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Stability of stationary interfaces in a generalized
mean curvature flow

Shin-Ichiro E1 and Eiji YANAGIDA

Abstract. The dynamics of hypersurfaces whose normal velocities
depend on mean curvatures and positions are considered. It is shown
that the stability of stationary hypersurfaces is determined by an
eigenvalue problem on the hypersurfaces and in consequence, the stability
of stationary hypersurfaces with various shapes is discussed. For ex-
ample, it is shown that any bounded stationary hypersurface is unstable
if the normal velocity does not depend on positions.

§ 1. Introduction.

Let N>2 be an integer, and let [°(t) be a family of (N—1)-dimen-
sional hypersurfaces that are boundaries of open sets. Because ['({)
separates the open set from its complement, we will call such [°(f) an
interface. We assume that ['(t) evolves continuously depending on its
curvature, normal vector and position. Then the dynamics of ['(f) can
be written as

(1.1) Vi(x)=F(r(x), v(x), x) x€ ['(t), t>0,

Here k(x) and v(x) are the mean curvature and the outward unit normal
vector of ['(t) at xz€['(t), V(x) the normal velocity in the outward
direction, F'(k, v, x) a function of (x,v, x) € RXSY'X R". Inorder to ensure
the existence and uniqueness of a (generalized) solution of (1.1), we
assume that F is continuously differentiable with respect to (x,v,2)
and satisfies

(1.2) aiF<0 for all (r, v, x).
K

(See Chen-Giga-Goto [1] and Evans-Spruck [4].)
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We say that "=7" is a stationary interface for (1.1) if and only
if V(x)=0 on [, i.e. I is a stationary interface if and only if /™ is a
C*-hypersurface that is a boundary of an open set and satisfies

F(k(@),v(2), )=0, xel™

The purpose of this paper is to study the stability of stationary inter-
faces.

The dynamics of interfaces of the form (1.1) has been extensively
studied. When

F=—(N—1)s,

(1.1) is called a mean curvature flow equation in R¥. It was shown in
[1] that, for any bounded 7™, I’(t) disappears in a finite time (see also
[6,6,7]). Hence there exists no stationary interface in this case. If
N=2 and [" is in a bounded domain  and has endpoints on 9%, then
the stationary interface exists and the interface with minimal length
is stable (see [10]). The more general case that interfaces have bound-
aries will be treated in the forthcoming paper [3]. On the other hand,
Ei-lIida-Yanagida [2] introduced

F={—(N—-1)d(x)r(x) —{Vd(x), v(x)>+c}d(2)

as the dynamics of internal layers of a certain spatially inhomogeneous
reaction-diffusion equation, where d(x) is a given positive function, ¢ is
a constant, and {-,-)> denotes the inner product of two N-dimensional
vectors. As we will see in a simple example, there exists a stationary
interface by taking F suitably.

In Section 2, we describe a precise definition of the stability, and
then consider some special forms of F. First we consider the case
where F' is invariant in some direction. In this case, we will show
that any bounded stationary interface is unstable. In particular, if F
does not depend on x, then any stationary interface is unstable. Next
we consider the case where F is invariant with respect to a certain
rotation. In this case, we will show that any stationary interface is
unstable if it is not invariant under the rotation. In particular, if F
is radially symmetric with respect to origin, then any non-radial inter-
face is unstable. We also give a simple example which admits a stable
radial interface.

In order to prove these results, we consider a linearized equation
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of (1.1) at /™, and introduce an associated eigenvalue problem. We
show in Section 8 that the stability is closely related with the sign of
the maximal eigenvalue. By using this property, we will give proofs
of our main results in Sections 4 and 5.

In this paper, we only consider the interfaces without boundary.
The dynamics of interfaces with boundaries will be studied in a forth-
coming paper [3].

§ 2. Definitions and main results.

Let D(I") denote an open set surrounded by an interface I, and let
dist(x, I") be a signed distance defined by

+inf ly—af if x¢D(T),
AS

dist (x, ') =
ist(z, I —infly—a if e D).
YE

Let ¢ be a small parameter, and let D(J",¢) be an open set in R¥ defined
by
D(I',e) :={x € RY: —co<Zdist(z, I') <e}.
Let ™ be a stationary interface of (1.1). We define the stability
of /™ (in the sense of Liapunov) as follows. The stationary interface

I is said to be stable if, given any >0, there exists >0 such that,
for any /™ with

D(r, —o)c D™ DI, +9),
the solution of (1.1) subject to the initial condition [7(0)=7" satisfies
D(I, —e)C D((t))CD(I™, +¢) for all t=0.

More strongly, the stationary interface [ is said to be exponentially
stable if it is stable and satisfies

D(r, —C,exp(—Cyt)) CcD(I"'(t))cD(I™, C, exp(—Cyt)) for all t=>0

for some constants C,>0 and C,>0. The stationary interface [ is said
said to be unstable if it is not stable.

Let p be an (N—1)-dimensional vector. We say that F is invariant
in the direction of p if, for any (r,v,x)ERXS¥ 'XRY, F satisfies
F(k,v,x+Cp)=F(r, v, x) for all CcR.
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Our first result is as follows.

THEOREM 2.1. Suppose that F is invariant in some direction. Then
any bounded stationary interface is unstable.

The following corollary is a direct consequence of Theorem 2.1.

COROLLARY 2.1. Suppose that F does not depend on x, that is F=
F(k,v). Then any bounded stationary interface is unstable.

Next, let T, be an Nx N matrix given by

cosf —sind
sin @ cos f 0

1
Let U be an element of SO(N), and let G(U) be a one-parameter group
of transformations

G(U) ={UToU)pero,0:-

We say that F is G(U)-invariant if, for any (x,v, )€ RXS" 'XR"Y, F
satisfies

Fle,v,2)=F(k,v, UT,Ux)

for all 6€[0,27). We also say that /™ is G(U)-invariant if, for any
1 ASH A

U'T,Uxe e
holds for all #¢ [0, 2x).

THEOREM 2.2. Suppose that F is G(U)-invariant for some U. Then
any bounded stationary interface is unstable if it ts not G(U)-invariant.

We note that F is radially symmetric with respeet to x=0, that
is F=F(x,v, |z|) if and only if F is G(U)-invariant for all Ue SO(N).
Similarly [ is radially symmetric with respect to x=0 if and only if
I is G(U)-invariant for all Ue SO(N). Thus the following corollary
immediately follows from Theorem 2.2.

COROLLARY 2.2. Suppose that F=F(x,v,|z|). Then any bounded
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stationary interface is unstable if it is not radially symmetric with
respect to x=0.

If [ is radially symmetrie, then it may be stable. In the next
section, we will give a simple example which admits a stable stationary
interface.

§ 3. Linearization.

In this section, we write the outward normal unit vector, the mean
curvature and the principal curvatures at x€ 1™ of ™ by v(z), #(x) and
k;(x), respectively.

Let ['(t) be a perturbation of 7/, and assume that ['(t) can be
written as

rt)={y :=x+es(t, z)v(z); x€ "},

where ¢>0 is a sufficiently small parameter and s(¢, ) is a function of
t and x€ *. Then we have

V(y)=es.(t, x) +0(c?),
K (y) = k() — e(N— 1)“1{As(t, %) +s(t. ) Ng /cl(oc)z}+0(52),
v(y) =v(x) —eVs(t, ) +0(e),

where A and V are the Laplacian and the gradient on 7. On above
calculations, we refer, e.g., Lemma 3.6 in [9]. We put

Fo= (4(@), v(@), v),
ok
F,.= ZF (k(2), v(x), 2),

F..=F (o0) v(z), o).
ox

From the above consideration, we see that s(¢, x) satisfies
8,(t, x) =L[s(t, )]+ 0(e).

where L is a linear differential operator on ™ given by

Lis(t, )] :=— (N—1F.{ asit, 2) +5(t, ) T w:(0)")
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—(F,, Vs(t,x)>+ (F,, v)s(t, x).

If we neglect higher order terms of ¢ and seek s(¢, x) of the form s(¢, x) =
exp(t)p(x), then we are led to the following eigenvalue problem on /™

(3.1) Ap@)=Llo(x)], wel™
LEMMA 3.1. Let (L) be the spectrum of L and put
A :=sup(Re 2; 1€ o(L)}.

Then 2, 18 a simple eigenvalue of L and its associated eigenfunction
can be taken positive on ™.

Proor. Let L be an operator defined by I.=L —wI, where o is a real
parameter and I is an identity operator. Let ¢(L) be the spectrum of
L. It is clear that

o(L)={A—w; 2€a(L)}.

In view of (1.2), if we take w>0 large enough, then-L becomes a posi-
tive operator. Hence it follows from Krein-Rutman’s theorem [8] that

X :=sup{Re i:ico(L)}=24—o.

is a simple eigenvalue of I, and its associated eigenfunction can be
taken positive on ™.

Let ¢,(x) be an eigenfunction of I associated with 4, Then ¢,()
is also an eigenfunction of L associated with the eigenvalue 2, This
completes the proof.

The following theorem implies that the linearized stability (resp.
instability) implies the Liapunov stability (resp. instability).

THEOREM 3.1. Let I™* be a bounded stationary interface. If 2,<0,
then I is exponentially stable. Conwversely, if 2,>0, then I'* is unstable.

Proor. First we assume that 2,<0. Note that the eigenfunction
associated with 2, satisfies ¢,(x) >0 on ™. Let #>0 be a small parameter
and let 1"*(t), t>0, be a family of interfaces given by

r'+(t) :={y=x+pexp(At/2)p,(x)v(x); x€ I}

We denote the outward normal velocity, the mean curvature and outward
normal unit vector of ['*(t) by V*(y), t*(y) and v*(y), respectively.
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Then we have

V*(y) = (4/2) 1 exp(4:t/2) o () +0(2£7),
and

F(e*(y), v*(y), y) = Ly exp(At/2) o () ]+ 0(¢7)
= Aot XD (At /2) o () + 0 (2£7).

Hence, if p£>0 is sufficiently small, then
VHy)>F(e*(y),v*(y),y)  for all ¢=0.

Thus, by applying Theorem 4.1 of [1], we see that if /c*(0), then
the solution [°(t) of (1.1) with ["(0)=/" satisfies

(3.2) D(r(t)) CD(I*(t)) for all t>0.
Similarly, let [7=(t), t>0, be a family of interfaces given by
=) :={y=z—pexp(At/2)p,(x)v(x); x€ I},

and let V-(y), « (y) and v~(y) denote the outward normal velocity, the
mean curvature and the outward normal unit vector of /"~ (t), respec-
tively. Then we have

Vo (y) <F(k™(9), v~ (v), ¥)-
Hence, by Theorem 4.1 of [1], we see that if /"~ (0)C[™, then
(3.3) D(r~(t)) cD(I(t)) for all ¢=0.
Now, for any ¢>0, we take ¢>0 so small that

max (@) <e,

zer®

and then take 0>0 so small that
0<o<L II:an 20, ().
By (3.2) and (3.3), if
D(re, —o)cD(I")cD(I*, +9),
then [(t) satisfies

D(r, —e)cD(I'~(t)) CD(I"(¢)) € D(I'*(t)) DI, +e)
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for all £=0. This implies that the stationary interface is stable. More-
over it follows from (3.2) and (3.3) that, by taking C,=¢ and C,=—2,/2
>0, we have

D(I, C,exp(—Cyt)) cD(I'" (t) cD(I"(¢)) c D(I'* () cD(I™*, C,exp(—Cit)

for all t=0. Thus it is shown that /™ is exponentially stable.
Next we assume that 2,>0. Let ¢>0 be sufficiently small and be
fixed. For any 6>0, we take ¢>0 so small that

max pey(r) <d.

zelr®
Now put
I'={y=x+pp(x)v(x); €I}

We note that, if /™ is stable, then the solution [*(¢) of (1.1) with I7(0)=1"
must satisfy

D(r*, —e)cD(I'(t) CD(I™, +e)

by taking 6 sufficiently small.
Let

I (t)={y=z+pexp(it/2)p,(@)v(x); z€ I}
Then we can show in a similar manner to (3.2) that

VHy) <F(e*(y), v* (), v)
as long as
|12 exXD(4:t/2) o () | Se.

Hence we have

D(r+(t))cD(I(¢)
as long as D(I"*(t))cD(I*, ¢). This leads to

D(r(¢t)) € D(I™, e)
for some ¢>0. Hence [ is unstable: M

Here we apply the above theorem to a simple example. Assume
that F' is given by

F: —K+g(|xl),

where g is a C'-function satisfying
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9(1)=1/(N—1).
Then
I :={x€R"; |x|=1}
is a stationary interface. The eigenvalue problem (3.1) can be written as
ip(x)=(N—1)"A¢(x)+{1+¢'(D}lp(x), =z

We note that ¢(x)=1 is an eigenfunction associated with 2,=1+g¢'(1).
Hence, by Theorem 3.1. [ is exponentially stable if ¢’(1)<—1 and is
unstable if ¢’(1)>—1.

§4. Proof of Theorem 2.1.

In this section, we complete the proof of Theorem 2.1.
Assume that F is invariant in the direction of p, and let /™ be a
bounded stationary interface. Let J” be an interface defined by

I :={z+pp;, z€,

where g is a real parameter. Then, by assumption, /" also is a
stationary interface for every p. Since [ is bounded, we have ["#]™
for p=0. If || is sufficiently small, then I can be written as

I={z+ov(z; pv(x); €I}
by using some function v(x; g¢) on [™.
Let g(x) be a function on /™ defined by

g(x) :=§—Z(x; 0).

We note that g(x) is written as

g(@) =<p, v(x)).

It is clear from the definition of L that g(x) satisfies L[g(x)]=0. Hence
g(x) is an eigenfunction of L associated with A=0. Since ™ is bounded,
g(x) is not identically zero. Moreover, g(x) must change its sign because
the volume of D(I") is equal to that of D(/”). By Lemma 3.1, this
implies that 2,>0. Thus, by Theorem 8.1. [™ is unstable. W
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§5. Proof of Theorem 2.2.

In this section, we complete the proof of Theorem 2.2.

Assume that F is G(U)-invariant for some Ue€ SO(N), and let ™
be a bounded stationary interface that is not G(U)-invariant. Let [”
be an interface defined by

I ={o’=U"T,Ux;, xc "},

where 6¢€[0,27) is a parameter. Then, by assumption, [ also is a
stationary interface for any 6. Assume that 6 is sufficiently small.
Then "+ and J” can be rewritten as

I ={x+w(x; O)v(x); x€ [}

by using some function w(x; 6) on [
Let h(zx) be a function on 7™ defined by

h(x) ::%%(x; 0).

We note that h(x) is written as

h(@) =<q(x), »(2)),
where q(z) is an N-dimensional vector given by

q(x) := 19111([)1 (U T,Ux—2x)/6.
It is clear from the definition of L that h(x) satisfies L[h(x)]=0. Hence
h(x) is an eigenfunction of L associated with 2=0. Since [ is not
G(U)-invariant, h(x) is not identically zero. Moreover, since the volume
of D(I") is equal to that of D(J™), h(x) must change its sign. By Lemma
3.1, this implies 4,>0. Thus, by Theorem 3.1° ™ is unstable. Ej
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