Stability of compact leaves close to invariant fibered manifolds

By S. DRUCK and S. FIRMO*

Abstract. A Fuller-type index is defined for a pair $(\mathcal{F}; N)$, where \mathcal{F} is a C^1 foliation on a smooth manifold M and N is a compact submanifold of M saturated by compact leaves of \mathcal{F} as a fibration $L \longrightarrow N \to B$, provided that $\pi_1(L) = \mathbb{Z}$ and the associated action of $\pi_1(B)$ on $\pi_1(L)$ is trivial. Using this index, sufficient conditions for persistence of a fiber L close to N as a compact leaf under C^1 small perturbations of \mathcal{F} are given by the non vanishing of the Euler characteristic of B and some hypotheses on the behaviour of the foliation in a neighborhood of N.

Introduction

Let \mathcal{F} be a C^1 foliation on a smooth (C^{∞}) manifold M and let N be a compact C^1 submanifold saturated by compact leaves of \mathcal{F} . We say that \mathcal{F} has the *compact leaf stability property close to* N if, shortly speaking, every foliation sufficiently C^1 close to \mathcal{F} has a compact leaf close to N. In this paper we deal with the case where N is \mathcal{F} -saturated as a fibration $L \subset N \to B$ with $\pi_1(L) = Z$.

For vector fields Fuller [F] has associated to each isolated compact set K of periodic orbits of a C^1 vector field X an index whose non vanishing implies that all C^1 vector fields sufficiently C^0 close to X have a periodic orbit close to K (see also $[B_2]$).

By adapting Fuller's method to our foliation context, in Theorem 1 (§ 2) we associate to the pair $(\mathcal{F}; N)$ an index (cf. Definition 2.2) whose non vanishing implies the compact leaf stability property close to N. From this stability criterion we obtain Theorem 2 (§ 4) where we treat the case that the restriction of the foliation \mathcal{F} to a neighborhood of N saturates the fibers of some tubular neighborhood of N. In this case stability is ensured by the hypotheses that stabilize the fibers of a

¹⁹⁹¹ Mathematics Subject Classification. 57R30

Keywords: foliation, Fuller index, invariant manifold.

^{*} Partly supported by the CNPq of Brasil.

fibration (i.e. M=N) and stabilize also an isolated compact leaf (i.e. B is a point).

One of the difficulties to calculate the index of $(\mathcal{F}; N)$ is the construction of a suitable C^1 perturbation of \mathcal{F} when its dimension is greater than one. To resolve this difficulty we reduce the problem to a stability question for a one dimensional C^1 foliation. For this we construct in § 3 a manifold M' with a one dimensional foliation \mathcal{F}' so that in a neighborhood of N the foliation \mathcal{F} is given by the pull-back of \mathcal{F}' under a map preserving the stability property. This idea is due to Bonatti and Haefliger ($[B_1], B-H]$) in their study of compact leaf stability where \mathcal{F} is given by a fibration $F \longrightarrow M \longrightarrow B$ (i.e., M = N) and $H_1(F; R) = R$.

In Theorem 3 (§ 5) we prove that if \mathcal{F} is normally elementary along N (cf. Definition 1.2) then stability follows from the non vanishing of the Euler characteristic of B. Here we prove that under a suitable homotopy of \mathcal{F} this theorem reduces to Theorem 2.

§ 1. Definitions and results

Throughout this paper M will be a smooth manifold and \mathcal{F} a C^1 codimension q foliation on M. We shall consider on the spach $\operatorname{Fol}_q^1(M)$ of all C^1 codimension q foliations of M the Epstein compact C^1 -topology [E]. We also fix a Riemannian metric on M but the results do not depend on its choice.

We shall say that a C^1 connected compact boundaryless submanifold N of M is an \mathcal{F} -invariant fibered manifold if N is saturated by \mathcal{F} and the leaves of the restricted foliation $\mathcal{F}|_{N}$ are the fibers of a fibration $L \longrightarrow N \stackrel{p}{\longrightarrow} B$, whose fiber L and base B are closed connected manifolds. For sufficiently small $\varepsilon > 0$, a compact codimension q submanifold L' of M is ε -close to N if L' lies in an ε -tubular neighborhood $(\eta(L); \Pi)$ of some fiber L of p and is diffeomorphic to this fiber under Π . In this context the expression " \mathcal{F} has the compact leaf stability property close to N" will mean that for arbitrarily small $\varepsilon > 0$ all foliations sufficiently C^1 close to \mathcal{F} have a compact leaf ε -close to N. We shall also say that N is isolated if the compact leaves of \mathcal{F} sufficiently close to N are exactly the fibers of p.

For $x \in N$, L_x will denote the fiber of p passing through x.

If N reduces to an isolated leaf $L=L_x$ (B=point) and α is a generator of $\pi_1(L)=Z$, then the *index* of \mathcal{F} at L, $I_{\alpha}(\mathcal{F};L)$, is defined as the

fixed point index $i(H_{\alpha_x}(\mathcal{F});x)$ at x of the holonomy map $H_{\alpha_x}(\mathcal{F})$ of \mathcal{F} along some loop α_x in L_x based at x and representing α . Of course, $I_{\alpha}(\mathcal{F};L)$ does not depend on the choice of $x \in L$, nor on the representing loop α_x , nor on the domain of $H_{\alpha_x}(\mathcal{F})$. Moreover, if $\beta = \alpha^{-1}$ then $I_{\alpha}(\mathcal{F};L) = (-1)^q \cdot I_{\beta}(\mathcal{F};L)$.

THEOREM 1. Let $\mathfrak{F} \in \operatorname{Fol}_q^1(M)$ and let $L \hookrightarrow N \xrightarrow{p} B$ be an isolated \mathfrak{F} -invariant fibered manifold with $\pi_1(L) = \mathbb{Z}$ on which $\pi_1(B)$ acts trivially. Given a generator α of $\pi_1(L)$ one can define an integer number $I_{\alpha}(\mathfrak{F}; N)$, the Fuller index of \mathfrak{F} at N, satisfying:

- 1. if N is a single leaf L, then $I_{\alpha}(\mathcal{F}; N) = I_{\alpha}(\mathcal{F}; L)$,
- 2. if $I_{\alpha}(\mathfrak{F}; N)$ is nonzero, then \mathfrak{F} has the compact leaf stability property close to N.
- 3. if $\{\mathcal{F}_t\}_{t\in[0,1]}$ is a continuous path of C^1 foliations on a neighborhood U of N and for sufficiently small $\varepsilon>0$ and for each $t\in[0,1]$ the compact leaves of \mathcal{F}_t ε -close to N are exactly the fibers of p, then $I_{\alpha}(\mathcal{F}_t;N)$ does not depend on t.

If $(\eta(A); \Pi)$ is a tubular neighborhood of a submanifold $A \subset M$, then its restriction to a subset A' of A will be denoted by $\eta(A')$. In particular the fiber $\Pi^{-1}(x)$, $x \in A$, will be denoted by $\eta(x)$. A tubular subneighborhood $(\eta_0(A); \Pi_0)$ of $(\eta(A); \Pi)$ (i.e. $\eta_0(A) \subset \eta(A)$ and Π_0 is the restriction of Π to $\eta_0(A)$ will be frequently indicated by $\eta_0(A) \subset \eta(A)$.

If N has a tubular neighborhood $(\zeta(N); P)$ such that $\zeta(L_x)$ is saturated by the leaves of $\mathcal{F}|_{\zeta(N)}$ for each $x \in N$, then the foliation $\mathcal{F}|_{\zeta(N)}$ can be viewed as a family of C^1 foliations $\{\mathcal{F}_b\}_{b \in B}$, where \mathcal{F}_b is the restriction of \mathcal{F} to $\zeta(p^{-1}(b))$. Moreover, if N is isolated so is the leaf L_x of the foliation \mathcal{F}_b , where p(x) = b. In this case $I_{\alpha}(\mathcal{F}_b; L_x)$ is defined and does not depend on the choice of the point $x \in N$; so it will be denoted by $I_{\alpha}^*(\mathcal{F}; N)$.

THEOREM 2. Let \mathcal{F} , $L \longrightarrow N \stackrel{p}{\longrightarrow} B$ and α be as in Theorem 1. Suppose that for some tubular neighborhood $(\zeta(N); P)$ of N, the subset $\zeta(L_x)$ is saturated by the leaves of $\mathcal{F}|_{\zeta(N)}$ for each x in N. If $\chi(B) \neq 0$ and $I_{\alpha}^*(\mathcal{F}; N) \neq 0$ then \mathcal{F} has the compact leaf stability property close to N.

The hypothesis on the action of $\pi_1(B)$ on $\pi_1(L)$ in Theorem 2 can be dropped by passing to a double cover of the base B. If the action is not trivial, $I_{\alpha}^*(\mathcal{F}; N)$ is well defined up to sign.

1.1 Now, for each $x \in N$ choose an embedded q-disk D_x centered at x and transverse to \mathcal{F} , and identify $D_x \cong R^s \times R^{q-s}$ ($s = \dim B$) and $x \cong (0, 0)$ so that $D_x \cap N \cong R^s \times \{0\}$. Relative to this identification, the holonomy map $H_{\tau_x}(\mathcal{F})$ is defined on a neighborhood of (0, 0) and coincides with the identity map on $R^s \times \{0\}$ for each loop γ_x in L_x .

In analogy with elementary closed orbits of vector fields, we define;

1.2 DEFINITION. With the same notation and identification as above, an \mathcal{F} -invariant fibered manifold N is normally elementary if for every $x \in N$ the map $H_{\tau_x}(\mathcal{F}) - Id_{\mathbf{R}^q}$ is transversal to $\mathbf{R}^s \times \{0\}$ at (0,0), where γ_x represents a generator of $\pi_1(L_x;x)$ and $Id_{\mathbf{R}^q}$ denotes the identity map of \mathbf{R}^q .

Evidently this definition depends neither on the choice of γ_x nor on the identification $D_x \cong \mathbb{R}^s \times \mathbb{R}^{q-s}$. We can now state;

THEOREM 3. Let $\mathcal{F} \in \operatorname{Fol}_q^1(M)$ and let $L \subset N \xrightarrow{p} B$ be a normally elementary \mathcal{F} -invariant manifold with $\pi_1(L) = \mathbb{Z}$. If $\chi(B) \neq 0$ then \mathcal{F} has the compact leaf stability property close to N.

Henceforth, the expression "the holonomy map of \mathcal{F} is defined on a q-disk D'' will mean that the perturbed holonomy maps of all foliations sufficiently C^1 close to \mathcal{F} are defined on D and take values in a greater embedded q-disk containing D.

§ 2. Proof of Theorem 1

To prove Theorem 1 we will need Lemma 2.1 below. In order to state this lemma let L be a compact leaf of a codimension q foliation \mathcal{F} on M and let γ be a loop in L based at $x_0 \in L$ and representing a generator of $\pi_1(L; x_0) = Z$. Fix two embedded closed disks D^s and D^q $(0 \le s \le q)$ centered at x_0 with $D^s \subset \operatorname{Int}(D^q)$ and $H_r(\mathcal{F})$ defined on D^q .

2.1 Lemma. Suppose that \mathcal{F} is trivial on the saturation of D^s . Given (possibly intersecting) compact subset K_i of D^s and given neighborhoods \mathcal{R}'_i of the \mathcal{F} -saturation of K_i , i=1,2, there exist arbitrarely small neighborhoods $W''_1 \subset W'_1$ of K_1 and W''_2 of K_2 in D^s , and neighborhoods $\mathcal{R}''_i \subset \mathcal{R}'_i$ of the \mathcal{F} -saturation of K_i in M satisfying the following property: if \mathcal{F}' and \mathcal{F}'' are sufficiently C^1 close to \mathcal{F} and if $\{H_t\}_{t\in[0,1]}$ is

a continuous path of diffeomorphisms in the C^1 topology with $H_0 = H_7(\mathfrak{F}')$ and such that:

- H_t is sufficiently C^1 close to $H_t(\mathfrak{F})$ for $t \in [0, 1]$,
- $\mathfrak{F}' \equiv \mathfrak{F}''$ on \mathfrak{R}'_2 ,
- $-H_t \equiv H_r(\mathfrak{F}')$ outside of W'_1 for $t \in [0, 1]$,
- $-H_1 \equiv H_r(\mathcal{F}'')$ on $W_1'' \cup W_2''$,

then, there exist a continuous path $\{\mathcal{F}_t\}_{t\in[0,1]}$ on $\mathrm{Fol}_q^1(M)$ with $\mathcal{F}_0=\mathcal{F}'$ such that for all $t\in[0,1]$ we have:

- 2.1.1) \mathcal{F}_t is C^1 close to \mathcal{F}_t ,
- 2.1.2) $H_{\tau}(\mathcal{F}_t) \equiv H_t$,
- 2.1.3) $\mathcal{G}_t \equiv \mathcal{G}'$ outside of \mathcal{R}'_1 ,
- 2.1.4) $\mathcal{G}_1 \equiv \mathcal{G}''$ on $\mathcal{R}_1'' \cup \mathcal{R}_2''$.

This lemma is proved in the Appendix. In its proof we shall use the same arguments as used in § 3 and § 5.

2.2 Definition of $I_{\alpha}(\mathcal{F}; N)$. Fix the hypothesis of Theorem 1. We identify L with some fiber of p.

Since $\pi_1(B)$ acts trivially on $\pi_1(L)$, for each $x \in N$ we can transport α to a loop α_x in L_x representing a generator of $\pi_1(L_x;x)$ and satisfying the following compatibility condition: is an open subset $U \subset N$ trivialized with respect to $p: N \to B$ the family of homotopy classes $\{\bar{\alpha}_x\}_{x \in U}$ is given by transporting a selected loop α_x ($z \in U$) to each fiber in U using the product structure.

Let $\mathcal{F}' \in \operatorname{Fol}_q^1(M)$ be sufficiently C^1 close to \mathcal{F} with finitely many compact leaves L'_1, \dots, L'_r sufficiently close to N. From the construction above, for each $i=1,\dots,r$, we can transport α to a generator α_i of $\pi_1(L'_i)$. Hence, one defines:

$$I_{lpha}(\mathcal{G};\,N) = \sum\limits_{i=1}^r \,I_{lpha_i}(\mathcal{G}';\,L_i')$$

Theorem 1 follows immediatly from:

- 2.3 Proposition. With the same hypothesis as in Theorem 1, we have:
- 1. there exists a foliation \mathcal{F}' on M, arbitrarily C^1 close to \mathcal{F} and having finitely many compact leaves close to N,
- 2. $I_{\alpha}(\mathfrak{F}; N)$ does not depend on the foliation \mathfrak{F}' given in 1.

PROOF. Fix a closed tubular neighborhood $(\eta(N); Q)$ of N. Let $\{U_i\}_{1 \le i \le k}$ and $\{U_i'\}_{1 \le i \le k}$ be closed s-disks $(s = \dim(B))$ in B such that $U_i \subset \operatorname{Int}(U_i')$ and $\bigcup_{i=1}^k \operatorname{Int}(U_i)$ covers B.

Consider partial sections $\sigma_i: U_i' \to N$ of p and set $\sigma_i(U_i) = \tilde{U}_i$ and $\sigma_i(U_i') = \tilde{U}_i'$. Fix $x_i \in \operatorname{Int}(\tilde{U}_i)$ and a loop α_{x_i} in L_{x_i} representing α as in 2.2.

Passing to smaller $\eta(N)$ if necessary, we assume that for \mathcal{F}' sufficiently C^1 close to \mathcal{F} the perturbed holonomy map of \mathcal{F}' along the loop α_{x_i} , denoted by $H_i(\mathcal{F}')$, is defined on $\eta(\tilde{U}_i')$. Furthermore, since N is isolated, we can also admit that $\operatorname{Fix}(H_i(\mathcal{F})) = \tilde{U}_i'$.

- 1. We shall modify \mathcal{F} successively in small neighborhoods of $p^{-1}(U_1), \dots, p^{-1}(U_k)$ so as to obtain foliations $\mathcal{F}_1, \dots, \mathcal{F}_k$ arbitrarily C' close to \mathcal{F} such that:
- a. $\mathcal{F}_i \equiv \mathcal{F}$ outside of a neighborhood of $p^{-1}(\bigcup_{j=1}^{i} U_j)$ in M.
- b. The maps $H_j(\mathcal{F}_i)$ have just a finite number of fixed points in $\eta(V_j)$, where $V_j \subset \tilde{U}_j'$ is a neighborhood of \tilde{U}_j and $1 \leq j \leq i$.

Then $\mathcal{G}' = \mathcal{G}_k$ will be the required foliation. We shall argue inductively.

The foliation \mathcal{F}_1 is directly obtained from Lemma 2.1. It suffices to choose a sufficiently small neighborhood $V_1 \subset \tilde{U}_i'$ of \tilde{U}_1 and a sufficiently C^1 small perturbation of $H_1(\mathcal{F})$ with just a finite number of fixed points in $\eta(V_1)$ and supported in a small neighborhood of V_1 in $\eta(\tilde{U}_1')$.

Suppose that we have construct \mathcal{G}_i . Thus $H_{i+1}(\mathcal{G}_i)$ has finitely many fixed points in $\eta(W'_{i+1})$, where $W'_{i+1} \subset \tilde{U}'_{i+1}$ is an open neighborhood of $\bigcup_{j=1}^{i} \sigma_{i+1}(U_j \cap U'_{i+1})$.

Fix a compact subneighborhood $W_{i+1} \subset W'_{i+1}$ of $\bigcup_{j=1}^{i} \sigma_{i+1}(U_j \cap U'_{i+1})$ and let $K = \tilde{U}_{i+1} - W'_{i+1}$. Now, select a sufficiently C^1 small perturbation \tilde{H}_{i+1} of $H_{i+1}(\mathcal{F}_i)$ coinciding with $H_{i+1}(\mathcal{F}_i)$ on $\eta(W_{i+1})$, having finitely many fixed points in $\eta(V_{i+1})$, where V_{i+1} is a neighborhood of $\bigcup_{j=1}^{i+1} \sigma_{i+1}(U_j \cap U'_{i+1})$ in \tilde{U}'_{i+1} , and supported on a neighborhood of K in $\eta(\tilde{U}'_{i+1})$.

As before, from 2.1 we obtain a foliation \mathcal{F}_{i+1} C^1 close to \mathcal{F} which agrees with \mathcal{F}_i outside of a neighborhood of $p^{-1}(p(K))$ in M and such that $H_{i+1}(\mathcal{F}_{i+1}) = \tilde{H}_{i+1}$. Clearly \mathcal{F}_{i+1} satisfies (a) and agrees with \mathcal{F}_i on a neighborhood of $\eta[p^{-1}(\bigcup_{j=1}^i U_j)]$. Thus, \mathcal{F}_{i+1} also satisfies (b) and this proves (1).

2. Our argument is adapted from one of Bonatti [B₁, Appendix 2, pp. 243-245].

Let the foliations \mathcal{F}' and \mathcal{F}'' satisfy 2.3.1. Up to a diffeomorphism of M arbitrarily C^{∞} close to the identity map, we can assume that the compact leaves of \mathcal{F}' and \mathcal{F}'' which are close to N do not meet $\bigcup_{i=1}^k \eta(\partial \tilde{U}_i')$. Hence, for each $i=1,\cdots,k$ the perturbed holonomy maps $H_i(\mathcal{F}')$ and $H_i(\mathcal{F}'')$ have finitely many fixed points, all of them contained in the interior of $\eta(\tilde{U}_i')$ and very close to \tilde{U}_i' .

We shall construct on a tubular subneighborhood $\eta_0(N) \subset \eta(N)$ a continuous path of C^1 foliations $\{\mathcal{F}_t\}_{t \in [0,k]}$ from $\mathcal{F}_0 = \mathcal{F}'$ to $\mathcal{F}_k = \mathcal{F}''$ such that \mathcal{F}_t is C^1 close to \mathcal{F} for all $t \in [0,k]$ and satisfying the following properties for each $i=1,\cdots,k$:

- a'. $\mathcal{F}_t \equiv \mathcal{F}_{i-1}$ on a neighborhood of $\eta_0[p^{-1}(B-\operatorname{Int} U_i')]$ in $\eta_0(N)$ and the compact leaves of \mathcal{F}_t close to N do not intersect $\eta_0(\partial \tilde{U}_i')$ for all $t \in [i-1,i]$,
- b'. $\mathcal{F}_i{\equiv}\mathcal{F}''$ on a neighborhood of $\eta_0[p^{-1}(igcup_{j=1}^iU_j)]$ in $\eta_0(N)$,
- c'. \mathcal{F}_i has finitely many compact leaves close to N which do not intersect $\bigcup_{j=1}^k \eta_0(\partial \tilde{U}_j')$,
- d'. $I_{i-1}=I_i$, where I_i denotes the sum of the indices of compact leaves of \mathcal{G}_i close to N.

We shall construct this path inductively.

In order to construct $\{\mathcal{F}_t\}_{t\in[0,1]}$ fix neighborhoods V_1 and V_1' of \tilde{U}_1 with $Cl(V_1)\subset \operatorname{Int}(V_1')$ and $Cl(V_1')\subset \operatorname{Int}(\tilde{U}_1')$. Since \mathcal{F}' and \mathcal{F}'' are C^1 close to \mathcal{F} , moving $[H_1(\mathcal{F}')](x)$ along the geodesic arc (in the induced metric on $\eta(\tilde{U}_1')$) to $[H_1(\mathcal{F}'')](x)$ we construct a C^1 isotopy $\{\tilde{H}_t\}_{t\in[0,1]}$ of $\tilde{H}_0=H_1(\mathcal{F}')$ such that:

— \tilde{H}_t is C^1 close to $H_1(\mathcal{F})$, and $\tilde{H}_t \equiv H_1(\mathcal{F}')$ on $\eta(\tilde{U}_1' - V_1')$, for all $t \in [0, 1]$, — $\tilde{H}_1 \equiv H_1(\mathcal{F}'')$ on $\eta(V_1)$.

The map \tilde{H}_1 has finitely many fixed points on $\eta(V_1) \cup \eta(\tilde{U}_1' - V_1')$.

Let $\mathcal{W} \subset \operatorname{Int}(\tilde{U}_1' - \tilde{U}_1)$ be a small compact neighborhood of $Cl(V_1' - V_1)$ in \tilde{U}_1' . By a suitable C^1 small perturbation of \tilde{H}_1 with support in $\eta(\mathcal{W})$ we can also assume that:

— \tilde{H}_1 has finitely many fixed points (all of them close to \tilde{U}_1).

Since \mathcal{W} intersects V_1 and $\tilde{U}_1'-V_1'$, in order to keep the above properties of \tilde{H}_t and \tilde{H}_1 on $\eta(\tilde{U}_1'-V_1')$ and $\eta(V_1)$ respectively, we should pass to a smaller neighborhood V_1 and a greater neighborhood V_1' .

Furthermore, this construction gives $i(H_1(\mathfrak{F}'); \Omega_0) = i(\tilde{H}_t; \Omega_t)$ for all $t \in [0, 1]$, where $\Omega_t = \operatorname{Fix}(\tilde{H}_t)$.

Since \mathcal{F}' and \mathcal{F}'' can be taken arbitrarily close to \mathcal{F} , from Lemma 2.1 we obtain a continuous path of C^1 foliations $\{\mathcal{F}_i\}_{i\in[0,1]}$ on $\eta_1(N)\subset\eta(N)$ with $H_1(\mathcal{F}_i)=\tilde{H}_i$ and satisfying items (a') and (b') for i=1 (in fact, to apply Lemma 2.1 to the situation above we have to consider a smaller $\eta'(N)\subset\eta(N)$ and take \tilde{H}_i coinciding with $H_1(\mathcal{F}')$ outside of $\eta'(\tilde{U}_1')$. Moreover, \mathcal{F}_1 has finitely many compact leaves close to N.

On the other hand, since $i(H_1(\mathcal{F}'); \Omega_0) = i(\tilde{H}_1; \Omega_1)$ and \mathcal{F}' is close enough to \mathcal{F} , we conclude from (a') that $I_0 = I_1$. Perturbing \mathcal{F}_1 by a convenient diffeomorphism of $\eta_1(N)$ C^{∞} -close to the identity map, we have that (c') also holds.

Suppose that we have constructed \mathcal{F}_i on $\eta_i(N) \subset \eta(N)$.

Hence, $H_{i+1}(\mathcal{F}_i)$ has just a finite number of fixed points which are in the interior of $\eta_i(\tilde{U}'_{i+1})$ and very close to \tilde{U}'_{i+1} . Furthermore, taking smaller $\eta_i(N)$ if necessary, we can assume that $H_{i+1}(\mathcal{F}_i) \equiv H_{i+1}(\mathcal{F}'')$ on $\eta_i(W_{i+1})$, where $W_{i+1} \subset \tilde{U}'_{i+1}$ is an open neighborhood of $\bigcup_{j=1}^i \sigma_{i+1}(U_j \cap U'_{i+1})$.

We shall construct $\{\mathcal{F}_t\}_{t\in [i,i+1]}$ in an analogous way we have constructed $\{\mathcal{F}_t\}_{t\in [0,1]}$. Since \mathcal{F}_i and \mathcal{F}'' are C^1 close to \mathcal{F}_i , we construct a C^1 isotopy $\{\tilde{H}_t\}_{t\in [i,i+1]}$ of $H_{i+1}(\mathcal{F}_i)=\tilde{H}_i$ by first moving $[H_{i+1}(\mathcal{F}_i)](x)$ along the geodesic arcs (in the induced metric on $\eta_i(\tilde{U}'_{i+1})$) to $[H_{i+1}(\mathcal{F}'')](x)$ and then taking a suitable C^1 small perturbation of \tilde{H}_{i+1} with support in $\eta_i[\tilde{U}'_{i+1}-\bigcup_{i=1}^{i+1}\sigma_{i+1}(U_i\cap U'_{i+1})]$ such that:

- \tilde{H}_t is C^1 close to $H_{i+1}(\mathcal{F})$ for all $t \in [i, i+1]$,
- $-\tilde{H}_t \equiv H_{i+1}(\mathcal{F}_i)$ on $\eta_i(\tilde{U}'_{i+1} V'_{i+1})$ for all $t \in [i, i+1]$, where $V'_{i+1} \subset \tilde{U}'_{i+1}$ is a neighborhood of \tilde{U}_{i+1} with $Cl(V'_{i+1}) \subset Int(\tilde{U}'_{i+1})$,
- $\tilde{H}_{i+1} \equiv H_{i+1}(\mathfrak{T}'')$ on $\eta_i(V_{i+1})$, where $V_{i+1} \subset V'_{i+1}$ is a neighborhood of \tilde{U}_{i+1} , $\tilde{H}_{i+1} \equiv H_{i+1}(\mathfrak{T}'')$ on $\eta_i(W_{i+1})$,
- \tilde{H}_{i+1} has finitely many fixed points (which are close to \tilde{U}'_{i+1}).

Once given the isotopy $\{\tilde{H}_t\}_{t\in[i,i+1]}$, applying Lemma 2.1 and the same arguments used above for i=1 we obtain the required path of foliations $\{\mathcal{F}_t\}_{t\in[i,i+1]}$. This completes the proof of (2).

§ 3. Construction of the total space

As explained in the introduction, we reduce the problem of compact leaves close to an \mathcal{G} -invariant fibered manifold to the same problem for

a one dimensional foliation \mathcal{G} on a manifold M'. The goal of this section is to realize this simplified foliated manifold. In fact, we describe its construction in a more general situation that we really need.

For a disk bundle $\Pi: \xi(A) \to A$ over a manifold A, with a section $\sigma: A \to \xi(A)$, we shall use the same notation as for tubular neighborhoods in § 1, so we write $(\xi(A); \Pi)$ and $\xi(x)$ means the disk $\Pi^{-1}(x)$, $x \in A$, and so on. We shall always identify A with $\sigma(A)$.

- 3.1 Lemma. Let L and G be closed connected manifolds, and let $(\xi(L); \Pi)$ be an r-disk bundle with a section L. Given
- 1. a C^1 family of foliations $\{\mathcal{F}_{\lambda}; \lambda \in \mathbf{R}^{\circ}\}$ on $\xi(L)$ such that L is a leaf of each \mathcal{F}_{λ} ,
- 2. a C^1 family of maps $\{f_{\lambda}: L \rightarrow G; \lambda \in \mathbb{R}^s\}$ such that $(f_{\lambda})_*: \pi_1(L) \rightarrow \pi_1(G)$ is an isomorphism,

there exists an r-disk bundle $(\tilde{\xi}(G), \tilde{\Pi})$ with a section G and there also exist

- 1'. a C^1 family of foliations $\{\mathcal{G}_{\lambda}\}_{{\lambda}\in W}$ on $\tilde{\xi}(G)$ such that G is a leaf of \mathcal{G}_{λ} for each λ in a neighborhood W of $0\in \mathbb{R}^s$,
- 2'. a C^1 family of fiber preserving maps $\{F_{\lambda}: \xi_1(L) \to \tilde{\xi}(G)\}_{\lambda \in W}$ extending $\{f_{\lambda}\}_{\lambda \in W}$ in a tubular subneighborhood $\xi_1(L) \subset \xi(L)$ such that, for all $\lambda \in W$, the map F_{λ} preserves the foliations \mathfrak{F}_{λ} and \mathfrak{G}_{λ} , and the restriction of F_{λ} to the disk $\xi_1(x)$ is a diffeomorphism for each $x \in L$.

It follows from 3.1.2' that F_{λ} is transversal to \mathcal{G}_{λ} , $\mathcal{F}_{\lambda} = F_{\lambda}^{*}(\mathcal{G}_{\lambda})$ and F_{λ} restricted to $\xi_{1}(x)$ conjugates the holonomies of \mathcal{F}_{λ} and \mathcal{G}_{λ} . Moreover, in a neighborhood of L the map F_{λ} is uniquely determined by f_{λ} and by its restriction to $\xi_{1}(x)$.

We remark that lemma 3.1 holds for any previously chosen relatively compact neighborhood W of $0 \in \mathbb{R}^*$. This will be clear in its proof.

PROOF OF LEMMA 3.1. Fix loops $\{\alpha_i\}_{1 \leq i \leq k}$ in L based at x_0 whose homotopy classes generate $\pi_1(L, x_0)$. Let $y_{\lambda} = f_{\lambda}(x_0)$ and $\beta_i = f_0(\alpha_i)$.

Since $(f_0)_*$ is an isomorphism, according to Haefliger's construction [H] there exist an r-disk bundle $(\tilde{\xi}(G), \tilde{H})$ with a section G, foliation \mathcal{G}_0 on $\tilde{\xi}(G)$ having G as a leaf, and (eventually passing to a smaller $\xi(L)$) a C^1 diffeomorphism $\tilde{f}_0: \xi(x_0) \to \tilde{\xi}(y_0)$ conjugating the holonomies of \mathcal{F}_0 and \mathcal{G}_0 , that is: the relation $H_{\beta_i}(\mathcal{G}_0) \circ \tilde{f}_0 = \tilde{f}_0 \circ H_{\alpha_i}(\mathcal{F}_0)$ holds in a neighborhood $U \subset \xi(x_0)$ of x_0 for all $i=1, \dots, k$.

For a smaller U and for λ in a neighborhood W of $0 \in \mathbb{R}^s$, the C^1

family of diffeomorphisms $\{H_{\lambda,i}:\tilde{f}_0(U)\to \tilde{\xi}(y_0)\}_{1\leq i\leq k}^{\lambda\in W_i}$ defined by $H_{\lambda,i}\circ \tilde{f}_0=\tilde{f}_0\circ H_{\alpha_i}(\mathcal{F}_\lambda)$ represents a C^1 family of small perturbations of the holonomy of \mathcal{G}_0 . Applying the Realization Theorem of Bonatti-Haefliger [B-H] we obtain a neighborhood $W'\subset W$ of $0\in R^s$ and a C^1 family of foliations $\{\mathcal{G}_\lambda\}_{\lambda\in W'}$ on $\tilde{\xi}(G)$ (eventually passing to a smaller $\tilde{\xi}(G)$) such that $H_{\beta,i}(\mathcal{G}_\lambda)=H_{\lambda,i}$ on a neighborhood $V\subset \tilde{\xi}(y_0)$ of y_0 . Since y_0 is a fixed point of $H_{\lambda,i}$ for all $\lambda\in W'$ and $i=1,\cdots,k$, each \mathcal{G}_λ has a compact leaf G_λ passing through y_0 and close to G. Translating \mathcal{G}_λ along the fibers of \widetilde{H} we can assume that G_λ coincides with G, for all λ in W'.

For λ in \mathbf{R}° small enough, $\tilde{f}_{\lambda}: (\tilde{f}_{0})^{-1}(V) \to \tilde{\xi}(y_{\lambda})$ be the C^{1} family of embeddings uniquely defined by $\tilde{f}_{\lambda} = g_{\lambda} \circ \tilde{f}_{0}$, where $g_{\lambda}: V \to \tilde{\xi}(y_{\lambda})$ are the C^{1} embeddings given by projecting V into $\tilde{\xi}(y_{\lambda})$ along the leaves of \mathcal{G}_{λ} . Hence, \tilde{f}_{λ} conjugates $H_{\alpha_{i}}(\mathcal{F}_{\lambda})$ and $H_{f_{\lambda}(\alpha_{i})}(\mathcal{G}_{\lambda})$ in a neighborhood of x_{0} in $\xi(x_{0})$, for $i=1, \dots, k$ and λ close to $0 \in \mathbf{R}^{s}$.

Now, the map F_{λ} is the unique fiber preserving extension of the pair $(f_{\lambda}; \tilde{f}_{\lambda})$ defined on a tubular subneighborhood $\xi_1(L) \subset \xi(L)$ which preserves also the foliations \mathcal{G}_{λ} and \mathcal{G}_{λ} . This finishes the proof.

3.2 The total space realization Lemma. Let $(\xi(N); P)$ be an r-disk bundle with a section N and let $\mathcal{F} \in \operatorname{Fol}_q^1(\xi(N))$ be such that $L \hookrightarrow N \xrightarrow{p} B$ is an \mathcal{F} -invariant fibered manifold. Suppose that $\xi(L_x)$ is \mathcal{F} -saturated for each $x \in N$. Then given a fibration $G \hookrightarrow N_0 \xrightarrow{p_0} B$ and a C^1 fiber preserving map $f: N \to N_0$ inducing the identity map on B and an isomorphism $f_*: \pi_1(L) \to \pi_1(G)$, there exist an r-disk bundle $(\tilde{\xi}(N_0); \tilde{P})$ with a section N_0 , a C^1 foliation \mathcal{G} on $\tilde{\xi}(N_0)$ and a C^1 fiber preserving map $F: \xi_1(N) \to \tilde{\xi}(N_0)$ extending f on a tubular subneighborhood $\xi_1(N) \subset \xi(N)$ satisfying the conditions:

- 1. $G \longrightarrow N_0 \xrightarrow{p_0} B$ is a \mathcal{G} -invariant fibered manifold,
- 2. $\tilde{\xi}(G_y)$ is \mathcal{G} -saturated for each $y \in N_0$,
- 3. the restriction of F to $\xi_1(x)$ is a diffeomorphism for all $x \in N$ and F preserves the foliations \mathcal{F} and \mathcal{G} .

In particular, F is transversal to \mathcal{G} and $F^*(\mathcal{G}) = \mathcal{G}$.

PROOF. Let $\mathcal{W} = \{W_i\}_{1 \leq i \leq k}$ be an open cover of B trivializing the three fibrations: p, p_0 and $P \circ p$. Hence, the disk bundle $(\xi(N); P)$, the foliation \mathcal{F} and the map f are given by:

— an r-disk bundle $(\xi(L); \Pi)$ with a section L,

- a C^1 family of foliations $\{\mathcal{F}_{\lambda,i}\}_{1\leq i\leq k}^{\lambda\in W_i}$ on $\xi(L)$ such that L is a leaf of each $\mathcal{F}_{\lambda,i}$,
- a C^1 family of maps $\{f_{\lambda,i}:L\to G\}_{1\leq i\leq k}^{\lambda\in W_i}$ such that each $(f_{\lambda,i})_*:\pi_1(L)\to\pi_1(G)$ is an isomorphism,
- two C^1 cocycles $\Psi_{i,j}: W_i \cap W_j \rightarrow \text{Diff}^1(\xi(L))$ and $\varphi_{i,j}: W_i \cap W_j \rightarrow \text{Diff}^1(G)$ associate to the cover \mathscr{W} satisfying the following conditions:
- $-\Psi_{i,j}(\lambda)(L)=L$
- $\Pi \circ \Psi_{i,j}(\lambda) = \Psi_{i,j}(\lambda) \circ \Pi$
- $-\Psi_{i,j}(\lambda)(\mathcal{F}_{\lambda,i})=\mathcal{F}_{\lambda,j}$
- $-\varphi_{i,j}(\lambda)\circ f_{\lambda,i}=f_{\lambda,j}\circ \Psi_{i,j}(\lambda)$ on L.

We choose the open sets of the cover \mathscr{W} small enough so that Lemma 3.1 applies for each $i=1, \cdots, k$. So, let $(\tilde{\xi}(G); \tilde{H})$, $\{\mathcal{G}_{\lambda,i}\}_{1 \leq i \leq k}^{\lambda \in W_i}$, and $\{F_{\lambda,i}: \xi_1(L) \to \tilde{\xi}(G)\}_{1 \leq i \leq k}^{\lambda \in W_i}$ be given by 3.1.

To obtain the foliation \mathcal{G} and the map F it suffices to construct a cocycle $\Phi_{i,j}: W_i \cap W_j \to \operatorname{Emb}^1(\tilde{\xi}_1(G); \tilde{\xi}(G)), \ \tilde{\xi}_1(G) \subset \tilde{\xi}(G)$ satisfying the following properties for each $\lambda \in W_i \cap W_j$:

- a. $\Phi_{i,j}(\lambda) \equiv \varphi_{i,j}(\lambda)$ on G,
- b. $\widetilde{\Pi} \circ \Phi_{i,j}(\lambda) = \Phi_{i,j}(\lambda) \circ \widetilde{\Pi}$,
- c. $\Phi_{i,j}(\lambda)(\mathcal{G}_{\lambda,i}) = \mathcal{G}_{\lambda,j}$,
- d. $\Phi_{i,i}(\lambda) \circ F_{\lambda,i} = F_{\lambda,i} \circ \Psi_{i,i}(\lambda)$

Fix $z \in L$. Since $F_{\lambda,i}$ restricted to $\xi_1(z)$ is a diffeomorphism, then for $\lambda \in W_i \cap W_j$ the maps

$$\tilde{\varphi}_{i,j}(\lambda): F_{\lambda,i}(\xi(z)) \rightarrow \tilde{\xi}[(\varphi_{i,j}(\lambda))(f_{\lambda,i}(z))]$$

defined by

$$\tilde{\varphi}_{i,j}(\lambda) \circ F_{\lambda,i} = F_{\lambda,j} \circ \Psi_{i,j}(\lambda)$$

conjugate the holonomies of $\mathcal{G}_{\lambda,i}$ and $\mathcal{G}_{\lambda,j}$.

Let $\Phi_{i,j}(\lambda): \tilde{\xi}_1(G) \to \tilde{\xi}(G)$ be the unique extension of the pair $(\varphi_{i,j}(\lambda), \tilde{\varphi}_{i,j}(\lambda))$ satisfying properties (a), (b) and (c) above in a tubular subneighborhood $\tilde{\xi}_1(G) \subset \tilde{\xi}(G)$. Clearly $\Phi_{i,j}(\lambda)$ is an embedding and from the unicity of this extension it is easy to check that $\Phi_{i,j}(\lambda)$ satisfies also (d) and does not depend on the choice of $z \in L$.

Finally, to see that $\{\Phi_{i,j}\}_{i,j}$ is a cocycle, we use the unicity of $\Phi_{i,j}(\lambda)$ as extension of the pair $(\varphi_{i,j}(\lambda), \tilde{\varphi}_{i,j}(\lambda))$ and the fact that $\Phi_{i,j}(\lambda)$ does not depend on the choice of $z \in L$.

§ 4. Proof of Theorem 2

Theorem 2 follows from Theorem 1 and the following proposition.

4.1 PROPOSITION. On the hypothesis of Theorem 2, $I_{\alpha}(\mathcal{F}; N) = \chi(B).I_{\alpha}^*(\mathcal{F}; N)$.

We shall apply the result established in the previous section to reduce the proof of this proposition to the case where \mathcal{F} is an oriented one dimensional C^1 foliation. Thus, we shall first prove it for this special case.

So, let \mathcal{F} be a one dimensional oriented C^1 foliation and $S^1 \longrightarrow N \xrightarrow{p} B$ an \mathcal{F} -invariant fibered manifold with $\dim(B) = s$.

- 4.2 Lemma. Suppose that for some tubular neighborhood $(\zeta(N); P)$ of N in M, the leaves of $\mathcal{F}|_{\zeta(N)}$ project under P into the fibers of p. Then there exists a sequence of foliations $\{\mathcal{F}_n\}_{n\in N}$ on M, converging to \mathcal{F} in the C^1 topology with the following properties for all $n\in N$:
- 1. N is an invariant submanifold under \mathcal{F}_n ,
- 2. \mathcal{F}_n has finitely many compact leaves on N which coincide with fibers of p,
- 3. the leaves of $\mathfrak{F}_n|_{\zeta_1(N)}$ project under P into the leaves of $\mathfrak{F}_n|_N$, where $\zeta_1(N)$ is a subneighborhood of $\zeta(N)$,
- 4. if $\gamma \subset N$ is a compact leaf of \mathcal{F}_n then \mathcal{F}_n agrees with \mathcal{F} on $\zeta(\gamma)$.

We point out that from a Hart's result [Ha], up to a C^1 diffeomorphism the foliation \mathcal{F} is given by a C^1 vector field X on $\zeta(N)$. However, the classical argument of perturbing X by a lift (under p and P) of a suitable C^{∞} vector field on B does not apply readly. Since the projections p and P are of class C^1 the perturbation so obtained would be only of class C^0 which is not necessarily integrable. That is why the proof of lemma 4.2 is some more technical than it would be if we were dealing with the C^2 class.

PROOF OF LEMMA 4.2. Choose a convenient smooth triangulation $\Delta = \{\Delta_1, \dots, \Delta_r\}$ of B so that for each $i=1, \dots, r$ there is an s-simplex $\widetilde{\Delta}_i \subset N$ projecting diffeomorphically onto Δ_i and satisfying $\widetilde{\Delta}_i \cap \widetilde{\Delta}_j = \emptyset$ if $1 \le i \ne j \le r$. Furthermore, denote by $\{\delta_i(\Delta); r+1 \le i \le r+k\}$ the set of all (s-1)-simplexes of Δ , and, for each $i=r+1, \dots, r+k$, choose a small

neighborhood V_i of $\delta_i(\Delta)$ diffeomorphic to a closed s-disk. Let $\tilde{V}_i \subset N$ projecting diffeomorphically onto V_i be such that $\tilde{V}_i \cap \tilde{V}_j = \emptyset$ and $\tilde{V}_i \cap \tilde{\Delta}_l = \emptyset$ for $r+1 \leq i \neq j \leq r+k$ and $1 \leq l \leq r$. Setting $T = \tilde{\Delta}_1 \cup \cdots \cup \tilde{\Delta}_r \cup \tilde{V}_{r+1} \cup \cdots \cup \tilde{V}_{r+k}$, we shall use the notation $T_i = \tilde{\Delta}_i$ if $1 \leq i \leq r$ and $T_i = \tilde{V}_i$ if $r+1 \leq i \leq r+k$.

Passing to a smaller and compact $(\zeta(N); P)$ we have that $\zeta(T)$ is transversal to \mathcal{F} . Hence, the saturation of $\zeta(T)$ by small arcs of leaves of \mathcal{F} is a disjoint union $W=W_1\cup\cdots\cup W_{r+k}$ of foliated compact sets, each of them identified with $T_i\times D^{q-s}\times [-2,1]$, where D^{q-s} is the closed unit disk in R^{q-s} centered at the origin and the leaves of \mathcal{F} are identified with the intervals $\{x\}\times \{y\}\times [-2,1]$ with orientation coming from the usual orientation of [-2,1]. Relative to the identification $W_i\cong T_i\times D^{q-s}\times [-2,1]$ above, $T_i\cong T_i\times \{0\}\times \{0\}$ and the projection P is expressed by P(x,y,t)=(x,t).

The foliations \mathcal{F}_n will be obtained modifying \mathcal{F} inside of W. For this, let Z be a smooth vector field on B without periodic orbits and with finitely many singularities, all of them contained in $B-\bigcup_{i=1}^{r+k} V_i$.

- Let $g: B \rightarrow [0, 1]$ and $\{g_i: V_i \rightarrow [0, 1]\}_{i=r+k}^{i=r+k}$ be smooth maps such that:
- $g_i \equiv 0$ on a small collar neighborhood of ∂V_i and $g_i > 0$ on a neighborhood $V'_i \subset V_i$ of $\delta_i(\Delta)$,
- $g\!\equiv\!0$ on a neighborhood of the $(s\!-\!1)$ -skeleton of \varDelta and $g\!>\!0$ on $B\!-\!\bigcup_{i=1}^{r+k}V_i'$.

On each T_i consider the smooth vector field

$$X^{i} = \begin{cases} p^{*}(gZ) & \text{if } 1 \leq i \leq r \\ p^{*}(g_{i}Z) & \text{if } r+1 \leq i \leq r+k. \end{cases}$$

Let $\varphi:[0,1]\to[0,1]$ be a C^{∞} map such that $\varphi\equiv 1$ on a neighborhood of zero and $\varphi\equiv 0$ on a neighborhood of 1. Now we define on $T_i\times D^{q-s}$ the vector field $Y^i(x,y)=(\varphi(||y||).X^i(x),0)$.

Given $\varepsilon > 0$ we choose smooth isotopies $\{f_{i,t}^{\varepsilon}\}_{t \in [-2,1]}^{i=1,\dots,r+k}$ defined on $T_i \times D^{q-s}$ of the form $f_{i,t}^{\varepsilon}(x,y) = (f_{i,t,y}^{\varepsilon}(x),y)$, supported outside of a collar neighborhood of $\partial (T_i \times D^{q-s})$ and such that:

- $-f_{i,t}^{s}=Id \text{ for } t \in [-2, -1],$
- $f_{i,t}^{\epsilon} = (Y^i)_{\epsilon}$ for $t \in [0, 1]$, where $(Y^i)_{\epsilon}$ is the time ϵ map of the flow of Y^i .
- $f_{i,t}^{\epsilon}(x, y) = (x, y)$ if p(x) is a singularity of the vector field Z, for all $t \in [-2, 1]$,

— the isotopies $\{f_{i,t}^{\epsilon}\}_{t\in[-2,1]}$ converge to the trivial isotopy $\{h_t=Id_{T_i\times D^{q-s}}\}_{t\in[-2,1]}$ in the C^{∞} topology as ϵ goes to zero.

These isotopies define foliations \mathcal{F}_{ϵ} on M coinciding with \mathcal{F} on M-W, and on each W_i the leaves of \mathcal{F}_{ϵ} are given by $\{(f_{i,t}^{\epsilon}(z), t); t \in [-2, 1]\}_{z \in T_i \times D^{q-\epsilon}}$.

By construction N is invariant under $\mathcal{F}_{\varepsilon}$ and $\mathcal{F}_{\varepsilon}$ converges to \mathcal{F} in the C^1 topology as ε goes to zero. Moreover, the foliations $\mathcal{F}_{\varepsilon}$ satisfy condition (3) in a small subneighborhood $\zeta_1(N) \subset \zeta(N)$.

Fix $\varepsilon > 0$ and let F be a leaf of $\mathcal{F}_{\varepsilon}$ lying in N. Denote $[z_{\lambda}, z'_{\lambda}]$ each connected arc with extremities z_{λ} and z'_{λ} of $F \cap W$, where $z_{\lambda} < z'_{\lambda}$ following the orientation of $\mathcal{F}_{\varepsilon}$ and $\lambda \in \Lambda$. First observe that, for all $\lambda \in \Lambda$, the points $p(z_{\lambda})$ and $p(z'_{\lambda})$ are on the same orbit of the vector field Z, and $p(z'_{\lambda})$ belongs to the positive semi-orbit of $p(z_{\lambda})$, i.e. $p(z'_{\lambda}) = Z_{\varepsilon}(p(z_{\lambda}))$ for some $\varepsilon > 0$.

If $Z(p(z_{\delta}))=0$ for some $\delta \in \Lambda$ then $p(z_{\lambda})=p(z'_{\lambda})$ for all $\lambda \in \Lambda$ and it follows that F coincides with the fiber passing through z_{δ} . Otherwise, for some $\lambda \in \Lambda$ and some $i \in \{1, \dots, r+k\}$, we have $z_{\lambda} \in W_i$ and $X^i(z_{\lambda}) \neq 0$. In this case $p(z'_{\lambda})=Z_i(p(z_{\lambda}))$ for t>0, and therefore, p(F) is not a closed curve in B. Consequently, F is not compact. Now we can easily conclude that \mathcal{F}_{ϵ} also satisfy (4) and the proof is finished.

We shall need the following elementary lemma.

4.3 LEMMA. Let $\Phi: U \rightarrow \mathbb{R}^s \times \mathbb{R}^{q-s}$ be a continuous map of the form $\Phi(x, y) = (g(x), f_x(y))$ defined in a neighborhood $U \subset \mathbb{R}^s \times \mathbb{R}^{q-s}$ of the origin. If $Fix(\Phi) = \{(0, 0)\}$ and $Fix(g) = \{0\}$ then $i(\Phi; (0, 0)) = i(g; 0).i(f_0; 0)$.

PROOF. It suffices to verify that there exist a C^0 homotopy $\{\Phi_t\}_{t\in[0,1]}$ between Φ and the product map (g,f_0) such that $\mathrm{Fix}(\Phi_t)=\{(0,0)\}$, for all $t\in[0,1]$. Such a homotopy is given by $\Phi_t(x,y)=(g(x),(1-t).f(y)+t.f_0(y))$, for $t\in[0,1]$.

4.4 Proposition. The Proposition 4.1 holds if \mathfrak{F} is a C^1 one dimensional oriented foliation and α is defined by the orientation of \mathfrak{F} .

PROOF. Let \mathcal{F}' be a foliation C^1 close to \mathcal{F} as described in Lemma 4.2, and let $\gamma_i, \dots, \gamma_r$ be its compact leaves lying in N. Since N is isolated, the compact leaves of \mathcal{F}' close to N are exactly $\gamma_1, \dots, \gamma_r$. Therefore,

$$I_{lpha}(\mathfrak{T};\,N)=\sum\limits_{j=1}^{r}I_{lpha}(\mathfrak{T}';\,oldsymbol{\gamma}_{j}).$$

Fix $j \in \{1, \dots, r\}$, $x_j \in \gamma_j$ and a small s-disk D contained in N, centered at x_j and transversal to $\mathcal{F}|_N$. Identifying $\zeta(D) \cong \mathbb{R}^s \times \mathbb{R}^{q-s}$ and $x_j \cong (0,0)$ so that $D \cong \mathbb{R}^s \times \{0\}$ and P(x,y) = x, the perturbed first return map $H_{r_j}(\mathcal{F}')$ is defined on a neighborhood of (0,0). According to 4.2.3, we have $[H_{r_j}(\mathcal{F}')](x,y) = (g(x),f_x(y))$. On the other hand, from Lemma 4.3 it follows that $i(H_{r_j}(\mathcal{F}');x_j)=i(g;0)$. $i(f_0;0)$. Furthermore, since \mathcal{F}' agrees with \mathcal{F} on $\zeta(\gamma_j)$, f_0 is the first return map of \mathcal{F} restricted to $\zeta(\gamma_j)$. Thus, $i(f_0;0)=I_{\alpha}^*(\mathcal{F};N)$ and i(g;0) coincides with the index $i(Z;p(x_j))$ of Z at $p(x_j)$. Therefore $I_{\alpha}(\mathcal{F};N)=\sum_{i=1}^r i(Z;p(x_i))$. $I_{\alpha}^*(\mathcal{F};N)=\chi(B)$. $I_{\alpha}^*(\mathcal{F};N)$.

4.6 Proof of Proposition 4.1. Since $\pi_1(L) = \mathbb{Z}$, there exist an S^1 -bundle $S^1 \longrightarrow N_0 \xrightarrow{p_0} B$ and a C^1 fiber preserving map $f: N \to N_0$ inducing the identity map on B and such that $f_*: \pi_1(L) \to \pi_1(S^1)$ is an isomorphism (cf. [B-H, § 4]).

Let \mathcal{G} , $(\tilde{\zeta}(N_0); \tilde{P})$ and $F: \zeta_1(N) \to \tilde{\zeta}(N_0)$ be given by applying Lemma 3.2 to \mathcal{F} , $L \hookrightarrow N \stackrel{p}{\longrightarrow} B$, $S' \hookrightarrow N_0 \stackrel{p_0}{\longrightarrow} B$ and f. Since $\pi_1(B)$ acts trivially on $\pi_1(L)$, the same is true for the action on $\pi_1(S^1)$. Consequently, $\beta = f_*(\alpha)$ defines an orientation on $S^1 \hookrightarrow N_0 \to B$.

We recall that F maps small disks transversal to \mathcal{F} diffeomorphically onto disks transversal to \mathcal{G} . Therefore, it conjugates the holonomies of \mathcal{F} and \mathcal{G} , i.e. the relation $F \circ [H_{\tau_x}(\mathcal{F})] = [H_{f(\tau_x)}(\mathcal{G})] \circ F$ holds on small disks transversal to L_x , where γ_x is a loop in L_x based at $x \in N$. Thus, since N is isolated so is N_0 , and then $I^*_{\beta}(\mathcal{G}; N_0)$ is defined. Moreover, we have that $I^*_{\alpha}(\mathcal{F}; N) = I^*_{\beta}(\mathcal{G}; N_0)$.

From 4.4 we have $I_{\beta}(\mathcal{G}; N_0) = \chi(B)$. $I_{\beta}^*(\mathcal{G}; N_0)$. Then, it remains to prove that $I_{\alpha}(\mathcal{G}; N) = I_{\beta}(\mathcal{G}; N_0)$.

For this, let \mathcal{G}' be a small C^1 perturbation of \mathcal{G} with support in a small neighborhood of N_0 and having just a finite number of compact leaves G'_1, \dots, G'_r close to N_0 . Thus, F is transversal to \mathcal{G}' and $\mathcal{F}' = F^*(\mathcal{G}')$ is a small C^1 perturbation of \mathcal{F} with support in a small neighborhood of N. The map F defines a bijection between the set of compact leaves of \mathcal{F}' close to N and $\{G'_1, \dots, G'_r\}$. Moreover, if L' and G' are compact leaves of \mathcal{F}' and \mathcal{G}' close to N and N_0 respectively, and $F(L') \subset G'$ then their holonomies are conjugate under F. Consequently, $I(\mathcal{F}'; L') = I(\mathcal{G}'; G')$ and the proposition is proved.

§ 5. Proof of Theorem 3

The proof of Theorem 3 will proceed, as we have said, by reducing it to Theorem 2. This is done in Proposition 5.2 below.

The following remarks will be useful.

- 5.1 Remarks. Let $[H_{r_x}(\mathcal{F})[(u,y)=(g(u,y),f_u(y))]$ be the holonomy map as in 1.1.
- 1. The map $H_{\tau_x}(\mathcal{F}) Id_{R^q}$ is transversal to $R^s \times \{0\}$ at (0,0) if and only if $f_0 Id_{R^{q-s}}$ is a diffeomorphism in a neighborhood of the origin. Consequently we have:
- 2. If N is normally elementary then it is isolated.
- 3. If in Proposition 4.1 we add the hypothesis that N is normally elementary then $I_{\alpha}(\mathcal{G}; N) = \pm \chi(B)$, since in this case $I_{\alpha}^{*}(\mathcal{G}; N) = \pm 1$.
- 5.2 PROPOSITION. Let $\mathcal{G} \in \operatorname{Fol}_q^1(M)$ and $L \longrightarrow N \stackrel{p}{\longrightarrow} B$ be an \mathcal{G} -invariant fibered manifold with $\pi_1(L) = \mathbb{Z}$. Given a tubular neighborhood $(\eta(N); Q)$ of N there exists a continuous path of C^1 foliations $\{\mathcal{G}_t\}_{t \in [0,1]}$ on a neighborhood of N with $\mathcal{G}_0 = \mathcal{G}$ and satisfying the following conditions:
- 1. $L \hookrightarrow N \xrightarrow{p} B$ is an \mathcal{F}_{t} -invariant fibered manifold for all $t \in [0, 1]$.
- 2. The leaves of \mathcal{F}_1 are mapped by Q into fibers of p.

Furthermore, if N is \mathfrak{F} -normally elementary then the path $\{\mathfrak{F}_t\}_{t\in[0,1]}$ can be chosen so that N is \mathfrak{F}_t -normally elementary for all $t\in[0,1]$.

PROOF. The construction of $\{\mathcal{F}_t\}_{t\in[0,1]}$ will be carried out in three steps. Step 2 deal with an auxiliary one dimensional foliation.

- Step 1. Reduction to a local construction problem.
- Step 2. Local construction for the one dimensional case.
- Step 3. Return to dimension of \mathcal{F} greater than one.

We fix, once for all, closed s-disks $(s=\dim B)$ U and U' in B with $U\subset\operatorname{Int}(U')$ which we identify with standard disks in the euclidean space R^s .

Step 1. Reduction to a local construction problem.

Suppose we have constructed a path $\{\mathcal{F}_t\}_{t\in[0,1]}$ on a tubular subneighborhood $\eta_1(N)\subset\eta(N)$ satisfying:

- i. $\mathcal{F}_0 = \mathcal{F}|_{n_1(N)}$.
- ii. $L \longrightarrow N \xrightarrow{p} B$ is an \mathcal{F}_{t} -invariant fibered manifold.
- iii. $\mathcal{G}_t \equiv \mathcal{G}_0$ outside of $\eta_1(p^{-1}(U'))$.

iv. $\eta_1(L_x)$ is \mathcal{G}_1 -invariant for all $x \in p^{-1}(U)$.

v. If $x \in p^{-1}(U')$ and $\eta_1(L_x)$ is $\mathcal{G}_{|n_1(N)|}$ -invariant, then $\eta_1(L_x)$ is \mathcal{G}_t -invariant. Now, to obtain $\{\mathcal{G}_t\}_{t \in [0,1]}$ satisfying (1) and (2) its suffices apply this construction to each U_i of a cover $\{U_i\}_{1 < i < k}$ of B by closed s-disks.

Step 2. Local construction for the one dimensional case.

In this step we assume that \mathcal{G} is a 1-dimensional foliation satisfying the hyphothesis of the proposition. In this case the local situation is described as follows: \mathcal{G} is a foliation on the (q-s)-disk bundle $(U' \times \eta(S^1); Q)$ with section $U' \times S'$, where $(\eta(S^1); \overline{Q})$ is a (q-s)-disk bundle with section S^1 such that $Q(u,z)=(u,\overline{Q}(z))$. Moreover $S^1 \longrightarrow U' \times S^1 \stackrel{p}{\longrightarrow} U'$ is a \mathcal{G} -invariant fibered manifold.

The construction of the path $\{\mathcal{G}_t\}_{t\in[0,1]}$ required in step 1 will be carried out in two steps and we shall use two auxiliary foliations \mathcal{H} and \mathcal{K} . First we fix a point $y_0\in S^1$ and deform $\mathcal{G}\equiv\mathcal{G}_0$ in a neighborhood W of $U\times\eta(y_0)$ to obtain a path $\{\mathcal{G}_t\}_{t\in[0,1/2]}$ such that $\mathcal{G}_{1/2}=\mathcal{H}$ on W. Second we deform $\mathcal{G}_{1/2}$ outside of a neighborhood W' of $U\times\eta_1(y_0)$ to construct a path $\{\mathcal{G}_t\}_{t\in[1/2,1]}$ such that $\mathcal{G}_1\equiv\mathcal{K}$ on a neighborhood of $U\times\eta_1(S^1)$.

Fix $(u_0, y_0) \in \operatorname{Int}(U) \times S^1 \subset U' \times \eta(S')$. Let $[y_0^-, y_0^+] \subset S^1$ be a closed segment containing y_0 in its interior, small enough so that saturating $\{u_0\} \times \eta(y_0)$ by small arcs of leaves of \mathcal{G} and projecting these arcs onto $\{u_0\} \times \eta([y_0^-, y_0^+])$ under the map $(u, z) \to (u_0, z)$, we obtain a C^1 foliation \mathcal{H}_0 on $\{u_0\} \times \eta([y_0^-, y_0^+])$. Denote by \mathcal{H} the C^1 foliation on $U' \times \eta([y_0^-, y_0^+])$ obtained by transporting \mathcal{H}_0 under the product structure to each factor $\{u\} \times \eta([y_0^-, y_0^+])$. Clearly $\mathcal{G} \equiv \mathcal{H}$ on $U' \times [y_0^-, y_0^+]$.

For each $y \in [y_0^-, y_0^+]$ denote by $H_{[v_0,v]}(\mathcal{G})$ and $H_{[v_0,v]}(\mathcal{H})$ the holonomy maps defined on $U' \times \eta(y_0)$, where $[y_0, y] \subset [y_0^-, y_0^+]$ is the arc from y_0 to y. Fix in $U' \times \eta(y_0)$ a product metric and choose a C^1 isotopy supported on a small neighborhood of $U \times \eta(y_0)$, constructed by moving $[H_{[v_0,v]}(\mathcal{G})](u,z)$ along the geodesic arc in $U' \times \eta(y)$ to $[H_{[v_0,v]}(\mathcal{H})](u,z)$ for $y \in [y_0^-, y_0^+]$. In this way we produce a continuous path of C^1 foliations $\{\mathcal{G}_t\}_{t \in [0,1/2]}$ on $U' \times \eta(S^1)$ with $\mathcal{G}_0 = \mathcal{G}$ such that for $t \in [0,1/2]$ the following conditions hold:

- $-S^1 \longrightarrow U' \times S^1 \xrightarrow{p} U'$ is a \mathcal{G}_t -invariant fibered manifold.
- $-\mathcal{G}_t \equiv \mathcal{G}$ outside of a small neighborhood of $U \times \eta(y_0)$.
- $\mathcal{G}_{1/2} \equiv \mathcal{H}$ on $\tilde{U} \times \eta([y_1^-, y_1^+])$, where $\tilde{U} \subset U'$ is a neighborhood of U and $[y_1^-, y_1^+] \subset S^1$ is a small neighborhood of y_0 .

— If $u \in U'$ and $\{u\} \times \eta(S^1)$ is \mathcal{G} -invariant, then it is also \mathcal{G}_t -invariant. From now on we fix an orientation on S^1 and to each $y \in S^1$, $y \neq y_0$, $[y_0, y] \subset S^1$ will denote the simple oriented arc from y_0 to y.

In a small enough $\eta(y_0)$ the maps

$$k_{\mathbf{y}}(u, z) = (u, [p_2 \circ H_{[y_0, y]}(\mathcal{G}_{1/2})](u, z)); (u, z) \in \tilde{U} \times \eta(y_0)$$

are C^1 diffeomorphisms for each $y \in S^1$, where $p_2(u,z) = z$. Therefore, they define on $\tilde{V} \times \eta_1(S^1)$ a foliation \mathcal{K} whose holonomy maps $H_{[v_0,v]}(\mathcal{K})$ coincide with k_y , where $\tilde{V} \subset \tilde{U}$ is a neighborhood of U and $\eta_1(S^1) \subset \eta(S^1)$. Since $\mathcal{G}_{1/2} \equiv \mathcal{H}$ on $\tilde{U} \times \eta([y_1^-, y_1^+])$, in view of the construction of \mathcal{H} it follows that $\mathcal{H} = \mathcal{H}$ on $\tilde{V} \times \eta_1([y_1^-, y_1^+])$ and \mathcal{K} is a C^1 foliation.

At this point we remark that $\{u\} \times \eta(S^1)$ is \mathcal{K} -invariant for $u \in \tilde{V}$.

Now recall that we have identified U with a standard disk in \mathbb{R}^s and notice that $p_2 \circ H_{[\nu_0,\nu]}(\mathcal{G}_{1/2}) \equiv p_2 \circ H_{[\nu_0,\nu]}(\mathcal{K})$ on $\tilde{V} \times \eta(y_0)$. Therefore, moving $[H_{[\nu_0,\nu]}(\mathcal{G}_{1/2})](u,z)$ along the euclidean geodesic arc to $[H_{[\nu_0,\nu]}(\mathcal{K})](u,z)$ using a suitable linear interpolation (depending only on $u \in \tilde{V}$), provides a continuous path of C^1 foliations $\{\mathcal{G}_t\}_{t\in[1/2,1]}$ on $U' \times \eta_1(S^1)$ (passing to a small enough $\eta_1(S^1)$) satisfying the following properties for all $t \in [1/2,1]$:

- $S^1 \longrightarrow U' \times S^1 \stackrel{p}{\longrightarrow} U'$ is a \mathcal{G}_t -invariant fibered manifold.
- $\mathcal{G}_t \equiv \mathcal{G}_{1/2}$ outside of a small neighborhood of $U \times \eta_1(S^1)$.
- $\mathcal{G}_1 \equiv \mathcal{K}$ on a neighborhood of $U \times \eta_1(S^1)$,
- If $\{u\} \times \eta(S^1)$ is $\mathcal{G}_{1/2}$ -invariant then it is also \mathcal{G}_t -invariant.

We point out that the C^1 differentiability of \mathcal{G}_t is ensured by the fact that $\mathcal{G}_t \equiv \mathcal{H}$ on $\tilde{U} \times \eta([y_1^-, y_1^+])$, for all $t \in [1/2, 1]$.

Hence, $\{\mathcal{G}_t\}_{t\in[0,1]}$ satisfies the conditions of step 1 for the one dimensional case.

Step 3. Return to dimension of \mathcal{F} greather than one.

Fix a fiber L_{ν_0} with $p(y_0) \in U$ and identity $\eta(p^{-1}(U'))$ with $U' \times \eta(L_{\nu_0})$ so that the corresponding projections, also denoted by p and Q, are expressed as: p(u, y) = u and $Q(u, z) = (u, \overline{Q}(z))$, where \overline{Q} is the restriction of Q to $\eta(L_{\nu_0})$.

Let $\alpha: \mathring{S^1} \to L_{y_0}$ be a C^1 embedding passing through y_0 and representing a generator of $\pi_1(L_{y_0})$. Let \mathcal{G} be the one dimensional foliation induced by \mathcal{F} on $U' \times \eta(S^1)$.

Now, we choose a C^1 map $f:(L_{\nu_0},\,\nu_0)\to (S^1,\,\nu_0)$ inducing an isomorphism $f^*:\pi_1(L_{\nu_0})\to\pi_1(S^1)$. As in § 3 we extend the pair $(f,\,Id_{U'\times \tau(\nu_0)})$ to a unique C^1 map $F:\tilde{U}\times \eta_1(L_{\nu_0})\to U'\times \eta(S^1)$ preserving the foliations $\mathcal F$

and \mathcal{G} and mapping diffeomorphically $\tilde{U}\times \eta(y)$ into $U'\times \eta(f(y))$ for each $y\in L_{\nu_0}$, where $\tilde{U}\subset U'$ is a neighborhood of U and $\eta_1(L_{\nu_0})\subset \eta(L_{\nu_0})$. As remarked in § 3, the map F is transversal to \mathcal{G} and $F^*(\mathcal{G})=\mathcal{F}$. Moreover, if $\{u\}\times \eta(L_{\nu_0})$ is invariant under $\mathcal{F}_{U'\times \eta(L\nu_0)}$ then $F(\{u\}\times \eta_1(L_{\nu_0}))$ is contained in $\{u\}\times \eta(S^1)$. Therefore, if $\{\mathcal{G}_t\}_{t\in[0,1]}$ is the path constructed in step 2 then $\mathcal{F}_t=F^*(\mathcal{G}_t)$, $t\in[0,1]$, satisfies the conditions (i). (ii), (iii) and (v) of step 1.

Let Q^* be the projection on $U' \times L_{\nu_0}$ whose fibers are $F^{-1}(\{u\} \times \eta(f(y)))$, $(u, y) \in U' \times L_{\nu_0}$. One easily check that in a neighborhood of $U \times \eta_1(L_{\nu_0})$ the leaves of \mathcal{F}_1 project under Q^* into the fibers of p.

To obtain (iv), passing to a small enough $\eta_1(L_{\nu_0})$ we deform Q^* to Q in $U \times \eta_1(L_{\nu_0})$ by a C^1 isotopy $\{h_t\}_{t \in [0,1]}$ preserving (i), (ii), (iii) and (v) and supported in a neighborhood of $U \times \eta_1(L_{\nu_0})$. Once more, this isotopy is constructed by moving $(u', z) \in (Q^*)^{-1}(u, y)$ along the geodesic arc (in a product metric) to $(u, z) \in Q^{-1}(u, y)$. Now, the path $\{(\mathcal{F}_t)\}_{t \in [0,1]}$ followed by the path $\{h_t(\mathcal{F}_1)\}_{t \in [0,1]}$ satisfies the five required conditions in step 1.

To finish the proof we observe that in step 2 the foliations \mathcal{G} and $\mathcal{G}_{1/2}$ are diffeomorphic, so if $U' \times S^1$ is \mathcal{G} -normally elementary then it is also $\mathcal{G}_{1/2}$ -normally elementary. Moreover, in view of the construction of $\{\mathcal{G}_t\}_{t \in [1/2,1]}$ the first return maps $H(\mathcal{G}_t)$ have the form $H(\mathcal{G}_t)(u,z) = (g_t(u,z), f_u(z))$ for $t \in [1/2,1]$ and $(u,z) \in U' \times \eta(y_0)$. From Remark 5.1.1 it follows that since $U' \times S^1$ is $\mathcal{G}_{1/2}$ -normally elementary then it is also \mathcal{G}_t -normally elementary for all $t \in [1/2,1]$.

5.3 Proof of Theorem 3. Without lost of generality we suppose that the action of $\pi_1(B)$ on $\pi_1(L)$ is trivial, by passing to a double cover of the base B. Furthermore, in view of Remark 5.1.2, N is an isolated \mathcal{F} -invariant fibered manifold thus $I_{\alpha}(\mathcal{F}; N)$ is defined.

Let $\{\mathcal{F}_t\}_{t\in[0,1]}$ be given by Proposition 5.2 so that N is \mathcal{F}_t -normally elementary. From the continuity of $\{\mathcal{F}_t\}_{t\in[0,1]}$ in the C^1 topology, the compactness of [0,1] and Remark 5.1.2, it follows that there exists a neighborhood U of N such that for all $t\in[0,1]$ the compact leaves of \mathcal{F}_t close to N and lying in U are exactly the fibers of p. Hence, Theorem 1 and Remark 5.1.3 imply that $I_{\alpha}(\mathcal{F};N) = I_{\alpha}(\mathcal{F}_1;N) = \pm \chi(B)$ and the proof is finished.

REMARK. Let $\mathcal{G} \in \operatorname{Fol}_q^1(M)$ and let $L \hookrightarrow N \stackrel{p}{\longrightarrow} B$ be an \mathcal{G} -invariant fibered manifold with $\pi_1(L) = \mathbb{Z}$. From the technics described in § 3 and

§ 5 we can construct a manifold M' with a C^1 one dimensional foliation \mathcal{G} having an S^1 -bundle $S^1 \rightarrow N' \stackrel{p'}{\longrightarrow} B$ as a \mathcal{G} -invariant fibered manifold, and a C^1 map $F: \eta(N) \rightarrow M'$ defined in a neighborhood $\eta(N)$ of N, satisfying the following properties:

- F(N) = N', $p' \circ F = p$ on N, and $F_* : \pi_1(L) \to \pi_1(S^1)$ is an isomorphism,
- F is transversal to \mathcal{G} and $F^*(\mathcal{G}) = \mathcal{G}$.

Consequently, if the action of $\pi_1(B)$ on $\pi_1(L)$ is trivial and N is isolated, then it follows from the arguments given in the proof of Proposition 4.1 that $I_{\alpha}(\mathcal{F}; N) = I_{\beta}(\mathcal{G}; N')$, where $\beta = F_{*}(\alpha)$ and α is a generator of $\pi_1(L)$.

Appendix: Proof of Lemma 2.1

For one dimensional foliations it is easy to construct $\{\mathcal{F}_t\}_{t\in[0,1]}$ satisfying 2.1.1, 2.1.2 and 2.1.3. We shall reduce the general case to the one dimensional case.

We identify a neighborhood of the \mathcal{F} -saturation of D^s with $R^s \times \eta(L)$ viewed as a neighborhood of $D^s \times L$, where $(\eta(L);Q)$ is a deleted (q-s)-disk bundle with a section identified to L. Relative to this identification the \mathcal{F} -saturation of D^s is $D^s \times L$. We suppose (passing to a smaller q-disk D^s) that $D^s \subset R^s \times \eta(x_0)$ and the q-disks $R^s \times \eta(x)$ are transversal to \mathcal{F} for all $x \in L$.

Let γ be represented by an embedded circle $S^{_1} \subset L$ generating $\pi_{_1}(L; x_{_0})$.

Now, we fix a C^1 map $f:(L,x_0)\to(S^1,x_0)$ inducing an isomorphism $f_*:\pi_1(L;x_0)\to\pi_1(S^1;x_0)$.

Let \mathcal{G} (resp. \mathcal{G}') be the one dimensional foliation induced by \mathcal{F} (resp. \mathcal{F}') on $\mathbb{R}^s \times \eta(S^1)$. Then \mathcal{F}' and \mathcal{G}' have the same holonomy. So, we can choose a small neighborhood $\mathcal{C}V$ of $D^s \times L$ such that for all foliations \mathcal{F}' which are C^1 close to \mathcal{F} the identity map of D^q extends to a C^1 map $F': \mathcal{C}V \to \mathbb{R}^s \times \eta(S^1)$ (depending on \mathcal{F}') satisfying:

- for all $x \in L$ the restriction of F' to $\mathcal{CV} \cap (R^s \times \eta(x))$ is an embedding with $F'(\mathcal{CV} \cap (R^s \times \eta(x))) \subset R^s \times \eta(f(x))$,
- $-(F')*(\mathcal{G}') \equiv \mathcal{F}' \text{ on } \mathcal{CV},$
- F' depends continuously on \mathcal{G}' in the C^1 topology.

In this way taking the pull-back under F' we reduce the construction of $\{\mathcal{F}_t\}_{t\in[0,1]}$ satisfying 2.1.1, 2.1.2 and 2.1.3 to the one dimensional case.

From now on we assume that the family $\{\mathcal{F}_t\}_{t\in[0,1]}$ satisfying 2.1.1, 2.1.2 and 2.1.3 is already constructed. In order to make $\{\mathcal{F}_t\}_{t\in[0,1]}$ satisfy 2.1.4 we shall modify each \mathcal{F}_t under diffeomorphisms supported in a small neighborhood of the \mathcal{F} -saturation of K_1 .

We fix neighborhood $W_1'' \subset W_1'$ of K_1 and W_2'' of K_2 in D^q and assume that $H_1 \equiv H_r(\mathcal{F}'')$ on $W_1'' \cup W_2''$. Thus, by construction \mathcal{F}'' and \mathcal{F}_1 have the same holonomy on $W_1'' \cup W_2''$.

Let $U \subset \mathcal{R}'_1 \cup \mathcal{R}'_2$ be a small neighborhood of the \mathcal{F} -saturation of $K_1 \cup K_2$ such that for all foliations \mathcal{F}'' and \mathcal{F}_1 which are C^1 close to \mathcal{F} , we can extend the identity map of D^q to a C^1 embedding $F'': U \to R^* \times \eta(L)$ (depending on \mathcal{F}'' and \mathcal{F}_1) such that:

- $F'''(U \cap (\mathbf{R}^s \times \eta(x))) \subset \mathbf{R}^s \times \eta(x)$ for all $x \in L$.
- $-(F'')*(\mathfrak{F}_1)\equiv\mathfrak{F}''$ on \mathcal{U} .
- -F'' is C^1 close to the identity map of U.

Now, moving F''(y) along the geodesic segment defined by y and F''(y) (using the metric induced on each factor $R^s \times \eta(x)$, $x \in L$ by the metric on M) and passing to a convenient small subneighborhood $\mathcal{W} \subset \mathcal{U}$ of the \mathcal{F} -saturation of $K_1 \cup K_2$, we can modify F'' just outside of \mathcal{W} to construct a diffeomorphism of M, denoted also by F'', satisfying the following properties:

- $-(F'')^*(\mathfrak{F}_1) \equiv \mathfrak{F}''$ on \mathcal{W} ,
- $F'' \equiv Id_M$ outside of U.
- $F''(U \cap (\mathbf{R}^s \times \eta(x))) \subset \mathbf{R}^s \times \eta(x)$ for all $x \in L$,
- -F'' is C^1 close to the identity map of M.

Since $\mathcal{G}_1 \equiv \mathcal{G}'$ outside of a small neighborhood of the \mathcal{G} -saturation of K_1 and $\mathcal{G}' \equiv \mathcal{G}''$ on \mathcal{R}'_2 , it follows from the construction of F'' that in fact $F'' \equiv Id_M$ outside of \mathcal{R}'_1 .

Finally, the desired path is given by $\{(F''_t)^*(\mathcal{F}_t)\}_{t\in[0,1]}$ where in each disk $R^* \times \eta(x)$, $x \in L$, $\{F''_t\}_{t\in[0,1]}$ is given by the baricentric isotopy from $F''_0 \equiv Id_M$ to $F''_1 \equiv F^*$.

References

- [B₁] Bonatti, C., Stabilité de feuilles compactes pour les feuilletages définis par des fibrations, Topology **29**, n.2 (1990), 231-245.
- [B₂] Bonatti, C., Sur l'existence de feuilles compactes pour les feuilletages proche d'une fibration, These d'Etat, Paris VII, novembre 1989.
- [B-H] Bonatti, C. and A. Haefliger, Déformations de feuilletages, Topology 29, n.2 (1990), 205-229.
- [D] Druck, S., Stabilité de feuilles compactes dans les feuilletages donnés par des fibrés,

- C. R. Acad. Sci. Paris 303 (1986), 471-474.
- [E] Epstein, D. A., A topology for the space of foliations, in Geometry and Topology (Rio de Janeiro, 1976), Spriger Lectures Notes in Math. 597 (1977), 132-150.
- [Fu] Fukui, K., Perturbations of compact foliations, Advanced Studies in Pure Math. 5 (1985), 417-425.
- [F] Fuller, F. B., An index of fixed point type for periodic orbits, Amer. J. Math. 89 (1967), 133-148.
- [H] Haefliger, A., Structures feuilletées et cohomologie à valeur dans un faisceau de groupoide, Comm. Math. Helv. 32 (1958), 248-329.
- [Ha] Hart, D., On the smoothness of generators, Topology, Vol. 22, No. 3, 357-363.
- [Hi] Hirsch, M., Differential Topology, Springer-Verlag, New York, 1976.
- [L-R] Langevin, R. and H. Rosenberg, Integrable perturbations and a theorem of Seifert, Springer Lectures Notes in Math. 652 (1978), 122-127.
- [Sch] Schweitzer, P. A., Stability of compact leaves with trivial linear holonomy, Topology 27, n.1 (1988), 37-56.
- [S] Seifert, H., Closed curves in 3-space and isotopic two dimensional deformations, Proc. Amer. Math. Soc. 1 (1950), 287-302.

(Received August 11, 1992) (Revised April 8, 1993)

> S. Druck Institute de Matemática—7° andar Universidade Federal Fluminense Rua Sao Paulo s/n—Valonguinho 24020-005 NITEROI, RJ BRASIL

E. Mail: DRUCK@BRLNCC.BiTNET

S. Firmo Institute de Matemática—7º- andar Universidade Federal Fluminense Rua Sao Paulo s/n—Valonguinho 24020-005 NITEROI, RJ BRASIL

E. Mail: FiRMO@BRLNCC.BiTNET