<q<m—3:

s Hy (M) H (V)= H, (V) - H (M) —- -,
where O=rtoeorf, and 9=0doe 'or~!. This exact sequence is called the
Jundamental exact sequence for the Seifert surface V.
Let o be an element of H (V) (1<q<m—3), then, by the definition
of 7, it holds that

0(a) = (c4) s — (c_) 5,
where ¢ :V—Y, ¢,: V—>Y are inclusion maps induced from .  :
V—>sV_, /. : V—>V, respectively.

Let M™ be a simply connected m-dimensional smooth manifold (m=>4)
and let K be a 1-simple knot in M™ We denote by p: X——X the
universal covering of X. Now suppose that there exists a Seifert sur-
face V for K such that V is simply connected. Then the exterior Y of
V is also simply connected by the Van Kampen theorem. Let Y% V®
and V¢ (1€ Z) be copies of Y, V_ and V., indexed by the integers
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respectively. In this situation, the universal covering X is the quotient
space of the disjoint union [ Y by the natural identification of V¢-b
i€Z

with V{ for all i€ Z. The subset of X obtained from V¢-» and V{
by the identification is denoted by V%, thus we have Y¢—vN YD =y,
and we denote by ‘

ty: V(:) Y(i)’ 0 V(i)__>Y(i—1)

the inclusion maps induced from ¢,: V—Y and ¢_: V—Y.
~ We can compute H,(X) by the Mayer-Vietoris exact sequence of
(X IL YO, 1 Y©):

1:0dd

iteven

oS H (V) L s H (YO 25 () D

where

@) =(cs)sl@) —()s(@ (@€ H(V?)).

§ 3. Seifert surfaces for knots in highly connected manifolds.

The following proposition shows that, in case M™ is highly connected,
the Seifert surfaces for simple knots in M™ can be chosen highly con-
nected. The proof is similar to that of the case of higher dimensional
knots in spheres (Levine [11, Theorem 2]).

ProrosITION 2. Let M™ be a q-connected closed m-dimensional smooth
manifold and let K be a knot in M™, where m=6, 2<q<[m/2]—1.

(a) If K 1is k-stmple for 1<k=Zq (resp. 1<k=<q—1) in case m 1s
odd (resp. m s even), then there exists a Seifert surface for K which
18 k-connected.

(b) Conversely if there exists a k'-connected Seifert surface for K
such that 1<k'<q, then the knot K is k'-simple.

Proor. By Proposition 1, there exists a Seifert surface for K. In
order to prove (a), we perform surgeries on V to make it k-connected.
Firstly we assume that K is 1-simple. Let {aj, as, ---,a,} be a set of
generators of =;(V) and let

g S'—V (t=1,2,---,7)
be imbeddings such that g, represents «; and g¢:(S')Ng;(S)=0 (t#7).
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Since 7,(M™—K)=H,(M™—K)=Z and the algebraic intersection number
of ¢;(S!) and V is zero, ¢g': S'—V is null homotopic in M™—K. Thus
there exist imbeddings

g;: D2—>MM—K (’L:l,z’ -..’rr)

such that g¢;|0D*=g; and g¢.(D* Ng;(D*)=0 (i#j), and that g;(D?) inter-
sects Int V' transversally.

For an innermost connected component of ¢;'(g.(D)NV), say 3.,
we denote by D, the compact connected subset of D? diffeomorphic to
the 2-disk such that 8D,=3,. We take an imbedding

g D*x D" *——M"—K
such that 3(D*x{0})=g.(D,) and g(D*xD"* N V=¢@D*xD"?. Then
V'=(V—5(@D*x D) N 5(D*x D)

is the submanifold of M™ obtained from V by the surgery x(3|S'xD™"?%)
and is a Seifert surface for K. By applying the surgery as above for
connected components of ¢, (D)NV (1=1,2, ---,r) successively, a 1-con-
nected Seifert surface V, for K is obtained.

Now we assume that K is k-simple and there exists a (k—1)-con-
nected Seifert surface V,_, for K, where 2<k<q.

Let Y,_, denote the exterior of V,_,. Then, by the fundamental
exact sequence (§2), Y,_, is (k—1)-connected. Suppose that Be z (V. )
is contained in the kernel of (¢,)s: 7(Vio,) —7m(Y,_y). Then there exists
an imbedding

¢': (D1, 85— (M™, Int V,_,)
such that ¢’|S* represents g and ¢’'(D**)N V,_,=¢'(S*). Let
¢ (D¥*1x D% St D™ 1) —— (M™, Int V,_,)
be an imbedding such that

7| (D1 (0) =,
¢ (D' x D™ )N V,_,=¢ (0D* 1 x D™*1),

and let
Vioi=(Viei— @ @D x D™ *1)) U @’ (D*+1 x o D™~*1).
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Then V;_, is a (k—1)-connected Seifert surface for K and we have
ﬂk(V;c—]) "—‘ﬂ'k(Vk-l)/(:B)-

Thus, by applying the surgeries as above for the kernel of (c))4:
T Vio) —m(Y,_)) and (e2)*: z (Vi) —mi(Y,_,) successively, we obtain
a (k—1)-connected Seifert surface V,_, for K such that the exterior
Y., of V,_, is (k—1)-connected and that

are injective.
Let 5’ be an element of 7,(V,_,). Then, since z,(M™—K)=0, there
exists an imbedding

gl (D**1, 8" — (M™—K, Int V,_,)

such that g¢;|S* represents A’ and g/(S*) intersects V,_, transversally.
Suppose that ¢, '(gi(Int D**)\NV,_,)#+=@. We choose an innermost con-
uected component W of it. Then there exists a compact connected sub-
manifold W of Int D*** such that 9W=W. Since V,_, is (k—1)-connected,
the only obstruction to extending gi|W: W—V._, to a map W—V,_,
is an element of

H"“(W, W; m(Viey)) =7 (Visy),

say ¢. Moreover, since Y, , is (k—1)-connected, the obstruction to ex-
tending the map g}|W: W——V,_,toamap W——Y,_, is (c4)x0 OF (c_)40.
The map ¢g,|W: W——Y,_, is such an extension. Thus (¢ )40 or (c_)40
is zero. Since (c.)4: m(Vi_)—m(Y,_,) are injective, it holds that ¢=0.
This implies that g¢;|W: W——V,_, has an extension W——V,_,. There-
fore we can cancel W from ¢, (g;(Int D**)NV,_,). By applying the
above method successively, we may suppose that A’ is contained in the
kernel of (¢ )% or (c_)4. Since (c.)4 are injective, B should be zero.
Thus V,_, is k-connected. This proves (a).

Now let V be a Seifert surface for K satisfying the assumption of
(b) and let Y be the exterior of V. Then it follows from the Van
Kampen theorem that Y is simply connected and =, (X)=r,(M"—K)=2Z.
Furthermore, by the fundamental exact sequence (§2), it holds that

H(Y)=0 1<K,
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which implies, by the Mayer-Vietoris exact sequence of (X Ed Y,
I Y9 (see §2), that

H{(X)=0 1Zi<k.

Thus (b) is proved.

84. Knot modules.

Let K be a knot in a 2-connected compact m-dimensional smooth
manifold M™. The complement X, or the exterior X of K is the most
important invariant of K. In order to get useful and calculable invari-
ants from X, we define knot modules A,(K; M™) ¢=1,2,3,---. In the
following we assume that m=>=5. Remark that H(X)=Z.

Let p: X—>X be the maximal abelian covering corresponding to
the kernel of the surjection =,(X)——H,(X) and let ¢ denote a multi-
plicative generator of the covering transformation group H,(X). The
homomorphism H,(X)— H,(X) induced by t: X——X is also denoted
by the same notation ¢, and we denote t(a) by ta for a€ H,(X). The
integral group ring 4 of H,(X) is the ring Z[t,¢t™'] of Laurent polyno-
mials in ¢.

The homology modules A,(K; M™=H,X) (g=1) are called the knot
modules of K. A,/(K;M™) is a finitely generated module over 4. In
case M"=S8", A,(K;S™) is simply denoted by A, K).

An intersection pairing I of H,(X) is defined by fixing an orienta-
tion of X, making use of the triangulation and the dual one of X
(Blanchfield [1]). Thus we have

I A(K;, M"QA, _,(K; M")—Z,
Ia,p)=a-B (a€ A(K; M™), BE An_(K; M™)).
Let K be a 1-simple knot in a 2-connected closed m-dimensional smooth
manifold M™ (m>5). Then p: X——X above is the universal covering.

Suppose that there exists a simply connected Seifert surface V for K.
Let Y V® (4€Z) and X= U Y® be as in §2. Then ¢ operates on

i€eZ
Y® and V% so that

t(Y(i)) — Y(i+1), t(V(Z)) — V(i+1)_
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The homomorphisms C,(Y®)——C,(Y4+?), C (V)——C,(VE+D), H (Y™)
—H,(Y"*) and H,(V®)—H,(V%+") induced by ¢t are also denoted
by the same notation t.

Now let M#+' be an (n—1)-connected closed (2n+1)-dimensional
smooth manifold (n=3), and let K be a simple (i.e. (n—1)-simple) knot
in M*+. Then, by Proposition 2, there exists a Seifert surface V for
K which is (n—1)-connected. By the Poincaré-Lefschetz duality theorem
of (V,9V), it holds that

H,(V)=0 it q#0,n,

and that H,(V) is a finitely generated free abelian group. It follows
from the fundamental exact sequence that

H,(Y)=0 q+#0,n,n+1,
thus Y is (n—1)-connected. Therefore the fundamental exact sequence
becomes as follows:

0

0——H, (V)2 H, , (M?+) o}H,,(V) yH,(Y)— H, (M®*+)—>0.

Since H,,,(M*+) and H,(V) are free abelian, H,,,(Y) is also free abelian
and ¢y (H,,,(Y)) is a direct summand of H,,,(M*+).

By the observation above, it follows from the Mayer-Vietoris exact
sequence in §2 that

A(K; M) =0 q#0,n,n+1,
and that A,(K; M*+') and A,,,(K; M*™*) satisfy the exact sequence

0— 3 H,po(Y9) 25 A, (K M*+) 2 3 H, (V)
1€EZ i€Z
P 3 H(Y9)2 A (K MP+)—0.,
1€Z
Let M* be an (n—1)-connected closed 2n-dimensional smooth mani-
fold (n=3) and let K be a simple (i.e. (n—1)-simple) knot in M?*. Then,
by Proposition 2, there exists a Seifert surface V for K which is (n—2)-
connected. By the Poincaré-Lefschetz duality theorem of (V,aV), it

holds that
H(V)=0 if ¢#0,n—1 n.
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It follows from the fundamental exact sequence that
HG(Y):O q¢0)n_17 n;

thus Y is (n—1)-connected. Therefore the fundamental exact sequence
becomes as follows:

0—H, (V) —s H,(Y) - H, (M*™) — > H,_,(V)—>H, _,(Y)——0.

By the observation above, it follows from the Mayer-Vietoris exact
sequence in §2 that

A(K; M*™) =0 q#0,n~1,n,n+1,

and that A, ,(K;M*™), A.(K;M*) and A, (K;M™) satisfy the exact
sequence

0— A, (K M) s 5 Hy (V)2 3 H(Y) 2% AL (K M)
i€Z i€ Z
2 S H (V)2 3 H_(Y9) 2% A, (K M) —0,

i€Z 1€Z

In the following let us consider knot modules of local knots. Let
K be a local knot in a 2-connected closed m-dimensional smooth mani-
fold M~, and let D" be an m-disk imbedded in M" such that Kc D" K
can be considered to be a knot in the double D»UD"=S". The knot
in S™ thus obtained will be denoted by K. Then it is obvious that the
knot modules A4,(K; M™) (q=1,2, ---,m—1) are given by

A (K; M) =A,(R)D(H,(M™)@A).

§5. Fibred knots in highly connected manifolds.

The following theorem was proved in order to show the existence
of foliations of codimension one ([16, Theorem 8], [17]). The terminology
‘“specially spinnable structures” was used there instead of fibred knots.

THEOREM 1. Let M*+' be an (n—1)-connected closed (2n+1)-dimen-
sional smooth manifold (n=3). Then there exists a knot K in M*+
which s simple and fibred such that the exterior X=M"+'—N(K) of
K is a fibre bundle over S* with (n—1)-connected 2n-dimensional smooth
manifold F as fibre.
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For the proof, refer to [16]. The construction of a fibred knot in the
special case of M*+=S"xS"*' (n: odd) in Theorem 2 below will reveal
the proof of the above theorem.

Let K be a simple, fibred knot in an (n—1)-connected closed (2n-+1)-
dimensional smooth manifold M***!' (n>=3) such as in Theorem 1. Then
the knot modules A,(K; M*+!) (¢q=1,2,---) are as follows:

AK M) =0  q#0,n
A, (K: M+ =H,(F).

By a result in §4, this shows that the knot K is not local in case M*+
is not a homotopy (2n+1)-sphere.

Now we shall construct a simple, fibred knot in S?*-!x S (¢=2),
making use of the method in section 3 of [16]. Some miswriting con-
tained there will be corrected in the following arguments.

Let ¢=2 and let z, be a point of S* . We denote the subsets
S27tx {x,}, {xo} X S?~* and the diagonal {(z,x); x€ S?7"1} of S?~'x.S*~! by
@, b and d respectively. Let us specify orientations of S?~!xS?-! and
submanifolds @, b and d so that

[d]1=[a]+b], I([a], [B))=1.

where [a@], [b] and [d] are homology classes of H,, ,(S?*'xS?~!) repre-
sented by @, b and d respectively.
Let S¥'xD¥ (1=0,1,2,3,4,5) be 6 copies of S?*~'xD* and let

W= (qu—lngﬂ) h (S«]’hrlXD?q)q o h(sgqﬂ Xng)

be the boundary connected sum of them, where we give S?*~'x D> the
orientation so that the boundary orientation coincides with that of
S2-1%S?, Let @, b; and d. denote oriented submanifolds of S-!x S-!
corresponding to @, b and d of S*~1x S respectively. We my suppose
that

a, b, d.cow (1=0,1,2, ---,5).

Let W’ be a copy of W and let S*'xS**=WU W be the Heegaard de-
composition of S?-1xS** such that [a,] represents a generator of
H,, ,(S*1xS*)=Z and that [a.], [b] (:=1,2,38,4,5) and [b,] are zero in
H,, y(SP71S™).

Let us consider (2q—1)-dimensional submanifolds d,, d,, b.#d,, btd #b,td,
in 9W (Fig. 1). The intersection numbers of [bfd #b.#d,] with [d,] and
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Seix D Sy Di S Dy S'xDy o Sp'xDi Sk Dy
Fig. 1.

[51#5—{2] are
I([EO#(Z-I#EZ#d—ﬂl [&1]) =0,
I([bokd batds], [bifd.]) =0.

Thus we can cancel geometrical intersections (bfd.4b.4ds)Nd, and
(bottd 4b.4d,) N (b#d,) by an isotopy movement of bo#d #b.fd,. We denote
by & the submanifold isotopic to b.fd.#b,#d, thus obtained:

éﬂ(il:@, en (611*(12):@

We may suppose that ¢ and @, intersect transversally at one point,
since I([e], [a,])=1.

Let V, V, and V, be smooth regular neighborhoods of eUa,,
d,U (b4d,) and d,U (b4d;) in 0W respectively such that they are disjoint
each other, and let V=V, V,kV, be the boundary connected sum of V,,
V., and V, in W. V is homotopy equivalent to the bouquet of 6 copies
of S?1, Let K=0V, then the following lemma holds.

LEMMA 1. K is a simple knot in S*1xS* and V is a Seifert
surface for K.

Proor. V, is the plumbing of tubular neighborhoods of ¢ and @, in
oW, and the tubular neighborhood of @, is diffeomorphic to S%*~tx D1,
Thus oV, is diffeomorphic to S**~*. On the other hand, since V, and V,
are diffeomorphie, 0V, and 9V, are both diffeomorphic to the natural
(4q—38)-shere or the Kervaire sphere. Thus aV 0V, is diffeomorphic to
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St-%,  Therefore oV=0V #0V 40V, is diffeomorphic to S* % It follows
from Proposition 2, (b) that K is simple. This proves Lemma 1.
As is easily verified, the inclusion maps

V—W, V—W

are homotopy equivalences. Thus, according to the relative h-cobordism
theorem, W and W’ are both diffeomorphic to VxI. This implies that
S2e-1x S2¢—Int N(K) is a fibre bundle over S' with V as fibre, and, thus,
K is a fibred knot in S?1x.S%,

Now the following lemma holds:

LEMMA 2. K is tnessential tn S*'x S,

Proor. Since d,, b,#d,, d, and btd; are inessential in S* xS, 9V,
and 0V, are inessential. The homotopy class {9V} represented by oV,
in S?-1x%S%* ig the Whitehead product of the homotopy classes {g} and
{@,} (see [20]), and {g} is inessential in S**=*xS?. Thus 8V, is inessential
in S?'x S?. This proves Lemma 2.

By Lemmas 1 and 2 and the remark on knot modules of fibred
knots at the begining of this section, we have the following theorem.

THEOREM 2. There exists a simple knot K in S*7'xS* (¢=2) such
that K 1s fibred, thus not local, and inessential.

The inessentiality is necessary for a knot to be local. But this
theorem shows that it is not sufficient. This answers Problem 1 in [18].
The similar result will be again obtained in Corollary of Theorem 5
(§8).

Similarly, examples of such knots can be constructed in S%!x S+
(¢q=2), making use of the arguments in the section 2 of [16], and also,
in some (n—1)-connected closed (2n+1)-dimensional smooth manifolds
(n=3).

As is easily verified, by considering Euler numbers, an (n—1)-con-
nected closed 2n-dimensional smooth manifold does not admit any simple
fibred knot if it is not a homotopy 2n-sphere.

§6. Localness Theorem and Unknotting Theorem.

The following theorem gives a localness criterion by means of knot
modules for simple knots in highly connected closed smooth manifolds.
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THEOREM 3 (Localness Theorem). (I) Let M* be an (n—1)-connected
closed 2n-dimensional smooth manifold (n=3) and let K be a simple knot
in M*. Then K 1is local if and only if the knot module A,(K; M™)
contains a direct summand A satisfying the following conditions:

(@) A is a A-free module of rank b, where b is the m-th Betti
number of M.

(b) There exists a A-basis {w,, wy, - -, w} for A such that the bxb
matriz (I(w;, w;)) is unimodular and that

I{w;, t*w;) =0 k+0;1,7=1,2,---,b.

(II) Let M**' be an (n—1)-connected closed (2n-+1)-dimensional
smooth mamwifold (n=38) such that H,(M**') is torsion free, and let K
be a simple knot in M*™*. Then K 1is local if and only if the knot
modules A,(K; M*) and A,.,(K; M**) contain direct summands B and
C respectively which satisfy the following conditions:

(a) B and C are A-free modules of rank b, where b is the n-th and
the (n+1)-th Betti number of M™*.

(b) There exists a A-basis {&,&, ---,&) for B and a A-basis
€, &, + -+, &) for C such that

I(Eiy C]) :5’51’ I(Siv tij) =0 ir j:]—’ 2’ Y b> k;’:(),
where d;; 18 Kronecker's delta.

PROOF OF THE “ONLY IF” PART. Suppose that a simple knot K in
M* is local: D*»>DK. Then A,(K: M) =A,(K)DH,(M™®A) (see §4).
We put A=H,(M*™)QA.

By Proposition 2, there exists a simply connected Seifert surface V
for K such that D*>V.

Let of w}, ---,w, be generators of H,(M*) represented by maps
ol St——M*—D* (1=1,2, ---,b), and let ¢/ S*— X (i=1,2,---,b) be
the lifts of ¢! such that ¢/(S")c Y, where X =‘%JZY"’ as in §2. Then

the homology classes w,, w,, - - -, w, represented by ¢, ¢}, ---, ¢; respec-
tively, satisfy the condition (I), (b). Therefore the conditions (I)(a), (b)
are satisfied. Thus the ‘“only if” part of (I) is proved. Similarly the
“only if part of (II) is proved.

Proof of the “if” part of (I) and (II) will be given in the next
section.

We remark that the ‘only if” part of Theorem 3 is true even in
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the case of n=2.

The following theorem is a direct consequence of the Localness
Theorem above and the Unknotting Theorem for knots in the spheres
by Levine [11].

THEOREM 4 (Unknotting Theorem). (I) Let M® be an (n—1)-con-
nected closed 2n-dimensional smooth manifold (n=3) and let K be a 1-
stmple knot in M*. Then K is unknotted if and only the knot modules
A(K; M*™) (2<q<n) satisfy the following conditions:

(@) A(K M™)=0 2<g=<n-—1.

(b) A, K, M*™) 1is a free A-module of rank b with a A-basis
{0y, @y, -+, @} such that the bxb matriz (I(w;, v;) is unimodular and
that

I(w;, t'w;) =0 k+0; 1,7=1,2, ---,b,

where b is the n-th Betti number of M™

(II) Let M™+' be an (n—1)-connected closed (2n-+1)-dimensional
smooth manifold (n=3) such that H,(M**) 1s torsion free, and let K
be a 1-simple knot tn M**'. Then K is unknotted if and only if the
knot modules A,(K; M*+") (2<q<n+1) satisfy the following conditions:

(&) A,(K M»)=0 2<q<n—1.

(b) A, (K, M*™") and A, (K; M*™*) are free A-modules of rank b
with A-basis {£,,&, -, &} and {£, G, - -+, &} respeotively such that
I(E,’, CJ) :5,']', I(E,-, tij) =0 7:, ]:1, 2, LN b, k#O,
where b is the n-th and the (n+1)-th Betti number of M*+.

Proor. First suppose that a 1-simple knot K in M?* is unknotted.
Then it is obvious that

A M =H,M"Q4 1<q<2n—1.

The homology classes ®,, @, - - -, w,€ H,(X) as in the proof of the “only
if” part of Theorem 3, (I) satisfy the condition I, (b). Thus the condi-
tion (I) is satisfied.

Conversely, if the assumption of (I) is satisfied, then K is simple,
since A,(K; M*)=0 for 1<q<n—1. Therefore, by the Localness Theo-
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rem, the knot K is local: KcD®, and, thus we have
A (K; M™) = A,(K)D (H,(M*™) ) q=1,2,---,m,

where K is a knot in S determined by K in D* (§4). It follows from
the assumption on A,(K; M*") that

A(K)=0 ¢=1,2 --- n.

Since K is 1-simple, by the unknotting theorem of Levine, this implies
that K is unknotted in S?*. that is, K bounds an imbedded (2n—1)-disk
in D*. Thus (I) is proved.

The proof of (II) is similar.

REMARK. An alternative proof for Theorem 4 may be possibly given
using the idea of Matsumoto [12].

§7. Proof of Localness Theorem.

In this section, we shall give the proof of the “if” part of Theorem
3. What we are going to do is the modification of situations of Seifert
surfaces by surgeries.

First we prove Theorem 3, (I). By Proposition 2, there exists a
Seifert surface V for K which is (n—2)-connected. Let Y denote the
exterior of V. Then Y is also (n—2)-connected (§4). Let us consider
the universal covering X of the exterior X of K and the decomposition
X=UY" such that Y9N YU+»=VE+ where Y and V9 are copies

jEZ
of Y and V respectively (see §2).
Let z be a singular n-cycle of X: z€ C,(X). The minimal non-nega-

tive integer [ such that
2€C (YO UYUHIy ... J Yy

for some j is said to be the length of z with respect to V and is denoted
by l(z). Let  be an n-th homology class of X: w€ H,(X). The minimal
non-negative integer in {l(z); o=[z]} is said to be the length of » with
respect to V and is denoted by l(w).

(Step 1). Suppose that the length l(w:) of w, with respect to V is
1>1, where w, is a homology class in the assumption of Theorem 3, (I).
Then there exists an m-cycle z, of X such that o,=[Zz;] and that
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ZEC, (YO UYUy ...y YU+,
We may assume that z, is decomposed as follows (Fig. 2):
2, =0 Ut .o BT,
where ¢™ e C,(Y™) (m=j,j+1, ---,5+1). Then we have
[cyth]e H,(YU+h, Vb))
[e9] € H (YW, Vi+y),

VU') V(i-l—l] VU+‘) V(i+l+l}

-\__—’///_\_,1

gli+h

) gy

) G+ G+1)
Y Y

Fig. 2.

LEMMA 3. There exists a continuous map
g: (D*, 8" 1) —— (Y Uth Y uth)
such that gy (D", S*1])=[ey+"].

Proor. Since VU*Y js (n—2)-connected (n=3), the homology class
oley*]e H,_,(V¥+Y) is spherical, where 9: H,(YV+) VU+h)—H, _(VU+)
is the boundary homomorphism. Furthermore, since V“+? and YU+
are (n—2)-connected (n=3), the Hurewicz homomorphisms

By o y(VUH) —H, _(VE+D),
B 7oy (YOHO)— H, (YU+D)
are bijective. Thus we have
(e (ra)OLe+T)) =0,

where ¢,: VY+h——YU+) jg the inclusion map. It follows from this that
(ha_y)"*(0[c¥*¥]) is contained in the image of the boundary homomorphism
0: m,(Y9tD, VD) ——g,_(VU+)), that is,
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o= (h,_) ([ +P]) for €, (YU+H, VD),

Then, [eY*"]—h,(w) € H,(YU+Y VU+Y) is contained in the image of
H, (Y9 —H, (YY" V6+D) where h, is the Hurwicz homomorphism.
Since YY*Y is (n—2)-connected, every element of H,(YY*") is spherical.
Thus this lemma is proved.

We may suppose that the map ¢ in Lemma 3 is a proper imbedding
transversal to VU+b,

Similarly, there exists a proper imbedding

g/: (Dny Sn—1) ,(Y(J’)' V(:i+1))
transversal to V¢+Y such that
g4([D", 1) =[e].

Since I(t~'w., w)=0 by the assumption, the algebraic intersection
number of ¢ !(g(D")) and ¢’(D*) in YY is zero (Fig. 3). Thus, by the
Whitney trick, we can cancel the geometrical intersection of ¢~'(g(D"))
and ¢’(D") by an isotopy movement of g¢’.

V(i) V(J'H)

Y(J')
Fig. 3.

We perform the surgery on V by poq(D") or pog’(D"), where
p: X—X is the projection. That, is, let
g: (D*xD* S*~1x D")—(M*", V)

be an imbedding such that g|(D" x {0}, S*~*x {0}) =pog and g(D"xXD" )N V=
g(S"tx D", and let

V,=(V—g(@D"x D") Ug(D"*xdD")
be the manifold obtained from V by the surgery yx(g|(S*"*xD"). Then,
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V., is an (n—2)-connected Seifert surface for K.
Let Y, be the exterior of V, and let X= U Y’ be the decomposi-
tion of X by copies of Y,. Then it is easy to see that

zZeC(YPUYFH™y ..U Yy+-v),

where Y{™ is the the copy of Y, obtained from Y™ by the lift of the
above surgery. This implies that the length of ®, with respect to V,
is less than I. We remark that the surgery on V by pog’(D") can be
equally used in order to make the length of w, less than I. By apply-
ing the above method to V successively, we obtain an (n—2)-connected
Seifert surface V, for K with respect to which the length of w, is zero.

(Step 2). Suppose that the length l(w;) of w; (1=1,2, ..., k—1) with
respect to V are all zero and that there exist n-cycles z; (t=1,2, ..., k—1)
of X such that '

w;=[z], Z:€ C,(Y?") 1=1,2, ..., k—1.

Since Y is (n—2)-connected, the cycles z; (¢=1,2,---,k—1) are
spherical. Let

F: S'—Y®  (1=1,2,---,k—1)

be imbeddings representing w;.
Let the length l(w:) of w, with respect to V is I[=>1 and let

o, =[Z], Z€ C(YPU YUy ...y Yuth)

as in Step 1. In case YY+"£Y®, we perform the surgery on V by
pog(D") as in Step 1. Let V, be an (n—2)-connected Seifert surface
for K obtained by this surgery. Then the length l(w,) of w, with respect
to V, is less than [. Since, by the assumption, it holds that

It w;, w,) =0 1=1,2 ... k-1,

we may suppose that, for g used in the surgery in (Step 1), the follow-
ing holds:

pogi (S CY—g(D"xD")  i=1,2, ... k—1.
This implies that
Z.€C, (Y™ 1=1,2,---,k—1,
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where o;=[z;] and Y{” is the copy of the exterior Y, of V, obtained
from Y by the lift of the surgery. In case YW =+Y® by the surgery
on V by p’og(D*) as in Step 1, we obtain a Seifert surface for K with
the same property.

Therefore, by applying the above method successively, we obtain an
(n—2)-connected Seifert surface V, for K such that

z.€ C.(Y("),
z2:€C,(Y™ 1=12, .-, k-1,
where Y\ is a copy of the exterior Y, of V..
In case Y{"#Y{® we modify the Seifert surface V, as follows.

Suppose that r+0, say 0<r. Let 3. S"—— Y be an imbedding repre-
senting »,. By the assumption, it holds that

I{t"w, w;) =0 1=1,2 --- k—1.
Thus we may assume that
t(@:(S™) N@:(S" =D 1=1,2 --- k—1.

Let N(g.) be a tubular neighborhood of #,(S") in Y{” and let V,,,=
p(V{"4dN(3,)) be the image of the connected sum of V" and dN(g,) in
Y{" by the projection p: X—>X. Then V,, is an (n—2)-connected
Seifert surface for K. Obviously, after an isotopy movement of &, if
necessary, it holds that

7.(S") C YY",

ST),(S”)CY%?] ?::‘1’2! '."k_lr
where Y%, is the copy of the exterior Y,,, of V,,, obtained from Y}?
by the lift of the surgery.

By applying the above method successively, we obtain an (n—2)-
connected Seifert surface V., such that

3:(S") c Y9, 1=1,2, .-k,

where Y9, is the copy of the exterior Y,,. of V,,, obtained from Y®
by surgeries.

(Step 3). As the consequence of Step 2, there exists an (n—2)-
connected Seifert surface V for K such that
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(SNcY® =12 -.-,b,

where @;: S"——Y® is an imbedding representing w; and Y© is a copy
of the exterior Y of V.

Let us consider homology classes py(w,), Dx(®), - -+, Px(wy) € H, (X).
Since ;€ H,(Y") (:=1,2, ---,b), we have

I (Px(@:), Px(@5) = (L(;, @;)).

For the inclusion map ¢: X——M?*", this implies by the assumption I, (b)
that the homology classes tyopy(®,), txoPx(®y), -« -, tyxoPx(ws) form a basis
of H,(M™).

Thus, as is easily verified, there exists a handle-body with b n-
handles

HB=D"U (D*x D", U (D*x D",U - - - U (D" x D),

in Y such that the inclusion map HB——M?* induces the isomorphism
H,(HB)—H,(M*).

Since the boundary of HB is simply connected, this implies that
M?*—Int HB is diffeomorphic to D?**, making use of the h-cobordism
theorem. Therefore there exists a 2n-disk D?* imbedded in M?** such
that

D*"S VoK.

This completes the proof of Theorem 3, (I).

In the following we prove the “if” part of Theorem 3, (II). Let
M*+ and K be a (2n+1)-dimensional smooth manifold and a knot in
M+ satisfying the assumptions of Theorem 3, (II). By Proposition 2,
there exists a Seifert surface V for K which is (n—1)-connected. Let
Y be the exterior of V, then Y is also (n—1)-connected (§4).

Let us consider the decomposition X= ‘(EJZ YY of the universal cover-

J
ing X of the exterior X of K in M?®+ such that Y@ YU+ =yu+,
where Y¥ and VY are copies of Y and V respectively.

Let z¢€ C,(X) (resp. 2/ € C,,,(X)) be a singular n-chain (resp. (n+1)-
chain) of X and let &€ H,(X) (resp. (€ H,,,(X)). Then the length of 2
and & (resp. 2’ and {) with respect to V can be defined in the same
way as the length of Z and o in the proof of Theorem 3, (I). The length
of 2,& 2 and { are denoted by 1l(z), (&), 1(z’) and [({) respectively.
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(Step 1). Suppose that the length I(&,) of &, with respect to V is
l=1, where &, is a homology class in the assumption of Theorem 3, (IT).
Then there exists a singular n-cycle 2, such that

&i=[z], z€C (YD U YU+ Yy ... U YUy,
We may suppose that z, is decomposed as follows:
Zr=c{ Fedth .o felth,
where ¢f™ ¢ C,(Y™) (m=4,5+1,---,5+1). Then we have

[ed+P] € H,(Yu+h, Vu+D)
[c]€ H, (Y9, Vu+v),

Since VU+h YU+h Vu+d gnd Y9 are (n—1)-connected, the homology
classes [cf*"] and [c{"] are represented by imbeddings

h: (Dn, S"—l)——')(Y(H'”, V(i+l)),

h': (Dn’ Sn—l)_)(Y(J'), V(:i+1))
respectively. We may assume that

t'(h’(D™) N k(D™ =0.
Let h: (D*x D"+, S*~1x D*+1)— (M**+| V) be an imbedding such that
h|(D"x {0}, S* 1 x{0}) =poh and h(D"xD")N V=h(S**xD**), and let
V= (V—ﬁ(@D”xD"ﬂ)) U E(D"X@D”“)

be the manifold obtained from V by the surgery y(k|(S**x D**1)). Then

V, is an (n—1)-connected Seifert surface for K. As is easily verified,
we have

24 EC(YPUYFHY - .. U YF*),

where Y{™ denotes the copy of the exterior Y, of V, obtained from
Y™ by the lift of the surgery. Thus the length of &, with respect to
V, is less than [.

Furthermore, we can choose the imbedding h above so that

poh(D)Np(lz))=0  i=1,2, --- k=1 k+1,---,b,

where z2; is a singular n-cycle such that [2;]=¢&; and |z;| denotes the
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support of z;. Then the length of & with respect to V, is not greater
than that of & with respect to V for 1=1,2, .-, k—1,k+1,--.,b.

Therefore, by applying the above method successively, we obtain an
(n—1)-connected Seifert surface V, for K such that the length (&) of
& (t=1,2,---,b) with respect to V, are all zero and &; is respresented
by an imbedding

i S'——Y§,
where Y, denote the exterior of V, and Y{" (j€ Z) are copies of ¥,
with X= U Y.
jezZ

We remark that the result of this step can be also proved by sep-
arating p(|z;|) from the spine of the Seifert surface V.

(Step 2/). Let V, be a Seifert surface for K as in Step 1’. Suppose
that the length [(&;) of & with respect to V, is zero for 1=1,2, --- k—1
and [({;)=lI'>=1. Thus there exist singular (n+1)-cycles 2! (1=1,2,---,k)
such that

&=[#] i=1,2, -k,
2L € Cp (Y §M) i=1,2, ..., k—1,
e Con(YQUYFHU - UYE)
(Fig. 4). Since Y, is (n—1)-connected, 2/ is spherical. Thus, making use
of Irwin’s imbedding theorem ([5]), there exist PL imbeddings

& Srt—— Y " 1=1,2 ---,k—1,
¢k: Sn+1 )Yéj) U Y’éi-ﬂ) U--- U 17(():’-«4')

such that ¢;(S**) is homologous to z! for i=1,2, ... k.
Since I(&, &) =1, it holds that

@u(S") Nu(S*) = DB,

thus, we have j<K/ <j+1.

In the case of k'<<j+!’, we modify the Seifert surface V, as follows.
Since I(&,C)=0 for 7=1,2, --- k—1 and I(t'*'-*&, {)=0 by the as-
sumption of Theorem 3, (II), making use of the PL Whitney trick, we
may assume that

Doy (S"+) C Yy —pogpi(S™) 1=1,2, -+, k—1,
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¢k(Sn+l) n tj+l’-—k'(¢k(Sn)) — @ X

Let N(p.) denote a tubular neighborhood of ¢.(S*) in Y{*’ and let
V§#* 40N (¢,) be the connected sum of V{**+" and the boundary of N(p)
in ¢ (Fig. 4).

V&k’) Vék"H)

aN(p:)
&—/j
4_4»———/
7“():') Y“,"" . 'Y{(]j+l’)
Fig. 4.

Let V,=p(V¥+“#0N(¢:)). Then V, is an (n—1)-connected Seifert
surface for K, and as is easily verified, it holds that length [(&;) of &,
(t=1,2, ---,b) and [() of & (¢=1,2,---, k—1) with respectito V, are
zero and that

@:(S" C Y (=12, .-, k—1,k+1,---,b),

SIS G

¢k(S”+1) CY{J') U Y{J’+1) U---U Y{"“'),
where Y™ denotes the copy of the exterior Y, of V, obtained from
Y{™ by the lift of the surgery. Therefore, by applying the above method

to &, successively, we obtain an (n—1)-connected Seifert surface V for
K such that

¢k(Sn) cC Y‘””,
¢k(Sn+1) cC I—ru) U Y(i+1) U---U Y(Ht')

and that the length [(¢) of & (t=1,2, ---,b) and [({) of ¢, (1=1,2,---,
k—1) with respect to V are zero, where Y™ is a copy of the exterior
Y of Vand X=U Y™,

meZ
We may suppose that 2z, is the spherical cycle ¢,(S"*!) and 2} is
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decomposed as follows:
z2=é,‘,"’ +él(cj+n + .. +é}(‘j+l')'
where é™ € C,,,(Y™). Then we have
[él(cj“')]e H,.H(I_’”“'), 17(1+tf))y
[é,‘j)]e Hn+1(1—""’, V(J"l-l)).
LEMMA 4. There exists a PL imbedding
fl (D"*l, S") )(Y(Hl’), V(i+l’))
with respect to a C' triangulation of (YY" VU+") which satisfies the

following conditions:

(i) fulD™, S =[ef*].
(ii) F(D**) and ¢.(S*) intersect transversally at one point.

Proor. Consider the following commutative diagram:

.. ,_,n.nH(Y'(Htf))_,mH(Y(Hl’)’ V(j+l'))_)n.n(v(j#/))_,n.n(Y(H!'))__,. ..
2 [z [
.. ,_,Hn“(}_f(jw))_,HnH(}_f(:‘+l')’ V”*"’)—)Hn(V“‘”'))—)H,,(Y("”'))—)' .

where h{?, etc. are the Hurewicz homomorphisms. Since V“*" and
YU+ are (n—1)-connected, the homomorphisms k(" and h{" are bijec-
tive, and h(¥, is surjective. This implies that r{%{’ is surjective.

Thus a continuous map

f”: (Dn+1, S") ,(Y(J‘H’)’ V”*"’)

representing [é¢*"] exists. Since Y“+"” and V¥+") are (n—1)-connected
and (2n+1)—(n+1)=n=3, according to the imbedding theorem of Irwin
[6], there exists a PL imbedding f’: (D**, S*)— (Y U+ V4+") homotopic
to f7.

Since I(&,, {,)=1, making use of the PL Whitney trick, we obtain
a PL imbedding f satisfying the conditions of this lemma by a PL
isotopy movement of f’. Thus this lemma is proved.

We remark that f in Lemma 4 can be taken as a smooth imbedding
if m=>4, according to the imbedding theorem of Heafliger [2]. See also
Levine [10].
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Let N’ be a regular neighborhood of »(f(D**)U¢:(S")) in Y and
let

Vo=V, UdN' —Int(V, NoN)
and let
Y=(Y-N)U V.
where 0Y=V,UV_ as in §2 (Fig. 5).

pof (D)
/

N7 Do (S")

12

Y
Fig. 5.

Then the following lemma holds.

LEMMA 5. (i) V, is a locally flat (n—1)-connected 2n-dimensional
PL submanifold of Y such that 8V,=K and V,NV, is smooth
(ii) There exists a singular (n+1)-cycle 2 € C,.,(Y’, V_) such that

tx([2']) =p«([6]),

where : (Y, V_)—(Y, V_) is the inclusion map.
(iii) There exist singular (n+1)-cycles 2,€ C,,(Y") (:1=1,2, -+, k—1)
such that

t5([21]) = D4 (C:) 1=1,2, .-+ ‘k—1,

where ¢ Y——Y s the tnclusion map.
(iv) There exist singular n-cycles |2,€ C,(Y") (1=1,2, ---,k—1,k+1,
--,b) such that

tx([2:]) =p«(&) 1=1,2,--- k—1,k+1,---,b.
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(v) V, is smoothable. That, is, there ewists a smooth submanifold
V which is PL isotopic to V, relative V,N V..

ProOF. It is obvious that V, is locally flat, since N’ is the regular
neighborhood. Let us consider
W=(V.xI)UN',
where we identify V,x{1} with V,. It iseasy to see that W is (n—1)-

connected and

_ VA q=n,n+1,
H,(W, V+><{0})E{ 0 gEn ml

and that H, (W, V,x{0)=H, (N, V,)=Z is generated by p,[é¢i+"']=
(pof)4[D+', S*]. By the Poincaré-Lefschetz duality theorem, we have

H(W, Vyx{0}) = Hyyr_ (W, V).

Thus the homology groups of (W, V,) are given by

N VA q=n,n+1,
Hq ’ V =
LAC { 0  g#n,n+1,

and, since (pof)(D*) N (po¢)(S*) consists of one point, H,(W, Vy)=Z is
generated by [pog.(S")].
Consider the homology exact sequence of (W, V,):

»H,(W)—H,(W, Vo) —H,_,(V)—H,_,(W)—>- - -

Since the generator [pog,(S*)] of H,(W, V,)=Z is contained in the image

of H,(W) in this exact sequence, it holds that H, ,(V,)=0. Thus V, is

(n—1)-connected, since V, is obviously (n—2)-connected. This proves (i).
Consider the homology exact sequence of a triple (Y, Y’, V_):

’

4
o Hy (Y, V)2 H, (T, Vo) -2 Ho (7, YY) -

where ¢/: (Y, V_)—(Y, V_) and ”: (Y, V_)—— (Y, Y") are inclusion maps.
As is easily verified, the homology group H,. (Y, Y")=H, (N, N'NV,)
is isomorphic to Z and is generated by a fibre of the fibre bundle
P(N(pr)) —popi(S") defined as a tubular neighborhood of pog,(S™).

On the other hand, by the assumption of Theorem 3, (II), we have
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I(g, t"8) =0.
Thus, for py[éf’1€ H,.,(Y, V_), it holds that

A (pal6"]) =0,
This impli_es that py([éi’]) is contained in the image of ¢f: H,.,(Y’, V)
—H, (Y, V_). Therefore (ii) is proved.

Similarly, by the homology exact sequence of (Y, Y’) and the fact
that

I(Ek,Ci):O i:1’2’.“,k_1y

it follows that p4(¢;) is contained in the image of ¢y: H,.,(Y)—H,,(Y).
This proves (iii).

Since I(£;,¢)=0 (:=1,2,---,k—1,k+1,---,b), we can choose the
imbeddings ¢;: S*—Y{" representing & (1=1,2,---,k—1,k+1,---,b)
so that

pop,(S")C Y.

This proves (iv).

By the smoothing of a locally flat PL submanifold V,in X (Hirsch-
Mazur [3, Theorem 7.4]), we obtain V as in (v). Thus this lemma is
proved.

The submanifold V in Lemma 5 is an (n—1)-connected Seifert sur-
face for K. By Lemma 5, as is easily verified, it holds that the length
lE) of & (1=1,2,---,b) and I({) of & (¢=1,2, .-, k—1) with respect
to V are zero and that

2LE€ C,,H(Y”) U Y+ U---u Y‘j“'_”),
that is, the length of {, with respect to V is less than V'

(Step 3). By applying Step 1’ and Step 2’ successively, we obtain
an (n—1)-connected Seifert surface V for K such that the length [(&)
of & and [({) of ¢ with respect to V are zero (1=1,2,---,b).

Let us consider homology classes p4 (&), P«(&.), - - -, Px(&) € H,(X) and

Px(C), Px(G), -+ -, P4(G) € Hopo(X).  Since 1(§)=[(£)=0 (¢=1,2,---,b), as
is easily verified, it holds by the assumption II, (b) that

I(p4(§:), p4(C5)) =0s;.

Thus, for the inclusion map 7z X——M?**+, the homology -classes
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50D (G1), txoPx(La), -+ -, 2500 (&) form a basis of H,.,(M*+).

V has the spine S which is a bouquet of m-spheres. The inclusion
map S—V is a homotopy equivalence. The intersection numbers of
p«(C:;) and elements of H,(S) are always zero. Therefore S is homologous
to zero and, thus, inessential in M?**!. Since the codimension of S in
M*=+' is n+1=83 and M?>*! is 2-connected, by the PL engulfing theorem
[4] and the smoothing of a PL (2n+1)-disk in M+ ([3]), there exists
a (2n-+1)-disk D**' imbedded in M*" such that

D2n+IDSy
and, thus, we may suppose that
D5 VDOK.

Therefore Theorem 3, (II) is completely proved.

§8. Genus 1 knots in S"x S**%.

In this section we deal with knots in S*x S**! and prove the local-
ness and the unknottedness by applying fundamental theorems (Theorems
3, 4). In the following we assume that n>=3.

Let D** be an imbedded 2n-disk in S*x S* and let V,=S"x S*—Int D*.
Obviously V, is (rn—1)-connected and H,(V,)=ZPZ.

Let f,: Vo——S*x S"*** be an imbedding. Then the image V=f(V,)
is called a genus 1 Seifert surface in S*xS*** and K=f,(0V,) is called
a genus 1 knot in S*x S"*!. The map f, is called a defining map of V.

Two genus 1 Seifert surfaces V and V’ are equivalent if there
exists a diffeomorphism h: S*x S**'—S*x S**' such that h(V)=V".

Let {u, .} denote the set of generators of H,(V;) represented by
St {x}, {#}x 8" (*,¥€8"). (fo)«(m) and (fo)«(p) generate a subgroup
G(V) of H,(S*xS**')=Z. Let m denote the non-negative integer such
that H,(S*xS")/G(V)=Z/mZ. m is called the degree of V.

LEMMA 6. If m=0, there exists a (2n+1)-disk D**' imbedded in
S»x S*+! such that D™D V.

Proor. If m=0, then G(V)=0. This implies that V is inessential
in S*xS**. Thus, by the PL engulfing theorem [4] and the smoothing
of a PL (2n+1)-disk in S*xS"*' ([3]), the existence of D***' such that
D+ V follows.
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Let V be a genus 1 Seifert surface of degree m. Then there exist
integers ¢, ¢, d;, d, such that (c, ¢,)=1, (fo)s(Citti+copt,) =m[S*] and that
edy—cd, =1, (fo)s(dipts+dops) =0, where [S*] is a generator of H,(S* X S"+).
In general, a set of generators @, B of H,(V) is called canonical gene-
rators if ¢y (@ =m[S"], ¢4x(B) =0, where ¢: V——>S*xS*+* is the inclusion
map. The above argument shows that a genus 1 Seifert surface admits
always canonical generators.

Consider the fundamental exact sequence for V (§4):

0— H, oy (V)25 H, (S X S*) — 5 H, (V) ——> H,(Y)
% S H, (S X S"*1)—0,
where H,(V)=Z@Z. Then the following lemma holds.

LEMMA 7. Let V be a genus 1 Seifert surface of degree m and let
a, B be canonical gemerators.
If m=0, then it holds that

H,,(Y)=Z H,(Y)=Z0ZHZ.
If m=x0, then it holds that
H,,(Y)=0, H.(Y)=ZDZODZ,,
and that 0(H,.,(S*xS**)) is the subgroup of H,(V) generated by mp.

ProOF. The homomorphism 6¢: H,,,(S"xS"*)——H,(V) is the com-
position of : H,.,(S" X S**)—— H,,,(S"XxS"*, Y), e H,,,(S*XS"*, Y)—>
H,.(N(V), aN(V),  0: H,uo(N(V), ON(V))—>H,0N(V))  and <}
0(H,,(N(V),dN(V)))—>H,(N(V)) (see §2). For a generator [S"*!] of
H,, (S"xS**)=Z, the intersection numbers in (N(V), aN(V)) should be

I(eody[S*+1], @) = £m, I(eody[S**1], B) =0.

This shows that 6([S**1]) =tkodoeotf([S**'])=+mpB. Thus this lemma
follows from the fundamental exact sequence above.

Let us denote a=0d(@), =0(B) and let y be an element of H,(Y) such
that ¢4(y) generates H,(S*xS"*!). Then, by Lemma 7, we have the
following lemma.

LEMMA 8. {a, 8,7} s a set of generators of H,(Y). In case m+0,p
18 a generator of the torston part Z, of H,(Y).
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A genus 1 Seifert surface V is said to be flat if it has cannonical
generators @, B such that @, B can be represented by n-spheres imbedded
in V with trivial normal bundle.

Now we construct a flat genus 1 Seifert surface with degree m in
S*x S+, We specify orientations of S and S**!, and give S*xS*** the
product orientation.

Let Sp={(xy, s, «* -, Zpys) € S** 2,,,=0} be the equator of S**' and
let wu,, %y, - -+, Uy, V1, Vg, -+ -, v, be s+t+1 points of S?, where s—t4+1=m.
We give S"x{u;} (:=0,1, ---,s) (resp. S"x{v;} (i=1,2, ,t)) orientations
congsisting with (resp. reversing) the orientation of S". Let St be the
connected sum of S*x{w;} (1=0,1,---,8) and S"x{v;} (i=1,2, .- t) in
St St

St=(S" X {uo})#(S" x {u.}}- - #(S" {u.})
B(S" X {v.})#(S" x{v:))§- - - #(S" x{v}).

We may suppose that, for a point z,€ S*, the following holds:

St 2ok 59 = (U an, ) U (U (20, ).

i=

Let S; be a submanifold of {z,}x S*** deffeomorphic to the m-sphere
having the following properties:

(1) (2o, uo) €S;.
(i) Let D and D’ be subsets of {z,} XS+ such that DU D' ={z} xS+
and DND'=S:. Then we have

(20, 21), (0, 22), * * +, (20, 241), (20, V1), (20, Vo), - - -, (2o, v;) € Int ﬁ,
(zo’ u8’+1)! (ZO’ u8’+2)v ) (ZOY us)’ (zOv vt’+1)! (207 vt’+2)y tt (ZOy vt) € Int D,’

where 1<s'<s, 1<t'<t and s'—t'=q.

We give D the orientation induced from S*+, and give S% the
boundary orientation of D.

Let N(S;) and N(S;) be tubular neighborhoods of S* and S: in
S*x S**1 respectively. Then we have

N(Sy) =St x Dr*', N(Sz)=Szx Dyt

We give D;*' and D;*' the orientations so that the product orientations
of S}xDi*' and SixDj*' consistent with the orientation of S*x S+
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Let
pi: N(St)—D1*, pi: N(S3)—>D;™!

be projections onto fibres such that p{(N(S?) N (S*xS})) is an n-disk im-
bedded in D *' and pi(N(S%) N ({20} x S**Y)) is a 1-disk imbedded in D=+
We define imbeddings

gma: (S*x D", 8(S8*x D)) —>(N(S1), 0N(51),
ho,r: (S"x D, 0(S"x D")—(N(S3), 0N(S3)),

so that they satisfy the following conditions, where m, q€ Z and we
understand that

l, reZ if n=38, 1,
l, re2Z if » is odd and #3, 7,
l, r=0 if n is even.

(1) gma(S*X{0}) =53, by, (S"x{0}) =Si. And g,.,.|(S*x{0}), k.| (S* < {0})
are orientation-preserving.

(ii) The degree of the map piog,.|(S*x{y'}): S*"x{y'}—oD" is I
for a point ¥y’ € D" and the degree of the map pioh, .| (S*x{y"}): S*x{y”"}
——0D;™ is r for a point y” € 0D* with respect to the orientations of
S* and the boundary orientations of aD**' and oD;+.

(iii) gn.(S*x D" Nh,,(S*xD") is diffeomorphic to the 2n-disk.

The existence of ¢,, and k,, is obvious. g¢,, and k,,, can be obtained
by twisting the trivialization of N(SY) and N(S%). The twistings are
expressed by elements of =,(SO(n+1)). As is well known, the image of
the homomorphism

7.(SO(n+ 1)) — 7, (SO (n+1)/SO(n)) =, (S") = Z

induced by the projection SO(n+1)—SO(n+1)/SO(n)=S" is Z if n=
3,7, 2Z if n is odd and +#8, T; zero if n is even (Milnor [13]). Thus
dn, and h, . as above exist.

Let

Vatyr =In i (S*X D" Uk, (S* X D")

be the plumbing of g¢,.(S*xD") and h,,.(S*xD") (Fig. 6). Then V, ...,
is a flat Seifert surface of degree m, where the defining map f,: V,—>
Vimon,r is taken so as f,(S*x {¥}) =81, fol{#}xS")=8;. Vi, is called a
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S

/‘/l\\r

a1 (S*Xx D"

genus 1 Seifert surface of type (m,q,l,r). The integers | and r are
said to be twisting numbers around S; and S} respectively, where | and
r are integers if n=38, 7; even integers if n is odd and =3, 7; and zero
if » is even as above.

The boundary oV,,... of V, ... is called a genus 1 knot of type
(m,q,1,7) in S*x S*** and is denoted by K, ,.. By Proposition 2, (b),
K, ... is simple. By the same argument as in the proof of Lemma 2
(§5), the following proposition holds:

ProrosITION 3. Genus 1 knots of type (m,q,l,r) are inessential in
Sn X Sn+1'
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Let Y be the exterior of V,,,, in S*xS** and let¢,: V, ,.—Y
be imbeddings as in §2, where we choose ¢, so that ¢, (2, u,) € D.

Let @ B be homology classes of H,(V,,.. represented by S} and
S; respectively. Then @, B8 are canonical generators. Since 9(¢) = (c4) & —
(c_) & for €€ H,(Vm.,.1..), a8 is easily verified, the homology classes a=0(a)
and B=0d(B) of H,(Y) are represented by (—1)"*'({z”}xdD;*') and
—({#’} xoD7*Y), where z' € St, 2”7 € Sy with 2/, 2” ¢ N(S}) N N(S;). Further-
more, as the homology class y of H,(Y) such that ¢.(y) generates
H,(S"xS"*!), we can choose the homology class represented by S*x{z,}
having the orientation consistent with that of S* for xz,¢€ D'NnY. Then
the following lemma holds:

(@+La—1+my,
=(—1)"*"ra—qp

Il

LEMMA 9. (i) (c)x(@)
(c+)%(B

(if) (=) (@) =qa—1B+my,
(c-)%(B)=(=1)"*'ra—(g+1)B.

Proor. For the inclusion map ¢ Y——S*xS**, it is obvious that
tx(a) =cx(B)=0. Thus the coefficients of 7 in (¢,)s@ and (c_).a& should be
m, and that of 7 in (c;)«(8) and (c_)«(B) should be zero. The homology
class of H,(Y) represented by S*x{xj} having the orientation consistent
with that of S* for ;€ DNY is a+y. Thus, in the case of V, .0, We
have

~

(¢4)x(@) = (@ + L)a+my.

Furthermore, since [{z'} xdD;*"]=—p the twisting around S? changes the
coefficient of B8 in (cy)x(@), and thus, (¢;)xa for V, .., is as in (i) above.
Since a=0(@) = (t4) (@ — (_)x(@), (_)«(@) is as in (ii) above.

In the case of V, .., we may consider that a(DNY) consists of
¢+ (Sy), 9D* (2, u:) (1=1,2,---,¢') and 9D"*(z,,v:) (¢=1,2,---,¢), where
D +(z,, w;) and D**(z, v;) are (n+1)-disks in D with centers (z,, u:) and
(20, v;)) having the orientations induced from D respectively. 8D"*(z,, u.)
and 9D *'(z,,v;,) with the boundary orientations represent homology

classes —p and B respectively. Thus we have

(c+)%(B) = —aB.
Since [{2"}x0D; " ]=(—1)""'«, the twisting around S; changes the coef-

ficient of a in (c)(B), and thus, (¢4)%(B) for V,... is as in (i) above.
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Since 8=0(8)=(t4)x(B) — () x(B), (t_)x(B) is as in (ii) above. This completes
the proof.

Now fundamental theorems (Theorems 3 and 4) enable us to deter-
mine the localness and the unknottedness of a genus 1 knot of type
(m,q,1,0) as follows:

THEOROM 5. Let K, .., be a genus 1 knot of type (m,q,l,0) in
S*x S*** (n=3). Then the following hold:

(1) Koguo t8 local. And K, .., is unknotted if and only if q=0
or —1.

(ii) In case m#0, K, .., ts local if and only if m and q satisfy
the following condition (*):

(*) Each prime factor of m divides q or g+1.

Furthermore, Kn .10 (m#0) is unknotted if it is local.
(iii) Kn,qu,0 are mot fibred knots.

The knot K,,,, is essentially a knot in S*+'. The results of (i) and
(ii) reveal the contrasting property of knot theory in S**' and knot
theory in S*xS**.

In order to prove Theorem 5, (ii), we need the following number
theoretical lemma due to Y. Ihara.

LEMMA 10. Let a, b, ¢ and d be integers such that ad—bec+0 and
ged. (@,b,¢,d)=1. Then integral polynomials F(x), G(x) and a non-
negative integer k satisfying the equation

(**)  (ax+b)F(x)+ (cx+d)G(x) ==*
exist, if and only if each prime factor p of ad—bc satisfies
(***) g=c¢=0 modp or b=d=0 modp.

Proor. Let a=(ax+b,cx+d) be the ideal of Z[x] generated by
integral polynomials ax+b and cx+d. By the assumption that ad—bc+0
and g.cd. (a,b,¢,d)=1, each prime ideal p of Z[x] containing a is
maximal and hence it can be written in the form p=(p, ¢(x)), where p
is a prime factor of ad—bc and ¢(x) is an integral polynomial whose
reduction modp is irreducible in Z,[x].

Suppose that each prime factor of ad—bc satisfies (***). Then each
prime ideal p=(p, ¢(x)) containing a can be assumed to satisfy the
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condition ¢(x)=2. Now let

a=aq;NaN---Na;

be a primary decomposition of a and p; be the prime ideal associated
with q; (1=1,2,---,7). Then, since p;=(p;,, ) and each element of p,
is nilpotent mod g;, there exists a non-negative integer k; such that

x%i € q;.

Thus, for k=max (k:), we have

i

¥ € a.

Conversely suppose that there exist integral polynomials F(x) and
G(x) satisfying (**). Then, for each prime factor p of ad—bc, either
the reductions of ax+b and ecx+d modp have a common factor z or
otherwise they are integers modp one of which is non-zero. Thus this
lemma is proved.

Proor oF THEOREM 5. In this proof, we write K, .., and V, ..,
simply by K and V respectively. Let Y be the exterior of V and let
X= U Y" be the decomposition of the universal covering X of X=

ieZ
S*x S**'— K by copies of Y. By the argument in § 4 and Lemmas 8, 9,
the knot module A,(K;S"xS"*Y) is isomorphic to a 4-module with gene-

rators t'a, t'8, t'y (1€ Z) and relations

qa—IlB+my=(q+1)ta—I1tB+mty,
[E]
(@+1)B=qtp,

where we understand that «, B, 7 are lifts of «, 8, 7 in Lemma 9 such
that «, 8, 7€ H,(Y?).

First we consider the case of m=0. By Lemma 6, there exists a
2n+1)-disk D=+ imbedded in S*xS"*' such that D*+>V, and, thus,
K is local.

By considering the double D#*+'\D*+=8+ K is a knot in S+
and V is a Seifert surface for K. It is obvious by the relation [R] that
H,(V)=Z®Z with generators @ and B and that the knot module
A, (K; S*+') is isomorphic to a A-module with generators t'a, t'f (i€ Z)
and relations

qa—IlB=(q+1)ta—Itp,
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(@+1)f=qtp.

As is easily verified, it follows from the argument in the proof of
Lemma 9 that the linking numbers are given by

Lk((e4)(@), (@) =1, Lk((c.)#@), (B) =q+1,
Lk ((e)%(B0), (@)= (—1)"*"q, Lk((c+)#(B0), (B) =0,

where @, B, denote cycles in V representing @, A€ H,(V). Therefore
l q+1

the Seifert matrix A is <
(=1)"q 0

> and the Alexander polynomial

4 is given by

A:det(tA—i-(—1)"AT):det<(_1) E+(=1)7) (q+1)t—q>

"Hgt+(—1)"(g+1) 0
=((g+1)t—q)((—1)"gt+(=1)""*(g+1)).

This shows that if K is unknotted, then ¢ should be 0 or —1.
Conversely, if ¢=0 or —1, then, by the above relation, we have
A,(K; S**)=0 which implies that K is unknotted by Theorem 4 or the
unknotting theorem of Levine [11]. Thus (i) is proved.
Now, in the following, we assume that m=0. By Lemmas 8 and
9, we have

(e4)(mPB) = (¢_) . (mp) =0.

The homology class B is represented by the subset S; in V. Thus there
exist (n41)-chains c,, ¢_ of Y such that dc,=m(c)(S;), dc_=m(_)(Ss).
We construct explicitly ¢, and c¢_ as follows. We may assume that
there exists a point 25€ S" such that

8 t

N(S1) N ({26} xS = (U D™* (25, ) U (U D™ (25, v1)),

=0 i=1
N(S3) N ({2} xS"1) =,
where D**'(z5, u;) and D**(z] v,) are (n+1)-disks in {2{} x S*** with centers
(2, u;) and (2§, v;) respectively. Thus we may suppose that a(Y N ({25} X
3 t
S+1)) s (‘L_J0 0D+ (2], u,-))U(VL_JlaD"“(zé, v;)) and that YN ({z)} xS**) gives

the relation mpB=0, since dD"*'(z; u,;) and D"+ (2}, v;) represent homology
classes — B and B respectively.
On the other hand, as was observed in the proof of Lemma 9, DNY
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gives the relation (c;)4(8)=—qpB, where —qgpB is expressed by cycles in
dN(S?). Therefore we can take as ¢, the union of m(DNY), —q(¥ N
({8} x S**1)) and a subset of aN(Si) giving the homologous relation be-

tween —m((U aD"“(zo,ui))U(tL,JlaD"“(zo,v,«))) and —q((U 9D (2}, uy) U
i i= 1=0

i=1
(_(_Jl aD"+(2f, v,))), where m(DNY) and ¢(Y N ({24} xS**1)) are m copies of

DNY and ¢ copies of {z}}xS"+ having orientations consistent with S+
and D respectively.

Similarly we can take as c¢_ the union of m((f)n Y) U D"z, uy)),
—(@+ 1) (YN ({20} xS**1)) and a subset of dN(S%), where D"*i(z,, u,) is an
(n+1)-disk in {z,} xS*** with center (2, u,) which is a connected com-
ponent of YN ({z,} xS*+).

The union of ¢,, —c_ and the (n+1)-dimensional submanifold of
N(S;) with the boundary ¢, (S;)U:_(S:) forms a homology class of
H,,,(S*xS"+), say 6. It is obvious that the intersection number I(a, §)
in S"xS"* is m. Thus, since @ represent m[S*]€ H,(S*x S"+), & repre-
sents a generator of H,,,(S*xS**).

Let ¢}, and ¢ be the lifts of ¢, and c¢_ such that ¢/, ¢’ € C,.,(Y™).
Then the union of ¢/, and —¢7'¢/. forms a homology class of H,,,(X),
say o.

The following two lemmas hold.

LEMMA 11. The knot module A,.,(K;S*xS"*) is a A free module
generated by 0.

Proor. Consider the exact sequence
0—— A, (K: S x8+)—5 52 Hy (V) -2 5 H (Y9)—s - -
i€EZ 1€Z

in §4. Let 7 be an element contained in the kernel of ¢. By Lemma
9, we may suppose that

h
=2 mt'*p,
1=0
where t/+{g¢c H,(VY+9). Then, by the relation [R], we have

(@+1)m=0  modm,
(@+)m=gm,_, modm  (i=1,2 --- h),
0=qm,,
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which imply that
(q+1)'m,;=0 mod m (t=0,1,2, ---, h).
It follows from the equations (q+1)*m,=0 and ¢qm,=0 that
m,=0 mod m.

Thus, by the induction on %, 7 can be written by the linear combination
of at'*'o (1=0,1,2,---,h). This proves the lemma.

LEMMA 12. The intersection numbers I(a,t'd) and I(r,t'd) in X are
as follows:

(1) I (@, 0)=m, I(a, t0) = —m,
a, t'6) =0 (t#0, 1).

0

(
(i)  I(
(r,#9)=0 (10, 1).

PRrROOF. As is easily verified, the difference of intersection numbers
of chains I((c,),@,cs) and I((c_),a,c,) is m. Thus we have

Ia, 0) =1 ((e4)4@— (¢_) x, 0) =m.

Similarly we have I(a,td)=—m. This proves (i).

The homology class 7 is represented by S" X {x,} (x, € DnY). S*x{x}
and ¢, intersect at ¢ points with sign —, and S"x{x,} and —c_ inter-
sect at ¢+1 points with sign +. This proves (ii).

The following lemma is a direct consequence of Lemma 12.

LEMMA 13. Let f(t)a+g(t)y be an element of A,(K; S*x S**1), where
flt)y= ez ait’ and g(t)= eZ bjt’ are Laurent polynomials. Then the inter-
section number of f(t)a+g(t)y and t'6 is given by

I(ft)a+g(t)y, t') =ma; —ma;_,—qb;+ (q+1)bi_,.

Now suppose that a genus 1 knot K of type (m,q,[,0) (m+0) is
local. Then, by Theorem 3, (II), there exists an element &¢ A,(K;
S*x S**1) such that

(1) I(£,0)=1, I t0)=0  (@+0).
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Let £=f(t)a+g(t)y be as in Lemma 13, then, it follows from the equa-
tion (1) and Lemma 13 that

@) { ma,—ma_,—qb,+ (g+1)b_,=1,
ma; —ma;_,—qb;+ (q+1)b;_,=0 (1#0).
This implies that

@) (—mt+m)f(t)+((¢+1)t—q)g(t)=1.
Let —k=min{e, ¢”,0} and let F(t)=t*f(t), G(t)=t‘g(t), then F(t), G(t) are
integral polynomials in ¢ and they satisfy the equation
(—mt+m)F(t)+ ((g+1)t—q)G(t) =t

Therefore, by Lemma 10, m and ¢ must satisfy the condition (*) in
Theorem 5, (ii). Thus the “only if” part of the first statement in
Theorem 5, (ii) is proved.

Conversely, in the following, we assume that m and ¢ satisfy the
condition (*) in Theorem 5, (ii). By Lemma 10, there exist Laurent
polynomials f(t) and g(t) satisfying the equation (3), which implies that
the element &é=f(t)a+g(t)y € A.(K; S*xS"*!) has intersection numbers as
in (1) above.

Then we have the following lemma.

LEMMA 14. A,(K; S"xS"") is a A free module generated by f(t)a+g(t)r:
ALK S xS =ALf(t)a+9(t)r]

Proor. Consider the exact sequence

RPN H,,(V‘“)—¢> ) H,,(Y‘“)—Zﬁ»An(K; St 3¢ SrH) —». .

i€Z i€Z

in §4. Then, for the coefficients b, of g(t) and e H,(V®), it holds
from Lemma 9 and the equation (2) that

¢((;b_it"),§):tﬂ mod m.
This shows that

(2ex) (8)=0.
Suppose that there exists a Laurent polynomial h(t)=>cit' such
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that
h(t)(f(t)a+g(t)y)=0.

Then it follows from the intersection numbers as in (1) that
0=I(h(t)(f(t)a+g(t)y), t'6)
=Zed(f)atg(t)r, t79)
———Cj.

Thus 4 module generated by f(t)a+g(t)y is a free A4 module.

Let p: A, (K; S"x S**)—— A, (K; S*x S**)[A[ f(t)a+g(t)y] be the pro-
jection and denote P((3tx)(a))=[a] and H((Iex)(r))=[r]. Then, by the
relation [R] and the fact (3ey)(B)=0, A, (K;S"XS*")/A[f(t)a+g(t)r] is
isomorphic to a 4-module with generators t'[a], t[y] (¢€ Z) and relations

qlal+m[y]=(q+1)t[al+mi[y],
S@®)[al+9@)[r]1=0.

It follows from the above relations that
(—mt+m)f(¢)[al+((g+1)t—q)g(t)[a]=0.
On the other hand, by the equation (3), it holds that

(—mt+m)f(¢)[al+((g+1)t—q)g(t)[a]l=[al.
Thus we have
[a]=0.
The equation (3) implies that

(—mt+m)f(O)[r]+(¢+1)t—g®)[r1=[r]

Therefore, by the above relations and [«]=0, we have [y]=0. Thus
A (K, S*xS*")[A[f(t)a+g(t)y]=0. This proves the lemma.

According to Lemmas 11, 14 and the intersection numbers of (1),
Theorem 5, (i) follows from Theorem 4, (II). Theorem 5, (iii) is a direct
consequence of A,,,(K; S"xS"*)=A4 (see §4).

Thus Theorem 5 is completely proved.

REMARK. We can prove the conclusion of Lemma 14 by using only
the relation [R]. For general study of knots modules in global knot



604 Itiro TAMURA

theory, see Tamura-Nakamura [19].

The following corollary is a direct consequence of Proposition 3 and
Theorem 5.

COROLLARY. A genus 1 knot K, ,,, of tyve (m,q,l,0) is inessential
and not local in S"xS** if m+0, and m and q do not satisfy the con-
dition (*) in Theorem 5.

§9. Knot cobordisms.

Two knots K, and K, in an m-dimensional smooth manifold M™ are
said to be cobordant if there exists an (m—1)-dimensional submanifold
W of M™x[0,1] which satisfies the following conditions:

(i) W is diffeomorphic to S™~2xI.
(i) aW=wn((M™x{0}) U (M"x{1})
= (K, x{0}) U (K, x{1}).

A knot K cobordant to the trivial knot in M™ is said to be null cobor-
dant. A knot K is null cobordant if and only if there exists a property
imbedded (m—1)-disk D™"! in M™x[0,1] such that D™ 1=K x{0}.

It is obvious that homotopy classes in M™ represented by cobordant
knots are the same. In particular a null cobordant knot is inessential.

The cobordance is an equivalence relation in the set of knots in M™.
The set of the equivalence classes is called the knot cobordism in M™
and is denoted by C,_,(M™). In case M™ is the m-sphere, C,_,(S™) is
simply denoted by C,_,. By introducing orientations on knots and S™, the
knot cobordism C,_, admits an abelian group structure by the connected
sum.

Kervaire proved that C,,=0 (n=2) ([6]). By similar method we can
prove the following theorem.

THEOREM 6. C,,(S**'1xS**)=0 (n=2).

Proor. Let K be a knot in S**1xS"*! (n>2). Then, by Proposition
1, there exists a Seifert surface V for K. Since S**t1xS*+! is stably
parallelizable, V is stably parallelizable. Thus, it follows from the result
of Kervaire-Milnor [7], that V can be modified to the (2n+1)-disk by
applying surgeries on V considering V itself as a smooth manifold:

VO =V, V=P
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V(i):a((V(i—l) XI) U (Di+1XD?lm—i+1) U (D;’+1 XDgn—i+1>
U« U (D x D)) — (V42 x{0}) — (@ V¢ x[0, 1))
(i=1,2,8, -, m).

We realize this process in S**1x S**1x I as follows. Consider V=V in
Sty Sn+ic I The submanifolds aD? (=1,2, ---,q(1)) of V© are ines-
sential in S**1x S*+1xI. Thus there exist 2-disks D? (j=1,2,---,q(1))
imbedded in S**1xS**1x I such that

oD:=aDix (0}, DINDY=0  (j%7).

We fix a trivialization of a tubular neighborhood of D7 in S**1x S**1x
I. Then the obstruction to realize the handle D}xD?% by extending
D*=D?x{0} is represented by the element of r,(SO(2n+1)) defined by
the attaching map of the handle. Since V@ is stably parallelizable and
7,(SO(2n+1)) is in stable range, this element is zero. Therefore we can
realize the trace T of the surgery on V® as a submanifold in S**1x
Sn+1><I:

TO=(VOXI)U(DEXD) U - - - U (Dl X D), aT®D VO,

Let us denote the closure of S**1xS**1xI—TY by E®. Then VWC
9EY and, as is easily verified, E® is n-connected.

Now suppose that V¢~V and the trace T® of the surgery on V-0
are similarly realized as submanifolds in S*+*'x S**1xI for 1=1,2,3, ---,

k, where k<n. Let E* denote the closure of S"“xS"*‘xI—tJT‘“.
i=1

Then V®CoE®™ and, as is easily verified, E® is n-connected. Thus we
can realize (V® xI)U (Di**x{0})U (Di*x{0})U--- U (DA, x{0}) in E®.
Then the obstruction to realize handles D**?x Di*~* by extending D*+*x
{0} (¢=1,2, ---, q(k+1)) are represented by elements of z.,(SO2n+1—k))
defined by the attaching maps of the handles. Since V® is stably
parallelizable and =,,,(SO(2n+1—Fk)) is in stable range for k<mn, they
are zero. Thus we can realize the trace of the surgery on V* in E®.

Therefore, by the induction on k, the surgeries from V©® to Vi»=
D+t gre realized in S*ttx S*+ix I, which implies that K is null cobor-
dant. This completes the proof.

The following corollary is a direct consequence of Theorem 6.

COROLLARY. An element of the homotopy group m,(S*+*xS**) (n=2)
18 realizable by an imbedded 2n-sphere in S"*1x S*+' if and only if it
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18 the zero element.

This result can be seen as a higher dimensional analogue of the

famous problem of realization of 2-dimensional homotopy (homology)
classes of S?x.S* by imbedded 2-spheres from the viewpoint of codimen-

sion 2.
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