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Stability of compact leaves close to invariant
fibered manifolds

By S. Druck and S. Firmo*

Abstract. A Fuller-type index is defined for a pair (&F; N), where
¢ is a C! foliation on a smooth manifold M and N is a compact sub-
manifold of M saturated by compact leaves of & as a fibration L, N— B,
provided that =, (L)=Z and the associated action of z,(B) on =,(L) is
trivial. Using this index, sufficient conditions for persistence of a fiber
L close to N as a compact leaf under C! small perturbations of & are
given by the non vanishing of the Euler characteristic of B and some
hypotheses on the behaviour of the foliation in a neighborhood of N.

Introduction

Let & be a C* foliation on a smooth (C*) manifold M and let N be
a compact C! submanifold saturated by compact leaves of &. We say
that < has the compact leaf stability property close to N if, shortly
speaking, every foliation sufficiently C* close to & has a compact leaf
close to N. In this paper we deal with the case where N is “-saturated
as a fibration LC>N—B with =,(L)=2Z.

For vector fields Fuller [F] has associated to each isolated compact
set K of periodic orbits of a C' vector field X an index whose non
vanishing implies that all C* vector fields sufficiently C° close to X have
a periodic orbit close to K (see also [B,]).

By adapting Fuller’s method to our foliation context, in Theorem 1
(§2) we associate to the pair (<; N) an index (cf. Definition 2.2) whose
non vanishing implies the compact leaf stability property close to N.
From this stability criterion we obtain Theorem 2 (§4) where we treat
the case that the restriction of the foliation & to a neighborhood of N
saturates the fibers of some tubular neighborhood of N. In this case
stability is ensured by the hypotheses that stabilize the fibers of a
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fibration (i.e. M=N) and stabilize also an isolated compact leaf (ie. B
is a point).

" One of the difficulties to calculate the index of (; N) is the con-
struction of a suitable C' perturbation of & when its dimension is greater
than one. To resolve this difficulty we reduce the problem to a stability
question for a one dimensional C' foliation. For this we construct in
§ 3 a manifold M’ with a one dimensional foliation &’ so that in a neigh-
borhood of N the foliation & is given by the pull-back of &’ under a
map preserving the stability property. This idea is due to Bonatti and
Haefliger ([B,], B-H]) in their study of compact leaf stability where &
is given by a fibration F—>M—B (ie., M=N) and H,(F,R)=R.

In Theorem 3 (§5) we prove that if ¢ is normally elementary along
N (cf. Definition 1.2) then stability follows from the non vanishing of
the Euler characteristic of B. Here we prove that under a suitable
homotopy of & this theorem reduces to Theorem 2.

§1. Definitions and results

Throughout this paper M will be a smooth manifold and & a Ct
codimension ¢ foliation on M. We shall consider on the spach Fol}(M)
of all C' codimension ¢ foliations of M the Epstein compact C'-topology
[E]. We also fix a Riemannian metric on M but the results do not
depend on its choice.

We shall say that a C' connected compact boundaryless submanifold
N of M is an F-invariant fibered manifold if N is saturated by &F and
the leaves of the restricted foliation §| y are the fibers of a fibration

LC-+N—p>B, whose fiber L and base B are closed connected manifolds.
For sufficiently small ¢>0, a compact codimension ¢ submanifold L’ of
M is e-close to N if L’ lies in an e-tubular neighborhood (y(L);I) of
some fiber L of p and is diffeomorphic to this fiber under /7. In this
context the expression “F has the compact leaf stability property close
to N> will mean that for arbitrarily small ¢>0 all foliations sufficiently
C* close to & have a compact leaf c-close to N. We shall also say that
N is isolated if the compact leaves of & sufficiently close to N are
exactly the fibers of p.

For x€ N, L, will denote the fiber of p passing through .

If N reduces to an isolated leaf L=L, (B=point) and « is a gene-
rator of m,(L)=2Z, then the index of &F at L, I,(Z; L), is defined as the
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fixed point index i(H. ();x) at « of the holonomy map H. () of &F
along some loop «, in L, based at x and representing «. Of course,
I.(%; L) does not depend on the choice of x € L, nor on the representing
loop a., nor on the domain of H, (). Moreover, if f=a~* then I(¥F;L)=
(=1).1,(%F; L).

TurEOREM 1. Let F € Fol(M) and let LC>N—"5B be an isolated
S-invariant fibered manifold with m,(L)=Z on which =,(B) acts trivially.
Gwen a generator a of (L) one can define an integer number I (F; N),
the Fuller index of & at N, satisfying:

1. if N is a single leaf L, then I(F; N)=I.(F; L),

2. if I(Y; N) is nonzero, then < has the compact leaf stability property
close to N,

3. if {Filicrony 18 a continuous path of C' foliations on a mneighborhood
U of N aud for sufficiently small ¢>0 and for each t€[0,1] the
compact leaves of F, e-close to N are exactly the fibers of p, then
I(¥; N) does not depend on t.

If (p(A); II) is a tubular neighborhood of a submanifold Ac M, then
its restriction to a subset A’ of A will be denoted by 7(A4’). In parti-
cular the fiber I7-'(x), x € A, will be denoted by »(x). A tubular sub-
neighborhood (9,(A); 11,) of (p(A); II) (i.e. n,(A)Cn(A) and II, is the res-
triction of /7 to n,(A)) will be frequently indicated by 7,(A4)C7p(A).

If N has a tubular neighborhood ({(N); P) such that {(L,) is saturated
by the leaves of Sﬂw) for each x € N, then the foliation Eﬂw) can be
viewed as a family of C* foliations {<},},cs, where &, is the restriction
of & to {(p~*(b)). Moreover, if N is isolated so is the leaf L, of the
foliation ¢,, where p(x)=>b. In this case I,(%, L,) is defined and does
not depend on the choice of the point x € N: so it will be denoted by
I¥(F; N).

THEOREM 2. Let F, LCsN—2>B and « be as in Theorem 1. Sup-
pose that for some tubular meighborhood ({(N); P) of N, the subset (L,)
s saturated by the leaves of E_F]C(m for each x in N. If x(B)#0 and
I*¥(F; N)#0 then < has the compact leaf stability property close to N.

The hypothesis on the action of =,(B) on =;(L) in Theorem 2 can be
dropped by passing to a double cover of the base B. If the action is
not trivial, I*(<; N) is well defined up to sign.
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1.1 Now, for each z € N choose an embedded ¢-disk D, centered at
x and transverse to &, and identify D,=R*XR** (s=dim B) and z=(0, 0)
so that D.NN=R*X{0}. Relative to this identification, the holonomy
map H, (%) is deffned on a neighborhood of (0, 0) and coincides with the
identity map on R*Xx{0} for each loop 7, in L..

In analogy with elementary closed orbits of vector fields, we define;

1.2 DEFINITION. With the same notation and identification as above,
an Y-invariant fibered manifold N is normally elementary if for every
x € N the map H,x(ﬂ*')—IdRq is transversal to R’X{0} at (0,0), where 7,
represents a generator of =,(L,;x) and Idg denotes the identity map of
R,

Evidently this definition depends neither on the choice of 7. nor on
the identification D,=R*XR**. We can now state;

THEOREM 8. Let F € Foli(M) and let LcsN-23B be a normally
elementary F-invariant manifold with =, (L)=Z. If x(B)+#0 then < has
the compact leaf stability property close to N.

Henceforth, the expression “the holonomy map of & is defined on
a ¢-disk D” will mean that the perturbed holonomy maps of all foliations
sufficiently C! close to & are defined on D and take values in a greater
embedded ¢-disk containing D.

§2. Proof of Theorem 1

To prove Theorem 1 we will need Lemma 2.1 below. In order to
state this lemma let L be a compact leaf of a codimension g foliation
 on M and let y be a loop in L based at xz,€ L and representing a
generator of =,(L;x,)=2Z. Fix two embedded closed disks D* and D¢
(0<s<q) centered at x, with D*CInt(D?) and H,(<) defined on D-.

2.1 LEMMA. Suppose that F 1is trivial on the saturation of D-.
Given (possibly intersecting) compact subset K, of D' and given meigh-
borhoods R! of the F-saturation of K, 1=1,2, there exist arbitrarely
small neighborhoods W/C W. of K, and W¥ of K, in D*, and neighbor-
hoods RYCR! of the F-saturation of K, in M satisfying the following
property: if F and F” are sufficiently C* close to F and if {H}icro 18
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a continuous path of diffeomorphisms in the C* topology with H,=H,(F’)
and such that:

— H, is sufficiently C* close to H,(F) for t€[0,1],

— F'=F" on R},

— H,=H,(4') outside of W} for t€]0,1],

_ HIEH7(9'”) on W//U //

then, there exist a contmuous path {F ey on Foli(M) with F,=F"
such that for all t€[0,1] we have:

2.1.1) &, is C* close to F,

2.12) H,(¢,)=H,

2.1.8) 4, =9" outside of R,

2.14) F.=F" on RYURY.

This lemma is proved in the Appendix. In its proof we shall use
the same arguments as used in §3 and § 5.

2.2 DEFINITION OF I, (%¥; N). Fix the hypothesis of Theorem 1.

We identify L with some fiber of p.

Since #,(B) acts trivially on =,(L), for each x€ N we can transport
a to a loop a, in L, representing a generator of r,(L,; x) and satisfying
the following compatibility condition: is an open subset UCN trivialized
with respect to p: N—B the family of homotopy classes {a.}.., is given
by transporting a selected loop a. (z€ U) to each fiber in U using the
product structure.

Let '€ Foli(M) be sufficiently C' close to & with finitely many
compact leaves Lf, ---, L’ sufficiently close to N. From the construction
above, for each 7=1, ---,7r, we can transport « to a generator «; of
= (L{). Hence, one defines:

L(F N)= > L(F; L)
Theorem 1 follows immediatly from:

2.3 PROPOSITION. With the same hypothesis as in Theorem 1, we
have:
1. there exists a foliation F’ on M, arbitrarily C* close to F and having
finttely many compact leaves close to N,
2. I(F; N) does not depend on the foliation ' given in 1.
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Proor. Fix a closed tubular neighborhood (»(N);®@) of N. Let
{Uheicr and {Ul}icicx be closed s-disks (s=dim(B)) in B such that U.C

Int(U?) and llfJInt(Ui) covers B.
i=1

Consider partial sections o;:U—N of p and set ¢,(U)=U; and
o:(U)=U!. Fix z;€Int(U,) and a loop a., in L, representing « as in 2.2.
Passing to smaller »(N) if necessary, we assume that for &’ suffi-
ciently C' close to & the perturbed holonomy map of <’ along the loop
a., denoted by H,(F’), is defined on 5(U). Furthermore, since N is
isolated, we can also admit that Fix(H,(F))=U".
1. We shall modify & sucessively in small neighborhoods of p~X(U)), - --,
p~}(U,) so as to obtain foliations &, -- -, &, arbitrarily C’ close to & such
that:
a. F,=% outside of a neighborhood of p"l((JlUj) in M.
b. The maps H;(%f;) have just a finite number of fixed points in »(V}),
where V;CU/ is a neighborhood of U; and 1<j<q.

Then $'=<, will be the required foliation. We shall argue induec-
tively.

The foliation &, is directly obtained from Lemma 2.1. It suffices to
choose a sufficiently small neighborhood V,c U’ of U, and a sufficiently
C*' small perturbation of H,(<f) with just a finite number of fixed points
in »(V,) and supported in a small neighborhood of V, in »(U?).

Suppose that we have construct &;. Thus H,.,(<;) has finitely many
fixed points in »(W!,,), where W.,,CcU!,, is an open neighborhood of

U 00U N V).

Fix a compact subneighborhood W, C W/, of [i_]ai+1(Uij£+1) and
let K=U.,,—W/,,. Now, select a sufficiently C* sm;,:ﬁ perturbation H,,,
of H,,,(4.) coinciding with H,,,(¥.) on 5(W,,,), having finitely many fixed
points in #(V.,), where V.. is a neighborhood of iLiJllam(U,ﬂU{H) in

U’,,, and supported on a neighborhood of K in »(U’,,).

As before, from 2.1 we obtain a foliation ., C* close to & which
agrees with &, outside of a neighborhood of p~p(K)) in M and such
that H,,,(F.,)=H,,,. Clearly &.,, satisfies (a) and agrees with &, on a

neighborhood of >7[p“(_li_J U,))]. Thus, .., also satisfies (b) and this proves
(1. -
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2. Our argument is adapted from one of Bonatti [B,, Appendix 2, pp.
243-245].

Let the foliations ' and <” satisfy 2.83.1. Up to a diffeomorphism
of M arbitrarily C close to the identity map, we can assume that the

compact leaves of &’ and <” which are close to N do not meet 0 n(@07).
i=1

Hence, for each =1, ...,k the perturbed holonomy maps H;(¥’) and
H,(”) have finitely many fixed points, all of them contained in the
interior of »(U’) and very close to U’

We shall construct on a tubular subneighborhood 7,(N)Cy(N) a
continuous path of C' foliations {F,},cpo4; from Fo=F" to F,=F” such
that &, is C* close to & for all t€[0, k] and satisfying the following
properties for each ¢=1, ---, k:

a'. 9,=%,, on a neighborhood of n[p~ (B—IntU!)] in 7,(N) and the
compact leaves of &, close to N do not intersect 7,(0U7) for all
tefi—1,1],

b'. F.=%" on a neighborhood of no[p“l(f:l U,)] in 9(N),
¢’. &, has finitely many compact leaves close to N which do not inter-
k -
sect U »,(0U%),
=1

d’. I,_,=1I;, where I, denotes the sum of the indices of compact leaves

of &, close to N.

We shall construet this path inductively.

In order to construct {&F,}.cro.; fix neighborhoods V, and Vi of U,
with Cl(Vy)cInt(V}) and Cl(V})cCInt(T}). Since ¥’ and F” are C' close
to &, moving [H,(Z')](z) along the geodesic arc (in the induced metric
on (UY) to [Hy(ZF")](x) we construct a C' isotopy {H}.cpo; of Hy=H,(F")
such that:

— H, is C* close to H\(F), and H,=H,(Z") on p(U;— V%), for all t€[0, 1],
— H,=H,9") on (V). )

The map H, has finitely many fixed points on 7(V,)U»(Ui— V7).

Let 9 cInt(U;—U,) be a small compact neighborhood of Cl(Vi— V)
in U,. By a suitable C* small perturbation of H, with support in 7(%})
we can also assume that:

— M, has finitely many fixed points (all of them close to U}).

Since 9 intersects V, and U,— V}, in order to keep the above pro-
perties of H, and H, on »(U;—V}) and (V) respectively, we should
pass to a smaller neighborhood V, and a greater neighborhood V1.
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Furthermore, this construction gives i(H,(F'); 2,)=4(H,; 2,) for all
t€[0, 1], where 2,=Fix(H,).

Since 9’ and &” can be taken arbitrarily close to ¢, from Lemma
2.1 we obtain a continuous path of C! foliations {<F }icro.13 On 7,(N)Cn(N)
with H,(F,)=H, and satisfying items (a’) and (b') for 1=1 (in fact, to
apply Lemma 2.1 to the situation above we have to consider a smaller
7' (N)Cn(N) and take H, coinciding with H,(%’) outside of »'(U’). More-
over, &, has finitely many compact leaves close to N.

On the other hand, since i(H,(F"); 2,) =i(H,; 2,) and &’ is close enough
to &, we conclude from (a’) that I,=1I,. Perturbing ¢, by a convenient
diffeomorphism of »,(N) C>-close to the identity map, we have that (¢’)
also holds.

Suppose that we have constructed &; on 7;(N)Cp(N).

Hence, H.,,(<.) has just a finite number of fixed points which are
in the interior of #,(U’,,) and very close to U/, Furthermore, taking
smaller #;(N) if necessary, we can assume that H,,(¥:.)=H;,;,(%") on

7:(W.s1), where W,.,,cU’,, is an open neighborhood of U o (U;NULL).
i=1

We shall construct {F,}iri:;1p in an analogous way we have con-
structed {<F}icposy. Since &F; and F” are C' close to &, we construct a
Ct isotopy {H}icpiisn of Hiny(F:)=H, by first moving [H..,(¥.)](x) along
the geodesic ares (in the induced metric on 7;(U%..)) to [H;.(F")](x) and
then taking a suitable C' small perturbation of H,,, with support in

771‘[(7£+1_ t)_]} 0i+1(Uj N U:.H)] such that:

— H, is C! close to H.,(¥) for all te[s,i+1],
— H,=H.(F) on 9(U},,—V,,) for all te[i,i+1], where Vi, ,cU’,, is
a neighborhood of U.,, with CI(V.,)CInt(U’,,),

— H..,=H,,(¥") on 5,(V.,,), where V,,,CV’,, is a neighborhood of U;,,,
- I?i+1EHi+1(g”) on 7:(Wi),
— H,,, has finitely many fixed points (which are close to U’,,).

Once given the isotopy {E},eti,ml, applying Lemma 2.1 and the same
arguments used above for 1=1 we obtain the required path of foliations
{Ficriis This compietes the proof of (2). MW

§3. Construction of the total space

As explained in the introduction, we reduce the problem of compact
leaves close to an <-invariant fibered manifold to the same problem for
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a one dimensional foliation G on a manifold M’. The goal of this section
is to realize this simplified foliated manifold. In fact, we describe its
construction in a more general situation that we really need.

For a disk bundle /7:£(A)—A over a manifold 4, with a section
o: A—&(A), we shall use the same notation as for tubular neighborhoods
in §1, so we write (£§(A); II) and £(x) means the disk //7'(x), x€ A, and
so on. We shall always identify A with ¢(A).

3.1 LEMMA. Let L and G be closed conmected manifolds, and let

(E(L); II) be an r-disk bundle with a section L. Given

1. a Ct family of foliations {F,; A€ R’} on &(L) such that L s a leaf
of each F,,

2. a C' family of maps {f,: L—G; 2€ R*} such that (f))s : 7. (L)—=, (G) s
an tsomorphism,

there exists an r-disk bundle (E(G), II) with a section G and there also

exist

1. a C* family of foliations {G;}:cw on &E(G) such that G is a leaf of G,
for each 2 in a meighborhood W of 0¢ R,

2. a Ct family of fiber preserving maps {F,:&(L)—>E(G)}iew extending
{f}rew n a tubular submeighborhood & (L)CE&(L) such that, for all
A€ W, the map F, preserves the foliations &, and G,, and the restric-
tion of F', to the disk & (x) s a diffeomorphism for each x € L.

It follows from 3.1.2' that F is transversal to G, ¥,=F}G,) and
F, restricted to &(x) conjugates the holonomies of &, and G,. More-
over, in a neighborhood of L the map F'; is uniquely determined by f,
and by its restriction to & (x).

We remark that lemma 3.1 holds for any previously chosen relatively
compact neighborhood W of 0¢€ R*. This will be clear in its proof.

Proor or LEMMA 3.1. Fix loops {aihicicy in L based at x, whose
homotopy classes generate =,(L, x,). Let y,=f(x,) and B:=f,(a:).

Since (fy)s is an isomorphism, according to Haefliger’s construction
[H] there exist an r-disk bundle (§(G), [I) with a section G, foliation G,
on &(G) having G as a leaf, and (eventually passing to a smaller £(L))
a C' diffeomorphism f; : &(x,)—&(y,) conjugating the holonomies of &, and
G,, that is: the relation Hp (G,)ofy=FfyoH.(F,) holds in a neighborhood
Ucé(x,) of x, for all 1=1, ---, k.

For a smaller U and for 2 in a neighborhood W of 0¢€ R®, the C!
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family of diffeomorphisms {H,,:f,(U)—>E&(y,)}i¢%, defined by H,iofo=
fooHai(g . represents a C! family of small perturbations of the holonomy
of G,. Applying the Realization Theorem of Bonatti-Haefliger [B-H] we
obtain a neighborhood W/ CW of 0c R and a C' family of foliations
{G.}iew on &(G) (eventually passing to a smaller £(G)) such that H, (G,)=
H; . on a neighborhood VCE&(y,) of %, Since y, is a fixed point of H,;
for all 2¢ W’ and i=1, ---,k, each ¢, has a compact leaf G, passing
through 9, and close to G. Translating G, along the fibers of 7 we can
assume that G, coincides with @G, for all 2 in W'.

For 1 in R’ small enough, f,: (f)(V)—&(y,) be the C' family of
embeddings uniquely defined by f,=g,of,, Where g,: V—E&(y,) are the C:
embeddings given by projecting V into &(y,) along the leaves of &,.
Hence, f, conjugates H, (4, and fo(ai,(g,z) in a neighborhood of 2, in
&(x,), for 1=1, ---, k and 2 close to 0 € R".

Now, the map F', is the unique fiber preserving extension of the
pair (fyf:) defined on a tubular subneighborhood & (L)c &(L) which pre-
serves also the foliations &, and G,. This finishes the proof. i

3.2 THE TOTAL SPACE REALIZATION LEMMA. Let (§(N);P) be an -
disk bundle with a section N and let < € Foli(¢(N)) be such that

LcsN-23B is an F-invariant fibered manifold. Suppose that £(L,) is

F-saturated for each € N. Then given a fibration GZsN,—B and
a C' fiber preserving map f: N—N, inducing the identity map on B
and an tsomorphism fy:m(L)—r (G), 2here exist an w-disk bundle
(E(N,); P) with a section N, a C' foliation G on &(N,) and a C' fiber
preserving map F:&(N)—E(N,) extending f on a tubular subneighbor-
hood & (N)CE&(N) satisfying the conditions:

1. GC“—>N0—p—°>B is a G-invariant fibered manifold,

2. &(G,) is G-saturated for each y€ N,

8. the restriction of F to & (x) ts a diffeomorphism for all t€ N and F
preserves the foliations F and G.

In particular, F is transversal to G and F*(G)=%.

Proor. Let 9W={W.}..... be an open cover of B trivializing the
three fibrations: p, p, and Pop. Hence, the disk bundle (§(N); P), the
foliation & and the map f are given by:

— an r-disk bundle (£(L); II) with a section L,
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— a C* family of foliations {F, . }/¢%, on &(L) such that L is a leaf of
each &, ,,

— a C' family of maps {f,:: L—G}{7, such that each (f;:)x : 7, (L)—7,(G)
is an isomorphism,

— two Ct' cocycles ¥, ;: W.N W,—Diff (¢(L)) and ¢.;: W;N W,—Diff{(G)
associate to the cover 9V satisfying the following conditions:

— ¥,;(A(L)=L

— IV, ;A= ;(A) 1]

_ ZFM(Z) (gx,i):g,u

— @A) ofri=Ff2;°¥;(2) on L.

We choose the open sets of the cover 9 small enough so that
Lemma 3.1 applies for each i=1,--- k. So, let (&(G); ), {G,.}¢%, and
{Fy.:: &(L)—>E(G)}EY, be given by 3.1.

To obtain the foliation G and the map F it suffices to construct a
cocycle @, ;: W.N W;—Emb!(&,(G); §(@)), &(G)CE(G) satisfying the follow-
ing properties for each 1€ W.NW;:

a. @;J(X)ESDLJ'(Z) on Ci,
b. HoQi’j(l) —_—@i,]‘(ﬂ) OH,
C. Q)i,j(lz)(gx,i):gl,jy

d. (Dm‘(z)°Fz,i=F1,j°wi,j(2)

Fix z€ L. Since F,,; restricted to £ (2) is a diffeomorphism, then
for 2¢ W.N W, the maps

G:,4(A) : o i(6(2)>E(¢:,5(2)) (f2,5(2)]
defined by
‘/31,;'(1) °Fm= Fx,j"llfi,j(z)

conjugate the holonomies of G,; and G, ,.

Let @, ;(3) : £,(G)—&(G) be the unique extension of the pair (¢ ;(2),
¢;.;(2)) satisfying properties (a), (b) and (¢) above in a tubular subneigh-
borhood &,(G)C&(G). Clearly @, ,(2) is an embedding and from the unicity
of this extension it is easy to check that @, ;(1) satisfies also (d) and
does not depend on the choice of z¢ L.

Finally, to see that {®, ;}.; is a cocycle, we use the unicity of @; ,(1)
as extension of the pair (¢, ;(2), ¢:;(4)) and the fact that @, (1) does not
depend on the choice of zc L. W
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§4. Proof of Theorem 2

Theorem 2 follows from Theorem 1 and the following proposition.

4.1 PRrOPOSITION. On the hypothesis of Theorem 2, I(F; N)=
A(B).I¥T; N).

We shall apply the result established in the previous section to
reduce the proof of this proposition to the case where & is an oriented
one dimensional C! foliation. Thus, we shall first prove it for this special
case.

So, let & be a one dimensional oriented C! foliation and Sic s N-2B
an Y-invariant fibered manifold with dim(B)=s.

4.2 LEMMA. Suppose that for some tubular metghborhood ({(N); P)
of N in M, the leaves of Eﬂw) project under P into the fibers of p.
Then there exists a sequence of foliations {F,}.exy on M, converging to
S in the C* topology with the following properties for all n € N:
1. N is an invariant submanifold under < ,,
2. %, has finitely many compact leaves on N which cotncide with fibers
of p.
8. the leaves of Efng w, Project under P into the leaves of gn|N, where
1
LG(N) is a subneighborhood of {(N),
4. if yCN is a compact leaf of <, then F, agrees with F on {(y).

We point out that from a Hart’s result [Ha], up to a C*' diffeomor-
phism the foliation < is given by a C! vector field X on {(N). How-
ever, the classical argument of perturbing X by a lift (under p and P)
of a suitable C> vector field on B does not apply readly. Since the
projections p and P are of class C* the perturbation so obtained would
be only of class C° which is not necessarily integrable. That is why the
proof of lemma 4.2 is some more technical than it would be if we were
dealing with the C? class.

Proor oF LEMMA 4.2. Choose a convenient smooth triangulation
A={4,, ---, 4.} of B so that for each i=1, ..., r there is an s-simplex
4,c N projecting diffeomorphicaly onto 4; and satisfying 4;N4d,=g if
1<i#j<r. Furthermore, denote by {6;(4); r+1<i<r+k} the set of all
(s—1)-simplexes of 4, and, for each i=7+1,---, r+k, choose a small
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neighborhood V. of §,(4) diffeomorphic to a closed s-disk. Let V.CN
projecting diffeomorphicaly onto V; be such that V. V,=@ and V.n4,=
O for r+1<i#j<r+k and 1<Ii<r. Setting T=4,U---U4.UV. U
.+-UV,. we shall use the notation T.=4; if 1<i<r and T,=V, if
r+l<i<r+k.

Passing to a smaller and compact ({(N); P) we have that {(T) is
transversal to &. Hence, the saturation of {(7') by small arcs of leaves
of & is a disjoint union W=W,U.--U W,,. of foliated compact sets,
each of them identified with T, X D' *X[—2, 1], where D** is the closed
unit disk in R centered at the origin and the leaves of & are identi-
fied with the intervals {x}X{y}x[—2, 1] with orientation coming from
the usual orientation of [—2,1]. Relative to the identification W.=
T, x D x[—2,1] above, T;=T;x{0}x{0} and the projection P is ex-
pressed by P(x,y,t)=(x, t).

The foliations &, will be obtained modifying < inside of W. For

this, let Z be a smooth vector field on B without periodic orbits and
r+k

with finitely many singularities, all of them contained in B— U V..
r+1

Let g: B—[0,1] and {g:: V.—[0, 1]}iz;1* be smooth maps such that:
— ¢,=0 on a small collar neighborhood of aV; and ¢,>0 on a neighbor-
hood ViC V; of 6,(4),
— ¢g=0 on a neighborhood of the (s—1)-skeleton of 4 and ¢>0 on

r+k
B— U V.

r+1

On each T, consider the smooth vector field
. {p*(gZ) it 1<i<r
“p*g.2) if r+l<i<rik.

Let ¢:[0,1]—[0, 1] be a C* map such that ¢=1 on a neighborhood of
zero and ¢=0 on a neighborhood of 1. Now we define on T, XD’ the
vector field Yi(z, y)=(o(||y]). X (), 0).

Given ¢>0 we choose smooth isotopies {f Jicizs3;™* defined on T X
D+ of the form f;.(x, y¥)=(f:.,(x), y), supported outside of a collar neigh-
borhood of 9(7T;X D**) and such that:

— fi,=Id for te[—2, —1],
— fi.=(Y9), for t€[0, 1], where (Y?), is the time ¢ map of the flow of

Y,

— fidx,y)=(x,y) if p(x) is a singularity of the vector field Z, for all
te[—2, 1],



298 S. Druck and S. FIrMO

— the isotopies  {fi.}.c;_.1; converge to the trivial isotopy

{he=Idr ype-sher-21y in the C= topology as e goes to zero.

These isotopies define foliations &, on M coinciding with & on M-W,
and on each W; the leaves of . are given by {(f:.(2), t); t € [—2, 1]}.er,xpo-

By construction N is invariant under &, and <. converges to & in
the C' topology as ¢ goes to zero. Moreover, the foliations &, satisfy
condition (3) in a small subneighborhood &,(N)C{(N).

Fix ¢>0 and let F be a leaf of ¢, lying in N. Denote [z, 2;] each
connected arc with extremities 2z, and z; of FFnN W, where z,<z; following
the orientation of <&, and 1€ A. TFirst observe that, for all 1€ 4, the
points p(z;) and p(z}) are on the same orbit of the vector field Z, and
p(z;) belongs to the positive semi-orbit of p(z,), i.e. p(z})=2Z,(p(z,)) for
some {>0.

If Z(p(z,))=0 for some d€ A then p(z;)=p(2}) for all A€ 4 and it
follows that F' coincides with the fiber passing through z,. Otherwise,
for some 1€ 4 and some t€ {1, ---, r+k}, we have z,€ W, and X'(z,) #0.
In this case p(2}) =Z.(p(z;)) for t>0, and therefore, p(F') is not a closed
curve in B. Consequently, F' is not compact. Now we can easily con-
clude that &, also satisfy (4) and the proof is finished. |

We shall need the following elementary lemma.

4.3 LEMMA. Let @:U—R XR'* be a continuous map of the form
D(x, y)=(g(x), f.(y)) defined in a neighborhood UCR*XR"* of the origin.
If Fix(@)={(0,0)} and Fix(g)={0} then i(®; (0, 0))=1i(g; 0).i(fs; 0).

Proor. It suffices to verify that there exist a C° homotopy {@.}icr0.1
between @ and the product map (g,f;) such that Fix(®,)={(0, 0)}, for all
t €0, 1]. Such a homotopy is given by @,(x, y)=(g(x), (1—t). fy)+t. fo(¥)),
for t€[0,1]. @

4.4 PROPOSITION. The Proposition 4.1 holds if <F is a C* one dimen-
stonal oriented foliation and a 1s defined by the orientation of <.

Proor. Let 9’ be a foliation C! close to & as deseribed in Lemma

42, and let 7, ---,7, be its compact leaves lying in N. Since N is
isolated, the compact leaves of <’ close to N are exactly 7, ---, 7.
Therefore,

(T, N)= ’Z;Ia(ff’; r:)-
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Fix j€{1, ---, 7}, ®;€7; and a small s-disk D contained in N, centered
at z, and transversal to ET\N. Identifying {(D)=R*X R and x,=(0, 0)
so that D=R*x{0} and P(z, y) ==, the perturbed first return map H,j(ﬂ"’)
is defined on a neighborhood of (0,0). According to 4.2.3, we have
[H,,(F)](@, y)=(g(x), f-(y)). On the other hand, from Lemma 4.3 it fol-
lows that i(H, (F'); z,)=i(g; 0). i(f,: 0). Furthermore, since " agrees with
G on L(r;), fo is the first return map of & restricted to {(y;). Thus,
1(fo; 0)=I*(<F; N) and i(g; 0) coincides with the index i(Z; p(x;)) of Z at

p(x;). Therefore I(F; N)= gi(z; p(&). I*(F; N)=y(B). I*(F; N).

4.6 ProoF OF PrROPOSITION 4.1. Since r,(L)=2Z, there exist an S-

bundle S‘C—>N0ﬂ>B and a C! fiber preserving map f:N—N, inducing
the identity map on B and such that fy : = (L)—=,(SY) is an isomorphism
(cf. [B-H, §4]).

Let G, (E(N,); P) and F:¢(N)—Z(N,) be given by applying Lemma

32 to &, Lc>N-23B, SN, ™+B and f. Since =,(B) acts trivially
on (L), the same is true for the action on =,(S!). Consequently, f=fx(«)
defines an orientation on S N,—B.

We recall that F maps small disks transversal to & diffeomorphically
onto disks transversal to G. Therefore, it conjugates the holonomies of
G and G, ie. the relation Fo[H, (F)]=[H/ ,(4)]oF holds on small disks
transversal to L,, where 7, is a loop in L, based at x€ N. Thus, since
N is isolated so is N,, and then I}(G; N,) is defined. Moreover, we have
that I*(F; N)=1I%(G; N,).

From 4.4 we have I4(3; N,)=x(B). I}(g; N,). Then, it remains to
prove that I(%F; N)=1I,(G; N,).

For this, let G’ be a small C! perturbation of § with support in a
small neighborhood of N, and having just a finite number of compact
leaves G, - - -, G/ close to N,. Thus, F'is transversal to ¢’ and &'=F*(J")
is a small C! perturbation of & with support in a small neighborhood
of N. The map F' defines a bijection between the set of compact leaves
of &' close to N and {GY, ---, G/}. Moreover, if L’ and G’ are compact
leaves of &’ and ¢’ close to N and N, respectively, and F(L')CG’ then
their holonomies are conjugate under F. Consequently, I(S'; L')=I1(G"; G')
and the proposition is proved.
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§5. Proof of Theorem 3

The proof of Theorem 3 will proceed, as we have said, by reducing
it to Theorem 2. This is done in Proposition 5.2 below.
The following remarks will be useful.

5.1 REMARKS. Let [H, (F)[(u, ¥)=(g(u, ¥), f.(y)) be the holonomy map

as in 1.1.

1. The map H, (¥)—Idg« is transversal to R'x{0} at (0,0) if and only
if fo—Idge— is a diffeomorphism in a neighborhood of the origin.
Consequently we have:

2. If N is normally elementary then it is isolated.

3. If in Proposition 4.1 we add the hypothesis that N is normally ele-
mentary then I(Y; N)==+yx(B), since in this case I*(¥; N)=+1.

5.2 PrOPOSITION. Let F € Fol!(M) and L=>N—"+B be an F-invari-
ant fibered manifold with n,(L)=Z. Given a tubular neighborhood
(n(N); Q) of N there exists a continuous path of C* foliations {<F,}icro1; ON
a neighborhood of N with F,=% and satisfying the following conditions:

1. LcsN-23B is an Y -imvariant fibered manifold for all t€ [0, 1].
2. The leaves of <, are mapped by @ into fibers of p.

Furthermore, if N 1s F-normally elementary then the path {F,}icron
can be choosen so that N is <F,-normally elementary for all t€ [0, 1].

Proor. The construction of {F .}y will be carried out in three
steps. Step 2 deal with an auxiliary one dimensional foliation.

Step 1. Reduction to a local construction problem.

Step 2. Local construction for the one dimensional case.

Step 3. Return to dimension of & greater than one.

We fix, once for all, closed s-disks (s=dim B) U and U’ in B with
UclInt(U’) which we identify with standard disks in the euclidean space
R*.

Step 1. Reduction to a local construction problem.

Suppose we have constructed a path {F,},c(,,; on a tubular subneigh-
borhood #,(N)C#n(N) satisfying:
i =9

ii, LcsN-25Bis an ¢ .-invariant fibered manifold.
iii. F,=%, outside of 7,(p~1(U")).

ny (N)-
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iv. 9 (L,) is <,-invariant for all x € p=1(U).

v. If x€p™(U) and 7 (L,) is Efl,,lw,-invariant, then #,(L,) is % -invariant.
Now, to obtain {F,},cr01; satisfying (1) and (2) its suffices apply this

construction to each U; of a cover {Uj},..c, of B by closed s-disks.

Step 2. Local construction for the one dimensional case.

In this step we assume that G is a 1-dimensional foliation satisfy-
ing the hyphothesis of the proposition. In this case the local situation
is described as follows: ¢ is a foliation on the (¢—s)-disk bundle
(" x7(SY); Q) with section U’ XS, where (p(S*); @) is a (¢—s)-disk bundle

with section S' such that Q(u, z)=(u, @(z)). Moreover SIcL U X St U
is a G-invariant fibered manifold.

The construction of the path {G,},c0s; required in step 1 will be
carried out in two steps and we shall use two auxiliary foliations ¥
and K. First we fix a point ¥, €S and deform G=J, in a neighbor-
hood W of UxXn(y,) to obtain a path {G.}er017 Such that G,,=4% on W.
Second we deform §,, outside of a neighborhood W’ of UX,(y,) to
construet a path {G}eneny such that G,=K on a neighborhood of
Uxn,(SY).

Fix (o, #o) € Int(U) X S'C U’ x(S"). Let [y5, y51CS* be a closed seg-
ment containing v, in its interior, small enough so that saturating
{uo} X7 (¥,) by small ares of leaves of G and projecting these arcs onto
{uo} X7 ([¥5, ¥&]) under the map (u,z)—(u, 2), we obtain a C* foliation 9,
on {u} Xn([ys, ¥s]). Denote by H the C* foliation on U’ X7([ys, ¥5']) ob-
tained by transporting ¥, under the product structure to each factor
{uyxn([ys, ¥i1). Clearly G=9 on U X[ys, ys].

For each y€[ys, yi] denote by H,, ,1(9) and H,, ,o(4) the holonomy
maps defined on U’ X%(y,), where [y, y]C[ys, y5] is the arc from y, to
y. Fix in U X7(y,) a product metric and choose a C' isotopy supported
on a small neighborhood of UX7(y,), constructed by moving [Hy,, ,1(G)](u, 2)
along the geodesic arc in U’ X7(y) to [Hy,, ,(H)(u, 2) for y€[ys, il In
this way we produce a continuous path of C' foliations {G.}.cf.12; OR
U x7(S") with G,=G such that for t€[0,1/2] the following conditions
hold:

— SicLU' xS, is a G,-invariant fibered manifold.

— G,=G outside of a small neighborhood of UX»(y,).

— Gy=9 on UXy(yr, y’]), where UcCU' is a neighborhood of U and
[yr, yi1c St is a small neighborhood of ;.
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— If welU and {u}x7(S") is G-invariant, then it is also G,-invariant.
From now on we fix an orientation on S* and to each y€ S, y+#y,
[, y] St will denote the simple oriented are from ¥, to v.
In a small encugh 7(y,) the maps

ky(w, 2) = (w, [D2oHyyy 1 Gr))w, 2)); (u, 2) € U X7(10)

are C' diffeomorphisms for each y € S!, where p,(%, z) =2. Therefore, they
define on Vx7,(S") a foliation K whose holonomy maps H,,,(X) coin-
cide with k, where VU is a neighborhood of U and #,(S?)C»(S?). Since
Gn=9H on Uxn(yr,yf]), in view of the construction of 4 it follows
that =4 on Vxu([yr,yi]) and K is a C' foliation.

At this point we remark that {u}x7n(S!) is K-invariant for ue V.

Now recall that we have identified U with a standard disk in R* and
notice that p,oHpy, ,1(Giie) =pp0Hpy,iy(K) on V' Xy(y,). Therefore, moving
[Hiyy1(G12))(u, 2) along the euclidean geodesic arc to [Hi,, . (K)1(u, 2)
using a suitable linear interpolation (depending only on u € V), provides
a continuous path of C! foliations {G },cpip.1y o0 U' X9, (SY) (passing to a
small enough 7,(S?)) satisfying the following properties for all ¢ €[1/2, 1]:

— S, U xS U is a G,-invariant fibered manifold.
— G,=4,;, outside of a small neighborhood of UX,(S).
— G,=XK on a neighborhood of Uxz,(SY),
— If {u}xn(S") is G,,-invariant then it is also G ,-invariant.

We point out that the C' differentiability of ¢, is ensured by the
fact that G, =% on U Xxyp(yr,yt]), for all te[1/2, 1].

Hence, {G.}ic0.1; satisfies the conditions of step 1 for the one dimen-
sional case.

Step 3. Return to dimension of & greather than one.

Fix a fiber L, with p(y,) € U and identity »(p~(U")) with U’ X5(L,)
so that the corresponding projections, also denoted by p and @, are ex-
pressed as: p(u, y)=u and Q(u,z)=(u, Q(z)), where @ is the restriction
of Q to n(L,,).

Let « : S'»L, be a C' embedding passing through y, and represent-
ing a generator of r,(L,). Let G be the one dimensional foliation
induced by & on U x9(SY).

Now, we choose a C' map f:(L,, %)—(S', %) inducing an isomor-
phism f*:z,(L,)—>7,(S"). As in §3 we extend the pair (f, Idyyq,) to
a unique C' map F:U Xn(L,)—>U x7(S') preserving the foliations &F
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and G and mapping diffeomorphically U X»(y) into U’ X7(f(y)) for each
y € L,,, where UcU is a neighborhood of U and 7,(L,)Cy(L,). As re-
marked in §3, the map F is transversal to G and F*(G)=%. Moreover,
if {u}Xx9(L,,) is invariant under F vwnwey then F({u}Xn,(L,)) is contained
in {u}x7(S!). Therefore, if {G}icro1; is the path constructed in step 2
then &F,=F*(G,), t€[0, 1], satisfies the conditions (i). (ii), (iii) and (v) of
step 1.

Let Q* be the projection on U’ X L, whose fibers are F~'({u} X7(f())).
(u,y) €U'XL,,. One easily check that in a neighborhood of UXw(L,)
the leaves of &, project under @* into the fibers of p.

To obtain (iv), passing to a small enough 7,(L,) we deform @* to @
in Uxn(L,) by a C* isotopy {h}icro,1; Preserving (i), (ii), (iii) and (v) and
supported in a neighborhood of UX#,(L,,). Once more, this isotopy is
constructed by moving (', 2) € (Q*)"(u, y) along the geodesic arc (in a
product metric) to (u,z) €Q '(u, y). Now, the path {(F)}icp1; followed
by the path {h,(%F))}.cr0.1; satisfies the five required conditions in step 1.

To finish the proof we observe that in step 2 the foliations ¢ and
G.), are diffeomorphic, so if U’XS' is G-normally elementary then it is
also G,,-normally elementary. Moreover, in view of the construction of
{G)eniey the first return maps H(G,) have the form H(G,)(u,z)=
(9.(u, 2), fu(z)) for t€[1/2,1] and (u,2) € U'Xn(y,). From Remark 5.1.1 it
follows that since U’ X S! is G,,-normally elementary then it is also G-
normally elementary for all t€[1/2,1]. B

5.3 PrRoOOF OF THEOREM 3. Without lost of generality we suppose
that the action of x,(B) on x,(L) is trivial, by passing to a double cover
of the base B. Furthermore, in view of Remark 5.1.2, N is an isolated
F-invariant fibered manifold thus I.(F; N) is defined.

Let {%F.}iero1y be given by Proposition 5.2 so that N is &,-normally
elementary. From the continuity of {f.}.cn.; in the C' topology, the
compactness of [0, 1] and Remark 5.1.2, it follows that there exists a
neighborhood U of N such that for all £€[0, 1] the compact leaves of
¢, close to N and lying in U are exactly the fibers of p. Hence, Theorem
1 and Remark 5.1.3 imply that I(%; N)=I.%; N)==+x(B) and the proof
is finished. |

REMARK. Let & € Fol'(M) and let LcsN—2B be an F-invariant
fibered manifold with =,(L)=Z. From the technies described in § 3 and
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§ 5 we can construct a manifold M’ with a C' one dimensional foliation

G having an S:-bundle S'>N'—">B as a G-invariant fibered manifold,
and a C' map F:9(N)—>M defined in a neighborhood »(N) of N, satisfy-
ing the following properties:

— F(N)=N', p’oF=p on N, and F, :r,(L)—>r,(SY) is an isomorphism,
— F'is transversal to ¢ and F*(Q)=%.

Consequently, if the action of =,(B) on =x,(L) is trivial and N is
isolated, then it follows from the arguments given in the proof of Pro-
position 4.1 that I.(Y; N)=1I;(G; N'), where 8= Fy(a) and « is a generator
of =, (L). B

Appendix: Proof of Lemma 2.1

For one dimensional foliations it is easy to construct {F,},cro1; satisfy-
ing 2.1.1, 2.1.2 and 2.1.3. We shall reduce the general case to the one
dimensional case.

We identify a neighborhood of the &-saturation of D* with R*Xy(L)
viewed as a neighborhood of D°X L, where (p(L); @) is a deleted (¢—s)-
disk bundle with a section identified to L. Relative to this identification
the F-saturation of D* is D*xXL. We suppose (passing to a smaller g-
disk D?) that D'CR*Xp(x,) and the g-disks R*X7p(x) are transversal to
< for all x€ L.

Let y be represented by an embedded circle S!CL generating
7y (L; %,).

Now, we fix a C' map f: (L, x)—(S', «,) inducing an isomorphism
Jx im(L; 9(70)—>7r1(S‘; ).

Let G (resp. ') be the one dimensional foliation induced by < (resp.
') on R*X7(SY). Then ¥’ and G’ have the same holonomy. So, we can
choose a small neighborhood C{/ of D*x L such that for all foliations &’
which are C! close to < the identity map of D? extends to a C' map
F':C—R*x7(S!) (depending on &) satisfying:

— for all x€ L the restriction of F” to CI/N (R*X7p(x)) is an embedding
with F”(C) N (R xp(x))) CR X 7(f(z)).

— (F)*(@)=9" on C{/,

— F" depends continuously on <’ in the C! topology.

In this way taking the pull-back under F' we reduce the construe-
tion of {F.}icroy satisfying 2.1.1, 2.1.2 and 2.1.3 to the one dimensional
case.
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From now on we assume that the family {F}.cq.; satisfying 2.1.1,
2.1.2 and 2.1.8 is already constructed. In order to make {F,},cr0; Satisfy
2.14 we shall modify each <, under diffeomorphisms supported in a
small neighborhood of the ¢-saturation of K.

We fix neighborhood WY cC W, of K, and W¥ of K, in D° and assume
that H,=H,(F"”) on WyU Wy. Thus, by construction F” and &, have
the same holonomy on WV U WY.

Let UcRIUR, be a small neighborhood of the ¢f-saturation of
K,UK, such that for all foliations &” and &, which are C! close to &,
we can extend the identity map of D¢ to a C!' embedding F”:U—
R x7p(L) (depending on F” and <,) such that:

— F"(UN (R xp())CR Xy for all € L.
— (F"*(F)=%" on U.
— F” is Ct close to the identity map of J.

Now, moving F”(y) along the geodesic segment defined by y and
F”(y) (using the metric induced on each factor R°x7(x), x€ L by the
metric on M) and passing to a convenient small subneighborhood I cU
of the F-saturation of K,UK,, we can modify F” just outside of I to
construct a diffeomorphism of M, denoted also by F", satisfying the
following properties:

— (F")*(F)=F" on W,

— F"=Id, outside of .

— F"(UN (R Xy(x) CR x7p(x) for all € L,
— F” is Ct close to the identity map of M.

Since =Y’ outside of a small neighborhood of the <-saturation
of K, and F'=%" on R}, it follows from the construction of F” that
in fact F”=1Id, outside of R].

Finally, the desired path is given by {(F/)*(Z,)}icp0; Where in each
disk R*X7(x), *€ L, {F{}icroy 18 given by the baricentric isotopy from
Fy/=Id, to F/'=F* &

References

[By] Bonatti, C., Stabilité de feuilles compactes pour les feuilletages définis par des
fibrations, Topology 29, n.2 (1990), 231-245.

[B.] Bonatti, C., Sur l'existence de feuilles compactes pour les feuilletages proche d’une
fibration, These d’Etat, Paris VII, novembre 1989.

[B-H] Bonatti, C. and A. Haefliger, Déformations de feuilletages, Topology 29, n.2 (1990),
205-229.

[D] Druck, S., Stabilité de feuilles compactes dans les feuilletages donnés par des fibrés,



306

[E]
[Fu]
[F]
[H]
[Ha]
[Hi]
[L-R]
[Sch]

[S]

S. Druck and S. FIrMO

C. R. Acad. Sci. Paris 303 (1986), 471-474.

Epstein, D. A., A topology for the space of foliations, in Geometry and Topology
(Rio de Janeiro, 1976), Spriger Lectures Notes in Math. 597 (1977), 132-150.
Fukui, K., Perturbations of compact foliations, Advanced Studies in Pure Math.
5 (1985), 417-425.

Fuller, F. B., An index of fixed point type for periodic orbits, Amer. J. Math. 89
(1967), 133-148.

Haefliger, A., Structures feuilletées et cohomologie & valeur dans un faisceau de
groupoide, Comm. Math. Helv. 32 (1958), 248-329.

Hart, D., On the smoothness of generators, Topology, Vol. 22, No. 3, 357-363.
Hirsch, M., Differential Topology, Springer-Verlag, New York, 1976.

Langevin, R. and H. Rosenberg, Integrable perturbations and a theorem of Seifert,
Springer Lectures Notes in Math. 652 (1978), 122-127.

Schweitzer, P. A., Stability of compact leaves with trivial linear holonomy, Topo-
logy 27, n.1 (1988), 87-56.

Seifert, H., Closed curves in 3-space and isotopic two dimensional deformations,
Proc. Amer. Math. Soc. 1 (1950), 287-302.

(Received August 11, 1992)
(Revised April 8, 1993)

S. Druck

Institute de Matematica—7> andar
Universidade Federal Fluminense
Rua Sao Paulo s/n—Valonguinho
24020-005 NITEROI, RJ

BRASIL

E. Mail: DRUCK@BRLNCC.BiTNET

S. Firmo

Institute de Mateméatica—T7° andar
Universidade Federal Fluminense
Rua Sao Paulo s/n—Valonguinho
24020-005 NITEROI, RJ

BRASIL

E. Mail: FiRMO@BRLNCC.BiTNET



