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On some alternating sum of dimensions of Siegel cusp

forms of general degree and cusp configurations

By Tomoyoshi IBUKIYAMA

Abstract. We fix a prime p, and consider discrete subgroups of the
symplectic group of degree n over the rational numbers such that the
completion at p is a standard parahoric subgroup of the p-adic symplee-
tic group and those at the other primes are the standard maximal
compact subgroups. Firstly, we show the vanishing of the contribution
of central unipotent elements to an alternating sum of the dimensions
of holomorphic cusp forms belonging to the above discrete groups under
the assumption that the weight is bigger than 2n. Secondly, we des-
cribe the configuration of cusps of the Satake compactification associated
with discrete subgroups of the above type and relations of cusps under
the covering maps between various discrete subgroups. To prove these,
we shall generalize slightly the relation between zeta functions of pre-
homogeneous vector spaces and dimension formula first developped by
Morita and Shintani, and also give some combinatorial results on affine
weyl groups.

As a generalization of the Eichler-Jacquet-Langlands correspondence
between automorphic forms on SL, and SU(2), it has been conjectured
that there should exist good global correspondence between automorphic
forms on Sp(n, R) (the real symplectic group of size 2n) and its compact
twist Sp(n). The most general conjecture on such correspondence were
given by R. P. Langlands [21] for any reductive groups as the func-
toriality on L-groups. (See also Y. Ihara [17]). Many representation
theoretical study has been done by several mathematicians. For example,
J. Arthur [1] gave the simplified trace formula and R. E. Kottwitz [19]
used it to prove the conjecture on Tamagawa numbers. Now, our ap-
proach to the theory is rather classical. For those holomorphic forms
on Sp(n, R) and spherical functions on Sp(n) belonging to typical and
explicitly defined discrete subgroups (parahoric subgroups), some precise
conjecture on the above type correspondence has been formulated in [15],
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[16], and when n=2, the equality of the dimensions of such automorphic
forms has been proved in [13]. In this paper, intending to generalize
this dimensional equality, we shall show the vanishing of the contribu-
tion of “central” unipotent conjugacy classes to the dimension of holo-
morphic Siegel new cusp forms belonging to Iwahori (i.e. minimal para-
horic) subgroup of Sp(n, @) for arbitrary = (§1-4. Main Theorem).
Secondly, we shall give explicit structures of the cusp configurations of
the Satake compactifications of the Siegel upper half space of any degree
divided by any parahoric subgroups of Sp(n, Q) and relations between
cusps belonging to different parahoric subgroups (§ 5. Proposition 5.2, 5.3,
5.4). We include these results on cusps in this paper, because the proof
is closely connected to the one for our Main Theorem, as will be ex-
plained later. On the vanishing of the contribution of unipotent ele-
ments, the papers J. Arthur [1] and R. E. Kottwitz [19] seem very close
to the content of this paper, but it is assumed in [19] that some g-adic
component of the representation treated there is absolutely cuspidal. In
our case, this assumption is not satisfied. In any way, the styles are
fairly different. In our approach, we use Godement’s formula [9] and
Shintani’s theory of the zeta functions of prehomogeneous vector spaces,
and the results in this paper contains explicit description of global
central unipotent conjugacy classes and inequivalent cusps. Bécherer
and Schulze-Pillot obtained the description of cusps for the group so
called I'y(p) (one of the parahoric subgroups treated in this paper) inde-
pendently.

Now, the philosophical back ground of our Main Theorem is the Lang-
lands conjecture on stable conjugacy classes: as Sp(n) consists of semi-
simple elements, unipotent elements of Sp(n, R) should have no contri-
bution to dimensions of “new forms” (, although they usually have some
contribution to the whole dimension, unless we take “new part”). Our
Main Theorem is of arithmetic nature. In fact, the dimension of the
new forms is expressed as some kind of alternating sum of dimensions
of Siegel cusp forms belonging to various discrete subgroups (, hence our
title), and the contribution of central unipotent conjugacy classes to each
dimension in this sum does not vanish in general, although the whole
contribution vanishes. To prove this, we need some combinatorial theory
of Bruhat-Tits type (§4. Theorem 4.1).

To prove our Main Theorem, we proceed as follows. By Godements’s
trace formula, the dimension of Siegel cusp forms belonging to a discrete
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group I' can be expressed as a sum of contributions of several I'-con-
jugacy classes (Godement [9]). The contribution of central unipotent
conjugacy classes has been known to be equal to special values of some
zeta functions attached to prehomogenious vector spaces. (Morita [24],
Shintani [27]). Although we do not know explicit values of the above
special values except for a few cases, we can see, by the above Morita-
Shintani’s formula, which kind of data on conjugacy classes determine
the contribution of the class to the dimension. We compare these data
attached to families of central unipotent /'-conjugacy classes in various
I, and deduce the vanishing of the contribution by some combinatorial
argument.

To execute these programs actually, first we have to modify Morita-
Shintani’s formula slightly, because some discrete subgroups we need
have not been treated in their formulation. Secondly, we must classify
central conjugacy classes in various I” explicitly. Such conjugacy classes
are divided into several families each of which correspond naturally to
equivalence classes of cusps explicitly with the aid of the Bruhat-Tits
theory. The contribution of such families to the dimension can be
determined by the stabilizers in I' of the corresponding cusps. Finally,
we compare these stabilizers for various cusps and various I', complete
the proof of our Main Theorem, and of the results on cusp configura-
tions. Some part of our results can be generalized to the case of other
algebraic groups, but omitted here.

Now, we outline the content of each section. In §1, after some preli-
minary review, we shall state Main Theorem. In §2, we shall give a
modification of Morita-Shintani’s formula. In § 3, we shall classify equi-
valence classes of cusps and central unipotent conjugacy classes. In §4,
we shall give some combinatorial theory on parahoric groups and prove
Main Theorem. In §5, we shall give the results on cusp configurations.

§1. Main Theorem

In this section, after a brief review on Siegel modular forms, first
we shall review Godement’s general dimension formula of cusp forms
([9]), and define the contribution of central unipotent elements. Second-
ly, we shall explain our choice of discrete subgroups and the exact

meaning of “new forms”. (This part is a review of [13], [14], [15].)
Finally, we shall state Main Theorem.
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1.1. Review on Siegel modular forms.

We fix a natural number n once and for all throughout this paper.
For any commutative ring K with unit, we denote by Sp(n, K) the
(split) symplectic group over K of size 2n as usual:

Sp(n, K)={g € M,.(K); gJ'g=J},

0 _111
where J :<1 0 ) and 1, is the unit matrix of size m. We shall

n

often write elements g of Sp(n, K) in the form

=z 5

in terms of submatirices A, B,C, D€ M,(K), and we shall say that g is
composed by A, B,C,D for the sake of simplicity. Denote by H, the
Siegel upper half space of degree n:

H,={Z=X+1YeM,(C); X, Ye M,(R), X=X, Y="Y,
Y is positive definite}.
The group Sp(n, R) acts on H, by

0Z=(AZ+ B)(CZ+D), <g=<é l;>e Sp(n, B), Z€ H.),

where g is composed by A, B,C,D. Let I' be a discrete subgroup of
Sp(n, R) with vol(Sp(n, R)/I")<oo. For the sake of simplicity, we always
assume that I"C Sp(n, @) throughout this paper, although many parts of
this paper can be easily generalized to the other cases. For each integer
k>1 and each discrete groug I', we denote by S,(I") the space of Siegel
cusp forms on H, of weight k& belonging to I'. Namely, by definition,
Si(I") is the C-linear space of all holomorphic functions f(Z) on H, which
satisfy

(1) fGZ)=f(Z)J(r, Z)* for all yel', and
(i) f(Z)det(Im(Z))** is bounded on H,,

where we put J(y, Z)=det(CZ+ D) for y composed by A, B, C, D.

1.2. Central quasi unipotent elements.

Now, we shall review Godement’s Dimension formula of S,(I"). give



Stiegel cusp forms 249

the definition of the contribution of central unipotent elements, and also
some related conjectures.

For any integer k>2n, the following dimension formula of S,(I')
has been known (Godement [8] Exp. 10-29).

n+1
(- 2) .
2 Z—Z\*
= J(y, Z) et (L2—2 ) (detY)*dZ,
2"(2m) "0y (k—m —1) SF\H”; (r, Z)"*de ( % ) (detY)

where dZ=(detY) " [l dX,dY,, for Z=X+1Y € H,,

1Li,i<n
X=(X,), Y=(Y,) e M,(R) (1<i,5<n),
7a(8)= "1:[1 F<s+1+%> as a meromorphic function on s€ C, and I'(s) is the

usual gamma funection.
For the sake of simplicity, we put

n+1>
7"( 2

n k = ’
@) = S Gy, f—n—1)
and
H,(Z) :S > Jir, Z)"‘det(rz —Z >_k(detY)"dZ.
IN\H7ET 21

For any subset C of I', set (formally)

I,L(C,lc):a,,(k)g (zH,(Z))dz.

'\H, \reC

To calculate dim S,(I"), we usually divide I into a disjoint union of
suitable subsets C of I" such that I,(C, k) converges, and express dim S,(I")
as the sum of those I,(C, k). For any subset C of I" such that I, (C, k)
converges, we call I,(C, k) the contribution of C to dim S,(I").

In this paper, we shall study on I,(C, k) for various /" and various
subsets C of I' which consist of “central” unipotent (, or quasi-unipotent)
elements of I'. (The definition will soon be given below.) But, first,
we shall review some general conjectures on the dimension formula.
Although our Main Theorem 1is independent of these conjectures, these
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will make our situation clearer. We say here that an element y€ I is
weakly hyperbolic, if |a|>1 for some eigenvalue « of 7. The following
Conjecture 1 has been known as (a part of) the Selberg principle.

CONJECTURE 1. Let C, be the subset of I' of all weakly hyperbolic
elements of I'. Then, I,(C,, k)=0 for any k>2n.

If ye€I'" is not weakly hyperbolic in the above sense, then it can be
easily shown that y is either torsion, or quasi-unipotent. Here we say
that y€I" is quasi-unipotent, if some power of 7 is unipotent. (This
was called potentially unipotent in [11], [13], [16].) In this paper, we
shall be concerned with quasiunipotent elements. To describe our Con-
jecture 2, we need some more definitions. We shall say that a quasi-
unipotent element y €I is central, if there exists a maximal parabolic
subgroup P of Sp(n, @) such that some power of y is contained in the
center U of the unipotent radical of P. If y is unipotent besides, we
shall say that y is central unipotent. Several experts seem to have had
the following Conjecture 2 in mind.

CONJECTURE 2. Let C?, be the subset of I' of all noncentral quasi-
unipotent elements of I'. Then, I,(C%, k)=0.

The conjectures 1 and 2 are known to be true for n=2 by Morita
[24], Christian [6], and Hashimoto [11].

Taking this conjecture 2 into account, we shall treat only central
quasi-unipotent elements in this paper. In the rest of this sections, we
shall define the rank of central quasi-unipotent elements. This concept
is useful to describe the contribution of such elements (ef. Shintani [27]).
First, we review on maximal parabolic subgroups of Sp(n,@). For each
natural number r such that 1<r<mn, denote by P, the subgroup of
Sp(n, @) of all elements g of the following form:

A, A, B, By,
0 A, B, B,
o o D, 0]
0 Co, Dy D,
where A, By, D € M,(Q), Aw, By, Cw» Dy M, @), and A, B, ‘B,
'Dy €M, .. (Q). '
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These P, (1<r<n) form a complete set of representatives of Sp(n, Q)-
conjugacy classes of maximal parabolic subgroups of Sp(n,®). Denote
by U, the center of the unipotent radical of P,. It is easy to see that

UT:K;" f)esp(n, Q): X='X¢e M, @), X:((f g) for some xeMr(Q)}
and that {1,}=U,cU,cU,c---cU,. So, a unipotent element 7 is central,
if and only if some Sp(n, @)-conjugate is contained in U,. We can also
show that a quasi-unipotent element y is central, if and only if the
unipotent part y, of y is central, where y=y,r, is the Jordan decomposi-
tion of y (r,: semisimple, y,: unipotent, and 7.,y.=r.7,). In fact, assume
that y is central and that yT € U, for some Sp(n,@)-conjugate 7, of 7..
As U, is a divisible group, there exists u € U such that u"=y7. As log
and exp is well defined for unipotent elements, we get y,=u.
Now, for each r (1<r<n), define a subset U’ by

U;:{(l" X)e U:. X=X M@, X:(x O) for some xeGL,(Q)}.
0 1, 00

We shall say that a central quasi-unipotent element y is of rank r, if
some Sp(n, @)-conjugate of y, is contained in U,. This rank is uniquely
determined by 7, because the usual rank of the matrix 1,,—7, is invariant
by conjugation.

Incidentally, we can easily generalize the above definition of the
rank to the case of any Q-form G of semisimple algebraic groups at-
tached to bounded symmetric domains, replacing P, (1<r<m) by standard
maximal parabolic subgroups of G over @, because, in such casses, it has
been known that the centers of the unipotent radicals of these parabolic
subgroups are linearly ordered with respect to inclusion.

1.3. Choice of discrete subgroups.

We shall define discrete subgroups which we shall be concerned in
this paper. We fix a prime number p once and for all throughout this
paper. There exists the unique Iwahori (i.e. minimal paraboric) subgroup
of Sp(n,@,) up to Sp(n, @,)-conjugation (Bruhat-Tits [5]).

We denote by B,(p),=B(p), the following representative of Iwahori
subgroup of Sp(n, Q,):

A B A B C DeM,Z,),
B(p),,:{g:( )eSp(n, @,); C=0 mod.p, and A mod. p }
C D . .
and ‘D mod. p are upper triangular
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Put B(p):B(p),,ﬂSp(n, Z[%D We shall consider the cusp forms be-
longing to B(p). But, we are interested only in new forms, and in order
to extract old forms from S,(B(p)), we must consider all cusp forms
belonging to each (proper) subgroup of Sp(n, @) which contains B(p). To
write down all these subgroups, we review briefly on Bruhat-Tits theory
[6]. Denote by T the maximal split torus consisting of all diagonal
matrices in Sp(n, ®,), and denote by N the normalizer of 7. Then, the
affine Weyl group W. of Sp(n,Q, can be identified with the group
N/NNB(p),, and there exists a subset S, of N/NN B(p),= W, which
forms the set of generators of W, as the Coxeter system. It is well
known that the set of all proper subgroups of Sp(n,®,) which contain
B(p), correspond bijectively to the family of all proper subsets of S,
(Bruhat-Tits, loc. cit.). More precisely, for each subset 6D8S,y, define a
subgroup U, of Sp(n,@,) by:

U,=the group generated by all double cosets B(p),wB(p),
such that w €4,

where we take a representative w in N for each wed. (It is clear
that the group U, does not depend on the choice of the representative
of w.) This correspondence

SaffDﬁ—HUGCSp(TL, Qp)

gives the above bijection.
For example, U;=B(p),, where ¢ is the empty set. Besides, if

6co'c S, then U,CU,, and vice versa. We put I’(,:UﬂnSp<n, Z[%D
We define C-linear vector V of S,(B(p)) by:
V= % Sl),

0SS, pp

$6) =1
where the summation means (not necessarily direct) sum as linear vector
spaces in S,(B(p)). We define a space S{(B(p)) of new forms belonging
to B(p) to be the orthogonal complement of V in S,(B(p)) with respect
to the Petersson inner product of S,(B(p)). The dimension of S}(B(p))
is given by

dim S)(B(p))= X (—1)¥dim S,(I7).

0SS,
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(See [13] p. 38 footnote.) We shall consider the contribution of conjugacy
classes to this alternating sum of dimensions. For the sake of conveni-
ence of the readers, we shall describe I, more explicitly here. The
Coxeter diagram of (W.y, S.) is given as follows, where each vertex

corresponds to each element of S,(={s,, s, - - -, 8.}:
O——O0——"-0——--- O
S 8 82 Sn_1 8n—z Su

In our case, the representatives of s;€ S, in N (which will be also de-
noted by s; (0<i<m)) can be taken as follows:

A, B, .
s0=(c D), where 4,=D,=diag(0,1,---,1),
© 7 By=diag(p™,0,---,0), C,=diag(p,0, - -+, 0) € M,(Q),
and diag(a,, - - -, a,) is the diagonal matrix whose
(¢, t)-component is a.

V. 0 .
s,-=< > for each 7 such that 1<t<n—1, where
V.= (’Uﬁe))ug],kgn) € Mn(Q),
v ,=v{,,=1, and vy =0 for all the other 1, k.

A, B, .
s,n—_‘(C D >, where A,,=D,.=dlag(1, R 1» 0)’
» ©*  B,=diag(0, ---,0, 1), and C,=diag(0, ---,0, 1).

For each &S, let t=t(0)=n+1—4(0), and let 4,(0), - - -, %,(6) be all the
mutually different indices ¢ (0<¢<n) such that s,€S,; Changing the
notations if necessary, we assume that 0<1,(0)<%(0)<---<%(0)<n.
For each 1<v<t+1, put n,@) =1,6)—1,_.(0), where we regard ,(6) =0
and %,.,(0)=n. Now, for the sake of simplicity, we introduce the follow-
ing terminology. A partition of any matrix A€ M,(Q) into blocks A;;
is called ¢-partition, if it is of the following form:

An A12 ot Al,t+l

A21 Azz ot A2,t+1
A=| . . e

At+1,1 At+1,2 ot Ac+1,t+1

where t=#(S,;) —#(0) and each A,; is a n,(0) X n,;(#) matrix. (If n,(6)=0
(resp. m,4,(0)=0), then we regard the blocks A;; as void for 7=1 or
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j=1 (resp. t=t+1, or j=t+1)) Now, for any subset &S, and an
element

A B
g:(c D)eSp(n,Q> (4 B, C, De M.(Q)),

partition of each A, B,C, D. Then, I', consists of all those elements

C D

(iii):

(i) Ay, By, Cij, D;; are matrices with integral coefficients except for B,
and each coefficient of B,; is contained in p~!Z.

(ii) If 1<ji<i<t, then A;=D; ;=0 mod. p.

(iii) For each %, j, we have C;;=0 mod. p, unless 1=5=t-+1.

A B
g=< >€Sp(n, @) which satisfy the following three conditions (i)~

1.4. Main Theorem.

Notations being as before, for each &S, and each integer r such
that 1<r<n, denote by C%(#) the set of all central unipotent elements
of I'y, of rank r, and by I,(C,(0), k) the contribution of C:!() to
dim S,(I",).

MAIN THEOREM. Let k and r be any integers such that k>2n-+1
and 1<r<m. Notation being as above, the integral I,(C*(6), k) converges
for each subset 0 of S and each 7, and we have

> (—1)ML(C0), k) =0
0% S,¢¢

Jor each r. In other words, the contribution of central uniponent element
to dim S}(B(p)) vanishes.

Note here that each I,(C.(0), k) does not vanish in many cases
where its explicit value is known. We note also that similar theorem
can be obtained also for central quasi-unipotent elements under some
assumption on convergence. (See §2).

§ 2. Generalization of Morita-Shintani’s formula

We denote by I a subgroup of Sp(n,®@) with vol(Sp(n, R)/I")<cc
as before.
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In this section, we shall give a formula for the contribution of
central unipotent elements of I” to dim S,(/"). This is a generalization
of Morita-Shintani’s formula for I'=I"(N). (cf. [27] Prop. 8).

2.1. Classification.

First, we classify central quasi-unipotent elements in terms of cusps
of I'. For each integer r such that 1<r<mn, consider the following
double coset decomposition:

Sp(n, Q) = ﬁfw&”Pr, (disjoint). 2.1)

Each double coset in the right hand side corresponds to an /'-equivalence
class of (n—7)(n—r+1)/2-dimensional cusps of I'. Denote by C! (resp.
C*) the set of all central quasi-unipotent (resp. unipotent) elements of
Sp(n, @) of rank r. For each w=w!" (1<r<n, 1<i<d,), put

Diw)={ye ' NwPw'NCLwyaweUb)}

where we denote by y, the unipotent part of the Jordan decomposition
of y=r... Set

Ci(w)={0""y0; r € Di(w),0 € I'}.
We put also

D¥(w)=D?(w) NCY and C*w)=Cw)NC*
LEMMA 2.2. Notation being as above,
dT
(i) cyr=cCcnlr= I C{(w{) (disjoint union), and
df
CyN=CNIr=1I Cxw") (disjoint union).
i=1
(ii) Let S(w!”) be a complete set of representatives of (I’ Nw"” P,w "~ )\I".
Then, for each © and r, the following two mapping are bijections:

S(w("”) x D{w'”) 3 (8, y) —> 071yd € CHw!"),
Sw!") X DHw(") 3 (3, 7) —> 873 € Chw(").
Proor. If reC{(w”) NCYw”), then y=07'7:0,=0:'7:0. for some

n€D{w?), r.€ D.(w{”), and §,, 6,€I". Then, by the uniqueness of the
Jordan decomposition, we have 01y, .0,=0;7.,.0,, where 7,,, or 7., is the



256 Tomoyoshi IBUKIYAMA

unipotent part of p,, or y,, respectively. Asy,,and y,, are of rank r, we
can show by direct calculation that w;”~'6,67'w{” € P,. Hence, w{” € ['w{"P,
and we get t=j. This proves the disjointness of the right hand sides
of (i). If y€Cy["), then, by definition, g~'y,g € U, for some g€ Sp(n, Q).
By (2.1), g=déw{"p for some 1 (1<:i<d,), and o€l’, peP,. As U, is a
normal subgroup of P,, we get d-'yd€ D'(w;”). Hence, (i) was proved.
"We can prove (ii) very easily, noting that, if g~'yg€ U! for an element
y€U,, then ge P.. We omit the details here. g.e.d.

2.2. Integral formula.

Now, we write down the integral I,(C!(w!”), k) for each r, v and k.

Put Un=ﬁ% and denote by dk the ivariant measure of U(n) such
k=1

that vol(U(n))=2-"U,, where we denote by U(n) the stabilizer in Sp(n, R)

of il1,¢€ H, which is isomorphic to the usual unitary group of size n.

Denote by 4,9 the invariant measure of Sp(n, R) such that d,9=dkxdZ.

As in Shintani [27] p. 63, for each w=w{", we have
L(Cl(w), k)

:a,,,(lc)Z"/UnS s Jgre, i)—kdet@g—?“)” 5.0

I'\Sp(n,R) . c?(w)

=a,(02"/T, % Jigrg, i tdet( T TR g

v rwn P \Sp(n,R) re Dl (w) 2
and also
L(Cy(w), k)

=a,(k) 21U, j J(g 79, z‘)*det(g—“ggi—”—i)"kaﬂg,

-1
w I'wnPr\Sp(n,R) TGD;‘,(W)

as far as the integrals in the right hand sides converge absolutely. All
we need in this paper is the fact that this integral I,(C!(w), k) actually
converges under some conditions on /', w and depends only on =, k, and
w 'wN P, and is independent of I itself. But, for the sake of com-
pleteness, we shall give here a formula to describe this integral by some
special values of zeta functions as in Shintani [27]. To explain the
above formula, first we introduce some zeta functions as in [27].

Put
V.={x € M,(R);, x="x}.
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Let o be the representation of GL,(R) on V, such that p(g)z=gx'g
(€ GL,(R),z€ V,). Then, the triple (GL,(R), V., p) is a prehomogeneous
vector space. Let L be a lattice of V, and 4, be a subgroup of SL,(R)
such that L is stable by the action of 4,. For each such pair 4, and
L, we define the zeta function (s, 4,, L) as follows:

1
Cls 4, L)= Ie%zw e(x)|det x|’
where L, is the set of all positive definite elements of L, ¢(x) is the
order of the stabilizer of = in 4,, and the summation is over 4,-orbbits
of L,. This kind of zeta functions are treated in Shintani [27] under
the assumption that 4,=SL,(Z). We shall extend his results for more
general groups which we need later. Assume that 4, is commensurable
to SL,(Z). Then, we can show that (,(s, 4,, L) converges absolutely for

Re(s)>r';1. In fact, let L be the module in V, spanned by p(d)x

(x€ L,0€ SL,(Z)). As 4, is commensurable to SL,(Z), .L is also a lattice
in V,. It is well known that ¢, (s, SL.(Z), L) converges absolutely for

s> 7';-1 (Siegel [28], Shintani [27] p.50). Now, the convergence of

¢.(s, 4,, L) follows from the following relations:
¢.(s, SL,(Z), L)=C.(s, 4N SL,(Z), L)/[SL.(Z) : SL,(Z) N 4],
and
(s, 4y, L)=C,(s, 4.\ SL.(Z), L)][4,: 4,0 SL,(Z)].

Next, to get the functional equation, we impose some conditions on 4,
which we shall explain below. For each s such that 1<s<r, define
subgroups P{?, P{” and P“ of GL,(R) as follows:

P;“={(Z 0); a€GL(R), beGL,_(R))

b
P“)—{(l’ v ) weM (R)} and
2 — 0 1n_8 ) 8,7 —8 ) n
PO= PP x Py,

Let 4’ be a subgroup of GL,(R). For each 4’ and s, we consider the
following condition:
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ConpITION G1. The following mapping is a bijection:
(4" NPP) X (4 NPY) 3 (3, 6.) —> 6,6, € 4’ N PY.

Now, consider another subgroup 4, of GL,(G) and the following double
coset decomposition:

GL,(@Q) = I 4P 2.2)
We shall say that 4, is good, if Condition Gl is satisfied for every
A=hP 40" (1<i1<e,, 1<s<7).

Next, to describe the functional equation, we introduce several nota-
tions. Denote by V! the set of all positive definite elements of V,.
For each 1€ C, define functions f,(x,2) and f*(z,2) on z€ V, by:

B (det x)z—(rﬂ)lzexp(_zﬂt,,.(x)) (-’1/'6 Vi”)
e =| 0 (@e Vi),
fx(@, )= det(l—ix)*.

We define two kinds of zeta funections as follows:

27w, 0. Lus)=| (et o) 3 £.(olg)w, Idg
6L} (R) |4, s€Ly,
and
Z(f2(w,2), L o)=| (det2)* 3 FE(olg)w, Adg,
GLT (R) 4, s€L,

where dg=(detg)" TI dg.;.

1<i,j<r

As in Shintani [27] p. 54, 60, it is easy to see that
Z(fr(x, 2), L, s) =g~V (2g) - GFemtrtviBry (24 g—pr—1)2-0+0C.L (s, 4,, L)
for sufficiently big s, where we put

r Qmki2
C,= .
BT )

We define the dual L* of L as follows:
L*={zc V,tr(xy) € Z for all ye L}.
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The following Lemma 2.3 is a modification of Shintani [27] Corollary to
Lemma 21 (p. 58).

LEmMMA 2.3. Assume that 4, is commensurable to SL,(Z) and good.
Then, both Z(f.(x,2),L,s) and Z(f¥(x, ), L*, s) are meromorphic func-
tions of (4,8) on C% and satisfy the functional equation

Z(f:(x, 2), L, s)

=vol(Ly =) (1T 20 e 2, L0, P ),

where vol(L):S dg.

v,lL

Proor. We must modify Shintani’s proof only at the following
point. In our case, there might exist several cusps of 4,. In other
words, the set 4,\GL,(Q)/P" might contain more than one elements. So,
the equation in Shintani [27] p. 55 line 4 from below dose not maintain
its validity in our case. In our case, it becomes as follows: we take a
double coset decomposition of GL,(Q) as in (2.2).

Denote by L** the set of rank s matrices in L*. Regard V, as the

x 0
subspace of V, by the embedding V,ax—»(o 0>e V..
Put 4,(h?)=4, Nk 4,871 Then
Y frel@e =Y ¥ T frelge ).

z€ L*® i=1 TGAI(",(S)) z€ LNV,

As in Shintani [27] p. 55, we get

S (detg)” T f*olgn)a. Adg
GL}(R) 4, zeL**
det g<1

=2 detg)* 3 fH(plo)m Adg.
i=tJertr 14y zeL¥nvV,
det g<1

By the assumption that 4, is good, we can show easily that the last
integral over GL;}(R)/4,(h{) (det g<1) is equal to

Cow,_ r\t ( r
%0k rOrsf o T * *s r
¥} X"‘“csc,_,(s 2) Z( f¥@, 2, LV, 2),
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where v¥, v¥ and o,_, are defined as follows:

vF =vol(GL¥(R)/(4i(h() N PL)),
vF=vol(Q®/(4,(h) N 2*)), and

" _{C(Z)C(3)--- (r—s)/2  (r—s>2)
2 (r—s=1)’

The rest of the proof is completely the same as in Shintani [27], and
we omit the details here. q.e.d.

Next, to describe the contribution of central unipotent elements by
the above zeta functions, we introduce several notations. Denote by
P,(R) the set of all R-valued points of the algebraic group E,. Define
subgroups &, &,, 2,, 2, of P,(R) as follows:

t'!/m Yu
&,= Ly 0 ; Yu="Yu€ M,(R), yu€ M,,._.(R)
0 1,
0 T, 0
52: 1r O ; xlze Mr,n—r(R)
0 tx12 ln—r
S 1, 0 0 0
0 agz 0 a24 a/22 a/24
Q = 5 h:( ) S —r, .
: ( 0o 0 1, 0 2o a) S PO ()
0 (142 O a44
a, 0 0 0
0 0 1.., 0 0 € GL.(R)
= , a » .
1o 0 tam' 0 "
0 0 0 1._,

It is easy to show that the following mapping is a bijection:
B XE, X2, X2:2 (y, x, h, au)""_’yxhauepr(R)- (24)

Let 4 be a subgroup of Sp(n, R). For each 4 and », we shall con-
sider the following condition:

CoNDITION G2. The following mapping is a bijection:
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(&, N4) x (&, N 4) X (8, N4) x (2:Nn4) € (7’1, T2 T3 2’4)_*7’17’973)‘46 4N P,.

Let I', w{” be as in (2.1).

We shall say that [I' is good, if every d=w"'I'w" NP, (1<i<d,)
satisfies Condition G2, and besides every subgroup w("-I'w({" N2, or 2,
is good, where we identify 2, naturally with GL,(R).

For good I', we shall define zeta functions attached to each cusps
of I'. For each r (1<r<m) and w=w{", define a lattice L(w) by:

1, @ 0
L(w)={x€ M.(R); x="'x and ( 0 O)Ew‘ll’wnU,].
0 1,

Denote by L*(w) the dual of L(w).

Regard the group wI'wN®, as a subgroup of GL,(R) by the natural
identification. Denote by 4,(w) the intersection of w=I'wN 2, and SL,(R)
through this identification. For the sake of simplity, we write

G, w, 8)=C, (4i(w), L*(w), s).

PROPOSITION 2.5. Let I' be as before and assume that I' is good.
Then, for each w=w{" (1<i<d,) and k>2n+1, the integral I,(C*(w),k)
converges, and we have the following formula:

2r(n—r)—1

In (C:(’M)) ’ k) :7}17)27)37)4 U,,_r (4”) (n—7)(n—r+1)/2

XC A, w, r—mn)

XTI 2k —n—1)(@k—n—i+2)- - - (2k—n+i—2)

for some volumes v,, v,, v;, v, defined below.

DEFINITION OF »; (1<t¢<4). Let d,, be the left invariant measure
of P,(R) given by

On,r 0= [det anl "‘2""+”drau°5u_rh°dxm°dyla°dy14,
where we write g=yxa,h as in (2.4) and

dran:|deta11|—r 11 d(au)ij-

1<i, i<r
We define v; (1<1<4) as follows:
v,=vol(V,/L¥(w))/2r VP,
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v,=vol(2,/w IwN Q,),
vy=vol(F jw T wN5,),
vy=Vvol(Fyjw ' wN5,),

where the volume is measured by dys, 6._.h, dy.dy,, and dz,, respec-
tively.

Proor. The proof is obtained in a similar way as in Shintani [27]
p. 63, 64, using Lemma 2.3. In Shintani [27], he assumed that k>2n+3.
But in his Lemma 20 ([27] p.54), we need not assume that m,; are
integers. By this fact, we get more accurate estimation than the re-
sults in [27] p. 75, which leads k>2n+1.

The assumption that I is good is needed to evaluate the integral
on P,/(P,Nw™['w) by the integral on £2,/(2,Nw™'w) and volumes
Vy, + 0+, V.. We omit the details here. q.e.d.

COROLLARY 2.6. Notations and assumptions being as above, the
integral I,(C:(w), k) depends only on n, k, and P.Nw ™[ w.

PRrROOF. obvious. g.e.d.

§ 3. Arithmetic on cusps

In this section, we shall classify cusps of I', explicitly, and introduce
the diagrams corresponding to the representatives of these cusps.

3.1. Reviews on the Bruhat-Tits theory on Sp(n, Q)

We review here the well known facts on Weyl group ete. (see Borel-
Tits [3], Bruhat-Tits [5], Bourbaki [4]) which will be used later. Let K
be any field. Denote by T the maximal split torus of Sp(n, K) such
that T(K) (the K-valued points of T) consists of diagonal matrices of
Sp(n, K), and put X*(T)=Hom(T, G,)=the group of rational characters
of T. For each ¢ (1<t<n), denote by a; the element of X*(T') defined
by:

a;(t)=t, for all t=diag(t, ---,t,, t7", ---, tz") € T(K).

Then, a;, - - -, a, is the basis of the free Z-module X*(T). The set @ of
all roots of Sp(n,®) is given by

O={aita;(1#7), 2a:; 10, j<n}.
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A set IT of fundamental roots is given by:
Hz{al_a% A2~ 03y * **y Up—y — A, 2an}-

The set @+ of positive roots with respect to I/ is the set consisting of
the following elements:

a;ita;, oi—a; (1_<_?,<_7£’n),
Zai (1S":S'ﬂ).

Define the inner product of X*(T) by:
(ai, ;) =0;; (1<1,3<n, d;; : Kronecker’s d).

For each « € @, define a reflection w, on X*(T) by:

waw):ﬁ—z(“—'ﬁ))a (B X¥(T).

By definition, the Weyl group W of Sp(n, K) is the group generated
by {w.; « € @}. Denote by &, the symmetric group on » letters. The group
W is the semi-direct product of &, and (Z/2Z)", where the action of
c€G,, or 0=(0, ---,0,) E{x1}"=(Z/2Z)* is defined by o(a)=a,u
(1<i<n), or d(a:;) =0:a; (1<2<n), respectively. Let N be the normalizer
of T in Sp(n, K). Then, for each a€®, there exists n.€ T(K) such
that

wa(B) (t) =B(natn;') for all e X*(T) and te T.

The mapping W3 w,—n,€ N(K) induces the group isomorphism W=
N(K)|T(K). Denote s, ---,s, the elements of N(K) defined in § 1-3.
(Here, we regard 1 in §1 as the multiplicative unit of K ete. If we
denote by 5; (1<t<n) the image of 5, in N(K)/T(K), then

=W, (t=1,---,n—1), and

i %41
n— Waa_.

n

@ w

For each o € @, there exists the unique unipotent subgroup U, of
Sp(n, K) such that tut'=a(t)u for all t€ T(K) and ue U, (K). This U,
is called the root subgroup of Sp(n, K) with respect to «, and we have
Us=G,. It is easy to see that nyUm;'=U,yw for a, BED, where n, is
the element of N defined as before. The groups T and U, (a€®*)
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generate a Borel subgroup P; of Sp(n, K). The set of parabolic sub-
groups of Sp(n, K) containing P, corresponds bijectively with the family
of subsets of /I: if P,CPCSp(n, K), then there exists 6cS={s, - - -, s,}
such that

P=the group generated by all P,gP, for all g€<s, ---,s,),

where (s, ---,s,) is the subgroup of Sp(n, @) spanned by s, ---,s,. We
denote this group P by P,.

Denote by W, the Coxeter subgroup of W generated by {5 s;€ 6}.
For any 6, nCS, there exists the following bijection:

Pyo(K)\Sp(n, K)||P,(K)=W\W/|W,.

3.2. Representatives of cusps

For each subset 6CS,;={s,, - - -, s}, denote by I', the subgroup of
Sp(n, Q) defined in §1-3. First, we treat the case where I',CSp(n, Z),
that is, the case where 6cS={s, -, s,}.

LEMMA 3.1. For each 6CS and each natural integer r with 1<r<n,
we get the following bijection:

I'\Sp(n, Q) P,=W\W|W..

Proor. It is well known that Sp(n, Z)/I'(p)=Sp(n, F,), where F,
is the finite field of p elements.
This isomorphism leads to the following bijections:

I'\Sp(n, Q)/P.=I",\Sp(n, Z)/Sp(n, Z) N P,=I\Sp(n, F,)[P.(Z),

where I’,, or P,(Z) is the image of I',, of I',, or P,NSp(n, Z) in Sp(n, F,)
by the reduction mod. p, respectively.

It is easy to see that ", is the parabolic subgroup of Sp(n, F,).
But, P,(Z) is not so in general. This is because GL,(Z)mod. p=
SL,(F,)USL,(F,Jo#GL,(F,), where ¢ is an element of GL,(F, with
deto=—1. Denote by P,(F,) the maximal parabolic subgroup of Sp(n, F)
which contains P,(Z), and by T(F,) the group consisting of diagonal
matrices of Sp(n, F,). Then, it is easy to see that P, (F,)=T(F,) P.(Z)

and

FﬂgPr(Fp) :FﬁgRr(Z)

for any g€ T(F,). Hence, we have
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T')\Sp(n, F,)[P,(Z)=I,\Sp(n, F,)|P,(F,)=W\W|W,
by virtue of the Bruhat-Tits theory. g.e.d.

For the later use, we need more explicit choice of the representa-
tives of W\W/W, and I',\Sp(n, Q)/P,.

To do this, we define the set S, consisting of subsets of X*(T) with
r elements as follows:

Sr:{{sila,ily Tty eirair}; st'y: i_]- (1SUST), 1£1/1<i2< ct <irSn}-
We define the action of W on S, by:
wi{dy, -, A ={w), -, w@i)) weW, {2, --,2}€S,).

It is easy to see that this action is transitive on S.. So, if we define
the mapping ¢ of W to S, by: ‘

pw)={wla), -+, wle,)}  (we W),

then this mapping is surjective. Besides, it is easy to see that W, is
the subgroup of W consisting of all elements w which stabilize

{ay, -+, .} (e w)€lay, -+, a} for all ¢ with 1<¢<r). Hence, the
mapping ¢ induces the following bijections:
(3.2) W/ W,,-:Sr and Wg\ W/ Wr: Wg\Sr-

It is convenient to express the representatives of W/W, (or elements
of S,) by the following picture: first, we give a number to each vertex
of extended Dynkin diagram as follows:

O= O— O O- - ——O0——O=—==-0
0 1 2 3 4 n—1 n—2 n

Next, for each €S, we take a representative w of ¢ and assume
wa;) =¢; o; for i=1, -, m. For eachi=1, ---, 7, we write 4+ or — sign on
1,-th vertex of the Dynkin diagram, according that the sign e, =+1, or
—-1:

+ - +
o= O0>—0—0—— - - —— O O=——20

(So, just r vertices are marked by signs.) It is clear that this picture
does not depend on the choice of the representative w and the set of
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these pictures corresponds bijectively to S..

Now, our next problem is to give a complete set of representatives
of W,\S, for each #cS. To do this, for each 6&S.« we shall specify
some elements of S, which satisfy some special conditions (Definition
3.8 below). For later use, we do mot assume here that 6CS. Put X=
{0,1,2,---,m}.

We call an element ¢ of X agap of 6, if s;€ X. Denote by gap (0)
the set of all gaps of 4. As in §1, we denote by i7,(0) (1<v<t, t=
#(zap(0))) the elements of gap(d), and changing the indices, if necessary,
we assume that 0<7,(0)< - - <i,(0)<n

For each v such that 1<v<t+1, we define the subset b,() by:

b,(0) ={i € X;1,.,(0) +1<i<4,(0)}

and call b,(f) the ¢-th sequence of X with respect to #, where we put
111(0) =n and 4,()=0. If 7,()=0, then the first sequence b,(0) =4¢.

For each element o={e;a:, -, & a: } € S, and each 6&S,i, we define
a subset b,(s, 6) of X by:

b,(c,0)={iy, 1, -+, 2,1 N, 0).

DerFINITION 3.3. For each pair (0,6) of ¢€S, and &S, we say
that ¢ is #-admissible, that 6 is s-admissible, or that (¢, 4) is an admis-
sible pair, if the conditions (1), (2), (8) below are satisfied.

CONDITIONS (1) For each v (2<v<t(f)) such that b,(o,0)+@, there
exist p(v)=pv,0,0) and k(v)=«k(v, 0, 0) € X which satisfies the following
condittons (i), (ii), (iii):

(1) 6a(0)+ 1<) <5() < (0),
(ii) b(" 49)—{’06Xz 1(0) +1<i<pl), or £(v) <i<i,(0)},
i) e={ )Y OISt

U1 k() <EAL(0).

(2) If bi(o,0)+9, then e,=1 for all 1 with 1,(0)+1<i<n.

(8) If by(o, 8)#¢ (which occurs only when 6&S), there exists a natural
number r=x(1,0,0) such that 1<k<1,(6), b(o,0)={i€ X;1<1<k},
and that ¢,;=—1 for all 1€b,(o,6).

Here, it is convenient to illustrate each pair (0, ¢) (which is not
necessarily admissible) by the following “picture”. We illustrate &S,y
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by marking x below the vertices of theDynkin diagram corresponding to
the elements of gap(f), and illustrate o € S, by marking + or — above the
r-vertices as before. For example, if n=9, gap(0)={2,3, T}, r=5, and
o={—ay, ay, a5, —as, as}, then the “picture” is as follows:

- + o+ -+

o——__——_o———o——o———o——o———o——O—O——:O

X X X
In this case, by definition, we have b,(6)={0, 1,2}, b,(0)={3}, bs(0)=
{4,5,6,7}, by(9)={8,9}. It is clear that this ¢ is ¢-admissible.

Now, we treat the case where I',CSp(n, Z).

PROPOSITION 3.4. For each 0CS={s, ---,8,} (that is, in the case
that I'yC Sp(n, Z)), the set of all I -equivalence classes of (n—r)(n—7r+1)/2
dimensional cusps of I'\\H, corresponds bijectively to the set of all 6-
admissible elements of S,.

Proor. By definition, W, can be naturally identified through the
action on X*(T) with the direct product of the following groups g,
(v=1, .-, t+1):

(i) for each v=1, .- ¢,
g,—=the full permutation group on the set {a;;1€0b,(0)}

(ii) g.s;=the group of all permutations w on {+a;; € b,,,(d)} such that
w(a;) = *ay for all i€ b,,,(0), where ¢ is a permutation on b,.,(0)
(determined uniquely by w).

Hence, the proof is obvious. q.ed.

COROLLARY 3.5. When n>2, we get

= (1) (W\W|W,)=0.

Proor. We can prove this by easy combinatorial argument, but we
shall omit the proof here, because this fact will not be used in this
paper. qg.ed.

Under the assumption that 6cS (i.e. I'y,CSp(n, Z)), we shall give
here each explicit representatives of I",\Sp(n, @)/P, in Sp(n, Q) attached
to each f-admissible element ¢ €S,. To do this, first, we shall attach
to each element ¢€ S, an element w(s) of Sp(n, Z).

For each o={e; a:, - -, &; a; } € S,, we fix a permutationz on {1,2, - - -, n}
such that ¢(v)=7, for each v (1<v<r). Denote by V(s) the n matrix
whose (i, t(t))-component are 1 for ¢=1,.-.,n, and all the other com-
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ponents are 0. (In short, V(s) is the permutation matrix attached to
r.) Denote also by V’(s) the following matrix:

A —B
V(o) =
) (B A>’
where A=diag(a,, - --, a,), B=diag(b,, ---,b,), a;=1—b,, and

b ~_{1 ...if &g=—1 and 1<1<r,

0 ...othewise,

Now, put

w(o) =

(V(g) T:')(a)>x V(o).

Then w(s) € N(@). (Note that w(s) is defined indepently of 6. We
denote by w(s) the image of w(s) in W=N@Q)/TQ).

The subset {w(s);c€S, and ¢ is 6-admissible} of Sp(n, Q) gives a
complete set of representatives of I',\Sp(n, Q)/P,, and each w(s) corres-
ponds to the cusp corresponding to ¢ as in Proposition 3.4.

3.3. Representatives of cusps; in case ', Sp(n, Z)

For each 0 S,;, put /=60NS. It is obvious that I',.cI’,. So, we
can take representatives of I",\Sp(n,Q)/P, among representatives of
I';\Sp(n, Q)/P, obtained in §3.2.

PROPOSITION 8.6. For each 6CS.y the set of I',~equivalence classes
of (m—r)(n—r+1)/2 dimensional cusps of I')\H, corresponds bijectively
to the set of all 8-admissible elements of S,.

Proor. The case where I',CS was proved in Proposition 3.4, so we
assume that 6¢S. First, we show that any double coset I",wP,
(w€ Sp(n, Q) contains w(s) € W for some f-admissible ¢ € S,, where w(qs)
is defined for each ¢€ S, as in §3-2. As [, cl',, we can assume that
w=w(’") for some ¢-admissible ¢'€S,. We fix such ¢’ and put ¢'=
(e, attiy, + 0, s} (15, <0, <+ - - <1, < ). If b0, 0)={iy, -, %.}N
b,(0)=¢, or e,=—1 for all 1€ b,(d’, ), then ¢ itself is g-admissible, be-
cause- b,(¢/, ) =b,(0’, ¢'). So, we assume that b,(¢’,0')#¢ and put p=
©2,60,a’). By definition, {1,2, ---, g}={t€by(d’,¢);e;=1}. It is clear
that w(¢’) is a matrix of the following form:
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1, O 0 0
A |0 A 0 B
W=y o0 1, o
0 C 0 D
where A, B,C, De M,_,(Q). Now, put
0 0 —p11, 0 p1l, O 0 0 \
0 1.L,,0 0 N ,,0 0
lp, 0 0 0 P=l 5 0 pL 0
0 0 0 1., 0 0 0 1.,
Then, y€I',, p€P,, and
0 0 -1, 0
) 0 A 0 B ()
w = =w(r),
TPy 9 0 0
0 C 0 D
where t={—ay, -+, —Qu Euri,,, "+, & ). Now, put r=r(2,0,0).

Then, we have £=«(1,6, 7).
Now, take the permutation p on {1,2, ---, n} defined by:

L (et if 1<i<p—1,
p(%)={. . .
1, if p<is.

Also, put o={—ac_s, —@r_pt1, "+ ", As_1, €y Xigyyr * % Eirair}-

Vi) 0 . .
Then, ( 0 V(p))xr_a and ¢ is #-admissible.

Vie) 0
AS < (()p V(p)).x WG'CPO’9 we get Fﬂ’w(T)PrZFg/’M)(O')P,.

Hence, w(s) € I'ywP,. This proves the first part.
Secondly, assume that ¢, 7€ S, are 6-admissible. We shall show that, if
I'yw(e)P,=I",w(z)P,, then ¢=7. To do this, it is enough to show that

I'sNnw(e)Pw(z)t=¢, if o#r.

But, this is included in the more general Lemma 3.8 given below. q.e.d.
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Before stating Lemma 3.8, we prepare several notations. We denote

by ¢,_, the injective homomorphism of Sp(n—r,Q) into Sp(n, Q) defined
by:

1, 0 0 0

A B 0 A 0 B
c,,_,:Sp(n—r,Q)€<C D)—’ 0 0' Lo € Sp(n, Q).

0 C 0 D

To calculate w(s)gw(z)™* for any g€ Sp(n, Q) and any #-admissible ¢ and
7, we introduce the following notations: For each p={e i, - -, e } €S,
(1<i<i;<--- <%, <n), define the mapping fo of {12 --- 7}y
m+1,n4+2, --- n+r} into Z/2nZ as follows:

1, «.if g, =1 and 1<c<r,

Toon ..if g, =—1 and n+1<c<n+r,
Jole)= tentn ...if & =1 and n+1<c<n+r,

t+n  ...if & =—1and 1<c<r.

We shall identify Z/2nZ with the complete set of representatives
{1,2,---,2n} of Z/2nZ. For each g=(g,,) € Sp(n, Q) (1<i, j<2n), each
c€S, and each €S, and each ce€{l, ---,r}U{n+1,---,n+r} and
de{l,2,---,s}U{n+1,---,n+s}, it can be easily shown that the
(f:(c), f.(d))-component of w(s)gw(r)™" is g.a.

Finally, we define some subsets of {1, ---,7}. For each 6< S, each
g-admissible o={e;a:, -+, & a: }, and each v (1<v<t(6)+1), put

B,0,0)={r€e X;1<e<r, i, €b,(0, 6)cb,(6)},
and for each ¢e=1 or —1, put
B;(0, 0)={r € B,(0, 0); &;,=¢}.

LeMMA 38. Fix an element 0 &S, and natural numbers s, r such
that 1<r<s<m. Let ¢€S, and t€S, be 6-admissible elements. Then,
we have

tar(Sp(n—7, Q) P,Nw(o) [ yw(r) #¢,

if and only if oCc (as subsets of {+a, ---, +a,}). Besides, if s=r,
then oCrt if and only if o=r.
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ProoF. It is easy to show that the condition is sufficient. We shall
show that it is necessary. For each element ¢g=(g,,)i<i <€ Sp(N, Q),
define r xs submatrices U and V of g as follows:

U=(9ii)1cicricicer and

V: (gij) I+n<i<r+n,14n<j<n+3

Now, we assume that g¢ce,_,.(Sp(n—r,Q))P,. Then, it is easy to see
that U'V=1,. We shall show that this implies ¢Cz under the assump-
tion w(o)gw(cr)*€l’,. First, we shall show

(a) If w(o)gw(c)rel’,, then U, VEM, (Z).

In fact, by definition of I',, it is clear that, for ¢, d with 1<c<r,
1<d<s, we have g.,€ Z, except for the case where both 1<f,(c)<1,(0)
and n+1<f.(d)<nm+1,(0) are satisfied.

Now, we write o={ea:, -, ea} and c={pa;, -, 70}
1<nu<- - <i,<n, 1<, <+ - <j,<n). As we have assumed that ¢ and
v are ¢-admissible, we see that & =—1 (resp. ¢;,=—1) for each ¢ with
1<e<r (resp. d with 1<d<s) such that 1<7,<i,(0) (resp. 1<75,<1,(6)).
Henece, if 1<f,(c)<#,(0) and n+1<f(d)<n+1,(0), then n+1<c<n+r
and 1<d<s. Hence, U, Ve M, ,Z) and (a) is proved.

Now, we assume that o is not contained in r. This means that there
exists ¢ with 1<c<r, such that (o) (a.) #%(z) (,) for any v with 1<v<s.
Fix such ¢. For this ¢, there exists the unique v with 1<n<t(9)+1
such that c€b,(0). Now, put e=¢; (==+1) and a=4§(B*(0,0)), b=4(B(, 0)).
By the choice of ¢ and the assumption that ¢ and r are f-admissible,
we have b<<a<#(b,(0)). Write U and V by their coefficients as U= (u,;)
and V=(v;;) 1Li<r, 1<5<s).

Now, we shall show

(b) For any c€ B(s,0), we get u.v.=0 mod. p, unless d € B*(c, 0).

In fact,

(i) if (e, e;,)=(1, —1), then (f.(c+mn), f.(d4+n))=(i.4+n,js) and v,=0
mod. p.

(i) if (e, e5)=(L 1), then (f,(c),£:(d)=(i., jd), and (f,(c+n),f(d+n))=
(t.+mn, jo+n). Now, if d¢g B(c,6), then j,¢b,(0). Hence j,€b,(0)
for some p##n. If p>y, then v,=0 mod.p, and if px<y, then
%,4=0 mod. p.

(ii)) if (e, e5,)=(—-1,1), then in the same way as in (i) we get u,=0
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mod. p,

(iv) if (e, e,)=(—1, —1), and d¢ B‘(r,0), then d€b,() for some p+v,
and in the same way as in (ii), we get v,=0 mod.p if v>p, and
%4=0 mod. p if v<p.

So, we get (h).
Now we prove the Lemma. Put B:(s,0)={c,, ¢, -+ -, ¢c.} and B(r, 0)=

{dy, ---,d}. Define axb matrices U, and V, by:

U= (e, )scicorsian 800 Vi= (00 )igiconcias
By the above (b) and the fact that U'V=1,, we get
U.!V,=1, mod. p.
But, rank (U,)<min(a, b)=b<a. This is a contradiction. g.e.d.

COROLLARY 3.9. For each natural number n>1 and each natural
number r with 1<r<mn, we get
>, (=1*%(,\Sp(n, Q)/P,)=0.
6S5S,¢p
Proor. We can prove this by some easy combinatorial argument,

but we omit the details here, because the Proof of Proposition 4.1 in
the next section includes the proef of this corollary. g.e.d.

§4. Proof of Main Theorem and combinatorial properties on cusps

In this section, we shall complete the proof of Main Theorem in §1
by using the following Theorem 4.1 on some combinatorial properties on
cusps and their stabilizers.

Fix a natural number » with 1<r<mn, and an element o=
{eqai, -+, e a; }€S,. Denote by A(o) the following family of subsets of

aff+
J(O’) :{0CSM‘[; 6¢Saﬁ and /] is U‘admissible}.

Denote by w(s) the fixed representative in N(Q) of ¢ € S,= W/ W, defined
as in §3-1.

THEOREM 4.1. For each r with 1<r<n and each o € Sy, there exists
a bijection ¢=¢, of order two of A(o) onto itself such that the following
two conditions are satisfied:
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1) #(4(0)=4#©0)+1, or #(06)—1,
2) P,Nnw(o) [ yw(o)=P,Nwo) Iy s w(o).

REMARK. Such ¢, is mot unique in general, even if we fix r and o.

Before proving Theorem 4.1, we give here short explanation how
such ¢, is defined by giving examples, using the “picture” of ¢. More
rigorous definition will be given in the proof.

(1) Assume that the picture of ¢ contains only minus signs, e.g.

Then, a subset §&S,;; is o-admissible for this o, if and only if gap(d)D
{2,5,8]). Now, ¢, is defined for this ¢ to be the mapping to add, or
delete s, to 0, or from 6, according as s, €6 or not, respectively. In
general, ¢, adds, or deletes the vertex just before the “first” minus
sign.

(2) Assume that the picture of ¢ contains at least one plus sign, e.g.

-+ e
(e, O O
0 1 2 3 4 5 6 7 8 9

Then, a subset &S, is s-admissible for this ¢, if and only if gap(d) D
{1,8,6,8}. Now, ¢, is defined for this ¢ to be the mapping to add, or
delete s;, to 6, or from 6, according as s, €6, or not, respectively. In
general, ¢, adds, or deletes the vertex where the ‘“last” plus sign is on.

Proor oF THEOREM 4.1. First, we shall give more rigorous definition
of the bijection ¢=¢, of order two on A(s), and later we shall show
that this ¢ satisfies the conditions (1) and (2) in the above Theorem.

To distinguish two cases explained above, we introduce some nota-
tions. We divide S, into the following disjoint union of two subsets S;
and S. of S,:

S, =87 11 S,
where S; is defined by:
S;={o={na:, -, m: }€8,;9:, =—1 for all v with 1<v<r},

and S/ is defined to be the compliment of S; in S.. In other words,
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S;, or S, corresponds to the first, or the second case of the above ex-
amples, respectively. For the sake of simplicity, we shall identify S,
with X={0,1, ---, n} by the bijection: s,—1.

(I) Definition of ¢,.
For each ¢€S,, we define a mapping ¢, of S, to S, as follows:
(@) When o={-ai, —ai, --+, —a; } €S;, we define ¢, by:

$,(0)=0U{i,—1}, if 3,—1¢06, and
¢a(0):0\{7x1—1}, if @1_160

(b) When a:{silail, ceey, e,-ra,-r} € S,’., then put
Tmax= Max {1, € X; &, =+1}.

I<vgr
In this case, we define ¢, by:

Po(0) =0 U {imax}, 1f tmx@0,  and
Bo(0) =0\ {tmas}, If Tmix €0.

1) ¢, is a permutation on A(s) of order two.

To show this, it is sufficient to show that ¢,() € A(0) for any
6 € A(o). First, we show that ¢,(0)+#S,;. In fact, assume that ¢,(0)=
S.«. Then, if oc€S;, we get 6={1,2,---,n}, b,(0)=¢, and b,(0)=
{1,2, ---,n}. So, the condition (2) on admissibility in § 3 is not satisfied
for 4, and 6 is not s-admissible.

If 6€8, then 6={0,1, - - -, tiax— 1, bmmax+ 1, - - -, m}, 6,(0) ={1,2, - - -, trnax},
and b,(0) ={tmax+1, - -+, n}.

So, the admissibility condition (3) is not satisfied by @, and 6 is not
c-admissible. Hence, ¢,(0)#S.: for any 6¢€ A(e). Now, we show that
&,(0) is c-admissible, if 6 is c-admissible. Assume that #(¢,(0)) =#(0) + 1.
Then, ¢,(0)=0U{t,(0)} for some v with 1<v<%(f), where 7,(d) is the v-th
gap of 4. By definition of ¢,, this 7,(0) is equal to ¢,—1, if ¢€S;, and
t0 Tmax, if 0€S.. In both cases, we get

b,(¢,(0)):b‘(0), if 1<e<v—1,
b,($.(0)=b,(6) Ub,.,(6),  and
b¢(¢v(0)):bt+l(0)’ lf v<‘£t(¢a(0))+1:t(0)

Assume that 6 is c-admissible. Then, by the condition (2) in §3-2, we
get
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(a) if ¢€S;, then

b»(¢a(0)) N {ilv ) if}___bu+1(0) n {ilv Tty ir}:bu+1(0)’
and ¢;=—1 for all j€b,,,(6).

(b) if ¢€S], then

b, (B, (0) N iy, -+ -, 3.} =0,(0) U (b,41(8,(0) N &, - -, 3.})
Tmx €0,(0), and

e=+1 for all ijy(ﬁ),

E;= —1 for all .7 € b»+l(¢o(0)) N {ih R} ir}-

Hence, conditions (1), (2) in §3-2 are also satisfied by ¢,(#) and . We
shall see the condition (8) now. If ¢€.S;, then by Condition (3) for 6
and ¢, we get v+1<¢t(0)+1, so v<t(¢,(0))+1. Hence, Condition (3) is
also satisfied by ¢,(6) and ¢. If o€ S/, then by Condition (2), we get
v#1. Hence, Condition (3) is also satisfied. Thus, we proved that ¢,(0)
is also o-admissible. Virtually in the same way, we can show the o-
admissibility of ¢,(0) also when #(¢,(0))=4#(0)—1. We omit the details
here. Now, it is clear that ¢, is a permutation on A(s) of order two.

(III) The mapping ¢, satisfies (1) and (2) tm Theorem 4.1.

In fact, by definition, it satisfies the condition (1). To show (2), we
can assume that ¢,(0) D6 without loss of generality. Under this assump-
tion, we get I'y ;DI and in order to prove the statement (2) in
Theorem 4.1, it is sufficient to prove that any re€rl'y ., such that
w(o)yw(c)* € P, belongs to I',. To show this, first, we give a description
of I', as the subgroup I'y . For any M€ M,(Q), we denote by

M= (M) (1<z,5<t($(6))+1)
the ¢(6)-partition of M, and by
M=(M;,) (1<i,5<t(0)+1)

the @-partition of M. (As for the definition, see § 1-3.) As before, we
put ¢(@)=0U{i,(0)} for some y with 1<v<t(d). We define a mapping
fof {1,2,v—1,v+1,---,¢(6))} into {1,2, ---, ¢(0)} by:

1 L 1<i<v—1,

f<i>={i+1 if v+1<i<E(0).
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Then, it is easy to see that

Mi; =M, 1) if t#v and 7 +#v,
M, s
m=(," )i g,
’ Mu+1,f(J')
M!,=(M;),0 Mpiiy,041), if t#v, and
M :<Muw M, >
Mu+1,p Mu+1,p+1

Y

partition of A, B, C, or D, respectively. By the above relation of ¢(6)-
partition and ¢-partition, we can easily show that the subgroup I', of

)EFW)» we denote by (A4), (By), (Cy), or (D) the 6-

B
Iy, consists exactly of those elements r:( c D>6F¢”’ which satisfies

the following three conditions:

(1) Au-}-l,uEDu,u-HEO mOd' p.
(2) If v=1, then B,, B,, B,,=0 mod. 1.
(8) If v=t(9), then C,,, C, 41, C,i1,,=0 mod. p.

A B
Now, we shall show that, if w(s)yw(c)™*€ P, for 7=<C D)EPW” then
(4'2) (1) Au+1.u: u,u+1=0'
2 if D:]. and UGS:, then B12:B21:BZZZ()9
(8) if v=t(#) and ¢€S., then C,,=C, ,,,=C,,,,=0.

This may be proved fairly easily by full use of theory on algebraic
groups, but here we try to give rather self-contained proof.

First of all, we note that, by our explicit choice of w(s) in §3-2,
the mapping

M;. (@) 3 X=(%:))1<i,icoa——>W(0) Xw(0) ' € M, (Q)

is just a permutation of the coordinates x;; up to sign. So, there exists
a subset X,(0)C{1,2, ---,2n}, depending on ¢ and r and not on 6, such
that

L y0 Nw(o) ' Pw(o) ={9=(9:;)1<i,5<20 € ['s01; 9:;=0 for all (i, J) € X, (0)}.
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By definition of w(s), it is obvious that:

(1) if (4,7)€X.(0), and 1<%,j<m, then (j+m,i+n)€ X,(s) and vice
versa.

@2) if (i,7) € X,(0) and 1<i<n<j<2n, then (j—n,i+n)€ X,(0) and vice
versa.

So, to obtain X,(s), we can use the action of w(s) on root subgroups
U, or on its Lie algebra g. (« € ®), instead of coordinates. To be more
precise, denote by @, the subset of the root system @ of Sp(n, Q) defined
by:

O, ={a;i—a;; 1<j<r<i<n}U{—a;—a;; 1<i, j<n and min(i, j) <r}.

If w(e)g.w(o) '=gu-1« is not contained in the Lie algebra of P,, in
other words, if w(s) '« €D,, then the “coordinates” corresponding to g.
must vanish. By using this fact, we shall show (1), (2), (3) of (4.2) as
follows:

1) If a=ai—aj 1,(0)<1<1,,4(0), and 7,,(0) +1<75 <1,(0), then @(s) 'a € P..
In fact, if 0 €S;, then w(s) (@) =—a, for some g with 1<p<r, and
(o) a;)=*+a, for some k>r, hence W(o) ' (a)€D,. If 0€S8., then
W(o) ;) =a, for some r with 1<k<r, and @(o)‘(a;)=+a, for some
p>r, or w(o) ()= —a, for some p with 1<pu<r. Hence (o) ‘(as) € D..
This proves (1) of (4.2).

2) If v=1, 0€S;, and a=a;+a; for some %, j such that 1<:<1,(6) and
1,(0) +1<5<1,(0), then w(o) () € D,. This is easily seen, because we get

(0) o) = —a, (1<), if 4,(0) <k<i,(0), and
(0) Yax) =, (£>7), if 1<k<1,(0).

S

S

This proves (2) of (4.2).
3) If v=t(¢), c€S,, and a=—a;—a; for some 3, j such that
1,.1(0) +1<i<4,4,(0) and 4,,(0)+1<5<1,(0), then W(s) '(a) €D, This
is easily seen, because

(0) () =a. 1<p<Lr), if 1,,(0)+1<k<7,(0), and
(0) (@) = —ax (1<p<r), or *a, (e>1), if i,0) +1<k<i,(0).

,_\
-
=
S g

(ii)
This proves (3) of (4.2). Thus, we proved Theorem 4.1. q.e.d.

ProoF oF MAIN THEOREM. Combining Corollary 2.5 and Theorem
4.1, we get our Main Theorem. q.ed.
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§ 5. Relation between cusps

5.1. So far, we regarded cusps just as the double cosets I",wP,, or their
representatives. But, of course, cusps usually mean the boundary com-
ponents in the Satake compactification I',\\H, of I',\H,. That is,
(n—r)(n—r+1)/2-dimensional boundary components of I',\H, correspond
bijectively to the set of all double cosets in I',\Sp(n, Q)/P,. (cf. [23])
For each ¢-admissible ¢€S,, we denote by Cusp(s) the component in
T \H, which corresponds to ¢. By definition of the Satake compacti-
fication, we have

Cusp(o) =I5 (0)\H.._.,
where we denote by I',(s) the subgroup of Sp(n—7r, Q) defined by:
ta_r([5(0)) =w (o) yw(o) Ntu_.(Sp(n—7, Q)).

The group [',(¢c) depends on the choice of the representative w(s) of

the I',— P,-double coset, but non-essentially.

In this section, we shall solve the following three problems.

(1) For each 6&S.; and each @-admissible ¢€S,, describe ['4(0)C
Sp(n—r,Q) and hence Cusp(s).

(2) Let » and s be natural integers with r<s. For each §&S,s and
for each pair (¢, z) of f-admissible elements ¢ €S, and z€S,, give
the condition that Cusp(c) is on Cusp(z).

(8) For any 6,0'&S,; such that 6cé’ and a ¢-admissible ¢ €S, give
the ¢’-admissible 7 € S, such that Cusp(r) is the image of Cusp(o)
by the natural covering [',\H,— I, \H,.

Complete answers to these questions will be given below. Short intui-

tive explanation of examples by using pictures will be given after

Proposition 5.4.

52. First, we solve (1). It will be proved that I',(¢c) is also a para-

hopric subgroup of Sp(n—r,@Q). That is, denoting S,:(n—7) the set of

vertices of the extended Dynkin diagram of Sp(n—7, @), it will be proved
that I'y(c)=I"y.CcSp(n—r, Q) for some ' S,(n—7r). Taking this granted

for a while, we shall give a description of 6. Define the sequence b,(6)

(1<n<t(@)+1) as in §3. For each f-admissible ¢ € S,, define B,(s, 8) as

in §3. Denote by r,(f) the unique element of S, (n—r)={0,1, .-, n—7r}

such that gap(z,(d)) consists just of the vertices corresponding to the
following numbers:
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(#(0.(0) —#(B.(0,0))  (m=12,---,t(0)).

M=

v=0

]

Note that #(gap(z,(f))) might be smaller than t(¢). In fact, we have
f(gap(m,(0)) =#{v; 1<n<t(0), #(.(0)) ##(B.(0,0))}.

PROPOSITION 5.1. For each 6CS.: and each 6-admissible o €S,, we
have

Cusp(o)=1", (e)\H

Proor. The proof is virtually the same as in the proof of Proposi-
tion 4.1. But, here, we must carefully choose the representatlve w(o),
because the answer might depend on the choice.

For ¢={ea:, -+, & e}, we denote by @(s) the unique element of
W such that the following conditions (1)(2)(3) are satisfied.

(1) If 1<w<r, then w(o)(a,) =¢:
2) If r+1<v<n, then (c)(a,)=a. for some ¢ (1<c<n).
(8) If r+1<n, m<n and w(o)(a,) =a. and @(o)(a.) =as, then v<p if and

only if e<d.
We define w(o) as in §8 for this w(s). The rest is easy and the details
are omitted here. q.ed.

5-3. We shall solve (2).

ProrosiTION 5.2. Let r, s be integers such that 1<r<s<n. Fix
an element 0S,. Take o €S, and t € S, which are 0-admissible. Then,
(n—s)(m—s+1)/2-dimensional Cusp(c) is on (n—7)(n—r+1)/2-dimensional
Cusp(o), tf and only cCt (as subsets of {£ay, -, *a,}).

Proor. By definition (ef. [25]), Cusp(r) is on Cusp(s), if and only if
w(o)ta_r(9) € 'gw(c) P,
for some g€ Sp(n—r, @), that is, if and only if
tar(SP(U—1, Q)) P, Nw(o) " yw(c) # .
So, the above assertion follows directly from Lemma 3.8. g.ed.

5-4. Now, we shall solve (3). This is the easiest of the three. When
00’ &S, that is, if I'y,cI’,,, we must describe just the natural map-
ping I',\Sp(n, p)/P.—>1;\Sp(n, Q)/P, for each ». To describe this map-
ping, for each 0CS,;, denote by A.(f) the subset of S, defined by:
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A.(0)={c €8S,; 0 is f-admissible}.

Now, we shall define a mapping ¢, , of A, (0) onto A.(¢). For each
o €. (0), we denote by ¢, ,(c) the unique element of A, (¢") such that
the following conditions are satisfied:

(1) For fixed v with 2<v<t(#’), B,(cs 4(c),0) is the disjoint union of
all B,(s,0), where ¢ runs over all ¢ with 1<p<t(6)+1 such that b,(6) C
b,(@).

(2) If bipy(0)+4, then B, ,i(co 4(0),0’) is the disjoint union of all
B.(0,0), where g runs over all ¢ with 1<p<t(@)+1 such that b,(0)C
bi(ﬂ’)-i—l(o,)'

(8) If b,(¢")+#¢, then Br(cy 4(0),8) is the disjoint union of all B,(s,¥6),
where g runs over all ¢ with 1<p<t(d)+1 such that b,(6) Cb,(@').

PRrROPOSITION 5.8. For each 6, 0’ SS, such that 6Cé’, and 0-admis-
sible o €8S,, the image of o by the natural covering of I'\\H, onto I',\H,.
18 Cyr 4(0).

Proor. This is obvious and the proof will be omitted here. q.e.d.

Examples and short intuitive explanation by using picture.
(1) How to get x,(0)?
Take a following example of a picture of an admissible pair (o, 0):

0 1 2 3 4 5 6 7 8 9 10 11 12
o o o o o o o o o o o
X X X X X X

In this case, n=12, r=6. From the picture, delete the vertices where
the signs are on. Then, only vertices numbered 0, 3, 4, 6, 7, 9, 12 re-
main. FEach set {0}, {3}, {5,6,7}, {9}, or {12} belonged to the same
sequence and the biggest element of each set of these is a gap of z,(0),
as far as the original sequence contains a gap. Hence, the picture of
this =,(0) is as follows:

(0 3 5 6 7 9 12)
C= o)

X X X X

where the numbers in the parentheses are the original numbers.
(2) How to get ¢y 4(0)?

Take a picture as in (1). Assume that gap(¢’)={2, 10}.
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Then, the following picture

0 1

2 3 4
-+
X

o—

is not admissible. Now, to get ¢, ,(f), we must adjust and convert this
to an admissible one. The first sequence must contain only the minus
signs, so we convert + to —. The plus (resp. minus) signs in the second
sequence must be located on the left (resp. right) side of the sequence,
30 we remove -+ on the vertex b and — on the vertex 8, and mark by
+ on 3 and — on 9. The last sequence must contain only the plus
sign in this case, so we convert — on 11 to +. Then, we get

This is a picture of ¢, 4(c) in this case.
(3) How to get the Cusp configuration for one fixed I',?
For example, let & be given by the following picture:

o —0 --- e 0

X X

where gap(f)=1{0,n}. In this case, I', is usually denoted by I"{"(p). Now,
for the sake of simplicity, assume that n=2. Then, I'{’(p) has three
0-dimensional cusps (a). (b) and (c):

+ + - B
@ o—o=—=o0 , (b)) o=——0o—0 . (o) O=—0—0
X X X X X X

and two 1l-dimensional cusps (1) and (2):
(1) o——=—o0—0 , () o=——=0—0
X X X X

By Proposition 5.2, the cusps (a) and (b) are on (1), and the cusps (b)
and (c) are on (2). The whole boundary of I'{®(p)\H, is as follows,
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and cusps (1) and (2) are isomorphic to I"{" (p)\H,.
Of course, we can write down all the cusp configurations quite easily
by Proposition 5.2, not only for this one, but also for any » and 6.
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