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Critical exponent of blowup for semilinear heat
equation on a product domain

By Shigemasa OHTA and Akira KANEKO

Abstract. We show that for many regions of product type D=D,x D,
the critical exponent of blowup for the Dirichlet mixed problem of the
semilinear heat equation d,u=Au-+u? is determined from those of the
factors by the formula 1/(p*(D)—1)=1/(p*(D,)—1)+1/(p*(D;)—1). As an
application we obtain a formula for the first Dirichlet eigenvalue of the
Laplace-Beltrami operator on spherical slice domains.

0. Introduction.

Let D be a domain of RY. It is generally shown by Meier [M2]
that for the Dirichlet mixed problem of the semilinear heat equation

aa_?ngu+up, in 10, co[ x D,
u(t,2)=0 on 9D,

%(0, ) =u,(x), in D,

(P)

there exists a constant p*=p*(D), called the critical exponent of blowup
for the domain D, and characterized by the following property:

If p>p*, then there exists a non-trivial non-negative Cauchy data w,
for which the solution is global in #;

If 1<p<p*, then the solution blows up in finite time whatever the
non-trivial non-negative Cauchy data u, may be.

Here and in the sequel “non-trivial” means not identically zero.
Also, we consider only bounded continuous initial data for the sake of
simplicity (and without essential loss of generality). Since H. Fujita
gave in [F1] the first result of this type:

Ny 2
(0.1) p*(R )—1+-2\—/.~,
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there appeared many results by various researchers. We recall here
especially that of Meier [M1]:

2

0.2 #(RYF RY) =1 )
(0.2) P*( X RY) +N+k

More geuerally, let I'CRY be a (not necessarily convex) cone. Then
Levine and Meier [LM1] proved

2
N+y’

(0.3) p*() =1+

where 7 is the non-negative root of y(r+(N—2))=w,, 0, being the first
eigenvalue of the Dirichlet problem of the Laplace-Beltrami operator
on I'NSY (For further references on this subject see the survey
article by Levine [L].)

In this paper we prove the following formula for the critical exponent
of blowup for the product domain:

1 _ 1 + 1
p*(Dyx Dy) —1 p*(D)—1 p*(D,;) —1 ,

(0.4)

under some regularity assumption on the domains. Indeed this formula
holds well for domains in (0.2) cited above and was inferred from that
result.

In the final section we give some examples of conclusions of our
formula, including a geometric application.

2. Preliminaries.

We collect here the basic techniques used in the sequel. The most
essential tool for us is Lemma 1.1 below essentially taken from [M2],
where it is used to prove the abstract existence of critical exponent of
blowup. We reproduced it here with detailed proof for the sake of self-
containedness.
a—u:Au, in 0, o[ X D,
ot

(P) u(t, x)=0 on 9D,
(0, ) =uy(x), in D

be the linear problem to be compared with (P). In the sequel, we only
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consider non-negative solutions of (P) and (P) even if it is not explicitly
mentioned.

LeEMMA 1.1. (i) If Problem (P) has a mon-trivial (super-) solution
W such that

(1.1) Sjn W(t, )|z 'dt< +oo
then (P) admits a non-trivial solution which is global in time.
(i) If every monm-trivial solution W of (P) satisfies

(1.2) lim sup|| Wt -) |27 = + oo

then every non-trivial solution of (P) blows up in a finite time.

Proor. (i) Let B(t) be the solution of the following Cauchy problem
for the ordinary differential equation:

(1.3) B@)=BErIWE, )= BO)=4.

Then #%(t, ) =B(t) W(t, x) is a super-solution of (P) for the Cauchy data
Uo(x) =B, W (0, x). In fact,

U—AT> B W > W=

Thus it suffices to show that (1.3) admits a global solution for some g,.
This equation is explicitly integrated as

sy =(so> == [ 1w, lzds)

Therefore (1.1) assures this to be global for sufficiently small 8,.
(ii) Let z(v:w) be the solution of the Cauchy problem

(1.4) —di:z”, 2(0 : w)=w.
dv
If w=Wi(t z) is a solution of (P) with the Cauchy data wu,(z), then

wu(t, x)==2(: W(t, x)) is a sub-solution of (P) with the same Cauchy data.
In fact, we have from (1.4)

we—Du=w — V2 VW et 2, (W, —AW)
dw?
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d*z
dw?

uP — VW2

Hence if we show d%/dw?>0, u will be a sub-solution. Integrating (1.4)
we have

(1.5) 20 w) :(

=0 (w=0).

1

—(p— 1)v>_1“p_1) (w=+0),

Differentiating this twice, we have

ar ()Y

Since by (1.4) we have 0<w<z, we conclude d’z/du*>0.

Thus it suffices to show that » blows up. In view of (1.5), this
happens if there exists (¢, ) such that W(¢t, x)*~'¢>1/(p—1). This is
assured by (1.2).

COROLLARY 1.2. The greatest lower bouud for p satisfying (1.1) and
the least upper bound for p satisfying (1.2) both agree with the critical
exponent of blowup.

Proor. Set

A={p>1; (1.1) holds for some non-trivial solution W of (P)},
B={p>1; (1.2) holds for any non-trivial solution W of (P)},

and let
a=inf{p;p€ A}, B=sup{p;p€ B}.

We shall show that {p>a}C A, {1<p<p}c B and that x=8. Then Lemma
1.1 will immediately imply p*=a=p, including the existence of the
critical exponent p*.

Let p>a. Then there exists ¢ such that «<<¢<p and a non-trivial
solution W snch that

fu Wit, )| dt<oo.

Hence in view of the boundedness of | W(t, -)||l. in ¢, we have

[C1wie, eatsupiwie, [T, - s de<eo.
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Thus p€ A. Next let p<B. Then there exists ¢ such that p<g<p and
that for every non-trivial solution W we have

lim sup|| W(t, -)||% 't =0,

hence

lim sup| Wz, +) |z =lim sup{(| W, -}l )7~/ £=r01te5 = co,
t >0 t—co

Thus p€ B. Now we compare « with 8. Assume p>p. Then for any
g such that f<q<p we can find a non-trivial solution W such that

lim sup| W (¢, -) &t <o,
hence
Wi, ) <Ct
Thus we will have
(Wit )% '<Ctr, T:p_—_l>1’
qg—1
hence

[Ciwee, zde <o,

implying p>a. Since p>p was arbitrary, we conclude that «<p. If
a<pB, then a<p<p would imply p€ AN B. But this is absurd in view
of Lemma 1.1.

It is easy to observe the following monotonicity property of the
critical exponent. It seems to us, however, that it is not explicitly stated
in the literature. So we give a proof.

LEMMA 1.3. Let D,cD, Then we have p*(D,) <p*(D,).

Proor. This follows directly from the comparison theorem for the
non-linear heat equation applied on the smaller domain D,. In view of
Lemma 1.1, this follows also from the comparison theorem for linear
heat equation as follows: Let 1<p<p*(D,). We shall show that any
non-trivial solution of (P) for D, with exponent p blows up in a finite
time. Assume that there exists a non-trivial time-global solution.
Then by Lemma 1.1 (ii) there exists a non-trivial solution W(t, z) of

~

(P) for D, satisfying

lim sup|| W(t, -) |5t < 4+ 0.
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Choosing a smaller initial data, we then find that (P) for D, also possesses
a non-trivial solution satisfying the same estimate as above, hence
satisfying

Wi, )< CeeD.

Thus we have, for any ¢>0
S:n Wit -)|2r-dt < +co.

In view of Lemma 1.1 (i) this implies that p+e>p*(D;,). But this con-
tradicts with p<p*(D,). Thus we proved p<p*(D,). Since p is arbitrary,
we obtain p*(D,) <p*(D,).

2. Main Theorem and its Proof.

First we introduce a class of domains which are favorable to our
discussion:

DEFINITION 2.1. We say that a domain DCRY is asymptotically
regular at infinity if for some non-negative non-trivial Cauchy data
uo(x) with compact support the solution u(f, ) of the Dirichlet mixed
problem for the linear heat equation (P) satisfies either of the following
asymptotic:

(i) Ju(, -)ls€ Ly(R4) for any 2>0.

(ii) There exists 21>0 such that for every ¢>0 we have, with some
C=C(e) >0,

2.1) %t—*—egllu(t, Vo< Ct-2+ for t>C.

A bounded domain satisfies (i) because |u(t, -)|.<Ce™** for some
a>0. We conjecture that most (eventually all) domains are asymptotically
regular at infinity in our sense. We shall show later that conical domains
are examples of such.

We need the following variant of this definition:

LEMMA 22. Assume that the asymptotic (i) (resp. (ii)) of Definition
2.1 holds for the solution for some mon-negative non-trivial Cauchy data
with compact support. Then (i) (resp. (ii)) holds for the solution for
every such Cauchy data.

Proor. Let v(t,x) be the solution corresponding to another non-
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trivial Cauchy data v,(x) with compact support. Since the solutions
have strictly positive value for ¢>0,x€ D, we have wu(t, x)>Cuv(x) for
any fixed t,>0. Thus by the comparison theorem we have

lu(t, )llo=Cllv(t—to, )|

Obviously we have a similar estimate with % and v interchanged. Finally
it suffices to notice that the translation by #, does not change the form
of the asymptotics.

If D has a regular boundary such that it assures the strong maximum
principle, then we can compare the solution w with the fundamental
solution E(t,x,y) of the Dirichlet mixed problem (P) with the intitial
data d(x—y) for any fixed y€ D, and thus we can replace |u(t, -)|. in
Definition 2.1 by |E(t, -, ¥)|. or sup E(t,x,y) or by the one for any

bounded initial data. This would be more elegant as a definition. But
what we actually need is only the behavior of solutions with compact
support initial data.

Now we present our main theorem.

THEOREM 2.3. Let D,CRY* D,CR* be Euclidean domains one of
which 1s asymptotically regular at infinity. Then for the critical exponent
of blowup of the Dirichlet mized problem (P) we have the following
relation:

. 1 1 1
0.4bis = + .
( ) p*(DixD)—1  p*(D)—1 = p*(Dy)—1

Proor. Let p* denote the value given as p*(D,xD,) in the above
formula, namely,
1 _ 1 1
p*—1 p*D)-1 p*D,)—1

Assume first that p>p*. Then we can find p,>p*(D,), p,>p*(D,)
such that
1 1 1

< + .
p—1 p,—1 p.—1

The Dirichlet problem (P) for D,, D, with the exponent p,, , respectively,
admit time-global non-trivial solutions. Hence by Lemma 1.1 (ii), there
exist solutions W, of the Dirichlet problem (P) for D;, j =1, 2, respectively,
such that
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lim sup|| W;(¢t, ) |27 t<+o0, j=1,2,
t—o0
hence
[W;(t, ) |-<CtYwi™D, j=1,2,

for some constant C. Then W(t, x)=W(t, o) W(t, "), where 2/, " denote
the variables of RY-* R* respectively, is a solution of (P) in D, xD,
which satisfies

rll Wi, -) ||£;’dtgr Ct~dt,
with

22) a=(tg o) >1

Thus in view of Lemma 1.1 (i) we conclde that (P) admits a time global
non-trivial solution for D,xD, with the exponent p, and therefore
p>p*(D,x D,). Since p>p* is arbitrary, we conclude that p*>p*(D,x D,)
and we proved one direction of the inequality:

1 1 1
(23) > + :
P*(DiX D) =1~ p*(D)—=1 = p*(Dy)—1

Note that for this part no assumption on the domains is used.

Now we prove the opposite direction. Note that if either of p*(D;)
is equal to 1, then the above inequality implies p*(D,x D, =1, hence
(0.4) holds in this sense. Assume therefore that p*(D;)>1, j=1,2 and
let 1<p<p*. Then we can find p,<p*(D,), p,<p*(D,) such that

1>1+1

p—17 p—1 p—1°

We shall show that every non-trivial solution of (P) with the exponent
p blows up in a finite time. In view Lemma 1.1 (ii) it suffices to show
that for every solution W(t, x) of (P) on D,x D, we have

lim sup||W(¢, -)||% 't =+ 0.
t—c0

In view of the comparison theorem, it suffices to do so for a Cauchy
data of product type w,(x)w.(x”), because we can find such a data (of
compact support) supporting any given non-trivial non-negative data
from below. By the uniqueness of solutions the solution itself is then
of product type Wi(t, x)=W,(t, 2') W,(t, "), where W, is a solution of the
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problem (P) on the domain D; with the Cauchy data w;, j =1, 2, respectively.
By the choice of p;, and Lemma 1.1 (i) we have

2.4) [T dt=+oo, =12

This implies that for any >0 there exist sequences {¢;,}>, 7=1,2,
tending to +oco such that

IW;tsm, Z72Ct0*0, n=1,2,---, j=12.

Since we cannot expect in general that we can choose a sequence
common to §=1,2, this implies formally nothing. In view of Lemma
2.2, however, our assumption on the asymptotic regularity of the
domain, say D, at infinity implies that condition (ii) of Definition 2.1
holds for D, with some 2. We have 4,<1/(p,—1) since otherwise the
integral in (2.4) would be finite. Thus for any ¢>0 we have

|| W(thy ')”go_lth:(” Wl(thy ')”oo”WZ(thy ')”oo)p—lth
SOttty
SCt;;G—E(P—UFz/(Pz—U’
where ¢, given by (2.2), is now less than 1. Thus if ¢ is sufficiently
small, the power of %,, becomes positive and hence the last term tends

to infinity as t,,—oco. This proves p<p*(D,Xx D,). Since p <p* is arbitrary,
we conclude that p*<p*(D,x D,), that is, the opposite inequality in (0.4).

3. Examples and Applications.

We first prove the following

ProrosITION 8.1. A cone I' is asymptotically regular at infinity in
the sense of Definition 2.1.

ProOOF. Let u,(x) € C3(I'). It can be expanded via the eigenfunctions
as follows:

(3.1) Wo () = (7, 0) = il o, (g)T—(N—n/sz '\/ﬁJpn('r‘Z)xn(l)dl,
n= 0
where ¢,(0) is the eigenfunction corresponding to the mn-th Dirichlet

eigenvalue o, of the spherical (positive) Laplacian A, for the domain
rnsv,
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1 1 12
. P - - = n e _12 )
32) b=1ut 5 (N-2) [w+4(N )]

and J, is the Bessel function. The integral is what is known as the
Hankel transform. The spectral density y.(2) is given as the Hankel

transform of r‘”“’/zg yo Uo(r, 0)¢,(0)d0 and is a smooth function as
rns

described in Lemma 3.2 below. Then the solution of (P) for this initial
data is given by

o

(3.3) wlw, ) =u(r,0,8)= 3 ¢, (0)r‘“"1’/2§ /7, (r2) 1 (A)dA.

n=1 0
For this solution we shall show that the asymptotic (2.1) of Definition
2.1 holds in the form

(34) %t“”””zgsup I u(x’ t) | gCt“”“’/Z,

where y=y, is the quantity appearing in the critical exponent of blowup
(0.3) of the domain 7. To show (3.4), it suffices to show that the same
holds for the first term of the sum (3.3), and that the other terms are
of O@t~W+%) + > being the quantity determined from w, by the same
formula (3.2) as for y. For this purpose we review some properties of
the Hankel transform. General reference for them is [Z].

LEMMA 32. Let v>—1/2. (i) The tnverse of the Hankel transform
FQ) =300 = | VraLafndr

is given by the same formula:
fr) =7 F) )= r VrAd(r2) F(2)da.

(ii) Let N, be a differential operator with rational coefficients defined by

1
u—i—E

N, fi=pinDying= 4
) dr r

f.

Then
ﬂv+l(_rf):Nu<4[uf7 ﬂ[u+1(Nvf):—2j[vf'

(iii) If f(r) is in CF(0, ), then F(A) ts multi-valued analytic on C\{0}.
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The principal branch satisfies the following estimate on the real axis:

(8.5) [FQA)|<CrHE - for 0<2<1],
<C,i7* for any k, for Ax>1.

Moreover, as i—0 we have

1 (==}
~ »+1/2 — v+1/2 .
(8.6) F)~K2+2, where K ETATESTE go 2 flr)dr
The asserted asymptotic can be deduced by a standard argument
from the above properties applied to %,(4): Let n=1 and omit the suffix
for the sake of simplicity. We have

pm-ne g " e/ TAT, (r A (A2
0
=7 N—U/ZSle—ZZ‘«/Fx‘Ju(rz)x(z)dz+r“”—”’2 r e VT2, (rA)3(2)d2
0 1
1 <Creve (" et/ 72 fra) 2404,
0
hif gcw--<~—wzj“e-ﬂwmm)-kdz.
1

Assume 0<r<1. Employ the change of variable
(3.7) A=s/4/t.
In view of the asymptotic J,(2)~=2*/2°I'(v+1) at the origin, we obtain

1] <C1'”+1‘N’2t*”‘lsw e~"s? s,

0

Since the power of r is positive, this quantity is of O(¢t—*~!) and decays
faster than the main asymptotic term. We further divide the quantity
II as follows:

1/r ©

’w?t«/ﬁ.fu(rz)x(z)dz+r—<N—”/2S e /T2, (rA)y(2)d2

1/r

| =

1

=ITa+IIb.

Then by the same change of variable we have

1/r
1

ITTa| gCr—“"—"/ZS " /T (rA) A A
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<C,,.u+1—N/2t—(»—k+3/2)/2Sm e"zs‘-’"‘l_kds

- vt

and this is even of exponential decay in t. Similarly, noticing that for
ra>1, v/raJ,(rd) is bounded, we have

c°)

|IIb|gCr—‘N—”/2§ e

1/

gCt<k_1—<N—1)/z>/z<ﬁ>(N_1)lzr_ e~"sds.

r Vi|r

Note that there exists >0 such that

x‘"“”’zre"’zs"‘ds:O(e*“z), as z—oo.
Since x=4/t/r>+/t now, we see that this term is also of exponential
decay in t.

Next assume r>1. This time we divide the integral I as follows:

1/ 1

I:r“”‘”“’s re“z‘«/ﬁJ,,(M)x(z)dZ—kr“”“’/zS 70/ T2 (1) (A)d2

0 1/

=Ja+1Ib.

By the same change of variable we have

T \N/2—u—1 Cy/i
]Ial<t*‘”+1+N/2>/2<—“/t\ e Sw”e*“zs%#ds.
- r J

0

Note that the power of +/t/r is equal to —y<0. The function
x7 Sm e's?+ids
0

of z is obviously bounded. Hence the above quantity is of O(t= @+ +¥/212) =
O(t~W+rk) yniformly in + in this region. Similarly, we have

IIb| <t“”+1+N/2”2< Vi >(N—1)12 SVT e_,2su+1/2ds:O(t—(N+T)/2).
- r Vir
The estimate of II is similar to this and even easier (of faster decay).
The estimate from above for terms with n>2 is quite the same.
To prove the converse estimate, let « be a positive constant less

than the first positive zero of J,(1) and of x(2). Note that (u,(r, 8), ¢.(9))sZ0,
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hence (3.6) holds for y, with K+#0. Thus specializing r=+/t we have,
with some ¢>0,

- 1)/2S -2 ‘f\/ﬁJ (1) x(])dll

>t—(N—2)/4

>t-—(N—2)/4

e/ T (W E AR —t o

Sme—ﬂ /T, (v D) (z)dx[
¢

e Tl Eanaas
g3 t\/ 2 (,\/ tx)u1v+l/2d2_Ct—(N—l)/4S e—? tl—kdz.

a

th——(N—Z)HS
0
Here the first term of the last side has an asymptotic expansion with
the main term of the form Ki¢-“++¥®i2= Kt-W+ni2 (with another constant
K). The second term decays exponentially in ¢. Thus we proved the
desired asymptotic (3.4).

REMARK. In the above proof we did not essentially use the second
estimate of (3.5): It may be replaced by O(2*) for some M>0, which
is the case if F'(2) is the Hankel transform of distributions in &(0, o).
Thus for this domain the same asymptotic holds e.g. for the fundamental
solution of the heat equation.

Now we discuss some examples. Note that formula (0.4) can be
generalized to
1 1 1

p(D,x -+ xD)—1 p(D)—1 p(D,)—1

provided that each factor D, (execept one) is asymptotically regular at
infinity.

Example 3.3. (i) We can interpret Fujita’s result (0.1) as

1 1 1 )
- TR T ,
rRI—1 w1 Tpmor W tme)

based on the particular case p*(R)=1+2/1=3.
(i) The domain D={x€ R";2,>0, - - -, 2,>0} considered by [M1] can be
regarded as the product D=R"*xR:. According to [M1] we have

2

02bis)  pHD=14 A especially p*(R) =1+ 2 =2,
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Our formula then implies that

1 1 1
PRV XRY) -1 p*(RVH—1 p*Ry)-1

This is consistent because N+k=(N—Fk)+2k.
(iii) In particular, we have

_3p*(D)—1 * D) = 2p*(D)—1 )
o1 DRXD==NE

(iv) Let D, be a bounded domain and let D, be arbitrary. In this case
we have p*(D,)=1, as was first proved by It6 [I]. Hence our formula
implies p*(D, X D,) =1, irrespective of the asymptotic regularity of D, at
infinity, as remarked in the proof of Theorem 2.3. Thus in particular
the critical exponent of blowup of any ecylinder or half-cylinder with
bounded base is equal to 1.

If we combine these with Lemma 1.3 on the comparison of domaings
in inclusion relation, we can determine the critical exponent of blowup
for wider class of domains:

(3.8) P*(R X D)

Example 3.4. Let D be the paraboloid x,>22+ --- +22_,in R¥. Then
we have p*(D)=1 and p*(R¥\D)=1+2/N. In fact, since D contains a
half-cylinder, we have p*(D)>1. On the other hand, since D is contained
in a (translated) cone " of arbitrarily narrow base QcC.SV~!, we have

2

p*(D) <1+ ,
D) N+7r

where y—-+oo as £ becomes smaller. Thus we obtain p*(D)=1. We
can obtain the value of p*(RY\ D) quite similarly, by comparing R¥\D
with R¥\ I and RY,

Finally, we shall distinguish the following geometric application of
our formula which seems to be more interesting than the other examples.
This complicated formula would never have been remarked through
properly geometric considerations:

PRrOPOSITION 3.5. i) Let I';, 7=1,2 be two cones in RYi, j=1,2,
respectively. Put

Q;=I;NS8%7, j=1,2, Q=(I"XI%) NS

Then the first Dirichlet eigenvalue w of the Laplace-Beltrami operator
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of the spherical domain 2 is determined from those w;, j=1,2 of 2;,
j=1,2 by the formula

(8.9 o=+ A2+ (N2—1P+1) (v, + (N2—1)°+1) _%

ii) As the limiting case, let Q' CSV~* be an (N—2)-dimensional spherical
domain considered as situated in the equator of S¥'. Let Q denote the
slice-formed domain of S¥°! defined as the pull-back =7'Q" of Q' by the
projection from the poles to the equator, and let Q. be its part in the
northern hemisphere. Then the first Dirichlet eigenvalue o resp. w, of
these domains can be expressed by the corresponding value o of £ as

Jollows:
a):w’-}—\/ (N_3)2 o —N=3

2
W= —}—3\/ —|-co ——%.

Proor. By the result of [LM1] we have

2 .
p*(I';)=1+ , J=12
) 7i+N;

and similar formula for p*(/";x ;). Combining these with (0.4) which
can be applied in view of Proposition 3.1, and eliminating 7, 7, from

:T(T+N1+N2“2)y )’j(rj—I—N,-—Z)—w,-:O,j:l,Z, r=r1t7r..

we obtain (3.9). The second assertion can be proved just similarly with
use of (3.8). (This is not a special case of the first one.)

Note that 2 is not the product (of 2;, 7=1,2. Thisis why the formula
is muech more complicated than the simple sum of the eigenvalues of
the factors).

Example 3.6. The first Dirichlet eigenvalue =*/(8—a)® of the arc
a<p<pB in S§' for the Laplace-Beltrami operator —o*/d¢* is obtained by
an elementary calculation. Thus, the first Dirichlet eigenvalue of the
2-dimensional spherical slice domain a<¢p<p, 0<6<r is equal to
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and that of a<e<B, 0<0<L7/2 is equal to
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