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An extension of Komatsu’s second structure theorem
for ultradistributions

Riidiger W. BRAUN

Abstract. It is shown that each ultradistribution can locally be
represented by an ultradifferential operator applied to an ultradifferenti-
able function which is only slightly less regular than the test functions
associated to the original ultradistribution.

1 Introduction. It is a classical result that, for all k&, any distribution
can locally be written as a differential operator applied to a function of class
C*. Komatsu’s second structure theorem treats the same question in the
case of ultradistributions: For a space 9) of ultradifferentiable test functions
he shows that any ultradistribution g€ 9) is locally given by an ultra-
differential operator applied to a measure. Here, this result is extended
in two ways: First, it is shown that g can locally be represented by an
ultradifferential operator applied to an ultradifferentiable function belong-
ing to some class larger than &). Second, the requirement that 9 be
strictly non-quasianalytic is replaced by plain non-quasianalyticity. To
be precise, we are dealing with classes of ultradifferentiable functions in
the sense of Braun, Meise, and Taylor [2]. A comparison of some theories
of ultradistributions is given in Section 8 of [2]. The main tool of the
present paper is Theorem 7, where a result of Rubel and Taylor is ap-
plied to construct an entire function with certain growth properties.

The author expresses his gratitude towards R. Meise and D. Vogt,
who explained to him how something like Theorem 7 would be useful
for the investigation of right inverses in classes of ultradifferentiable
funections (see [5]).

2 Weight functions. An increasing function w: [0, co[ [0, oo is called a
weight function if it satisfies
® w(t)

@ o@)=0Ww). (8 [ “Wditcoo,
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(r) logt=o(w(t)), (6) ¢=woexp is convex.
We extend w to C¥ by requiring o(2)=w(|z]|).
3 Ultradistributions. For ¢ as in 2(0) we set
¢*(y)=supay —¢(), y=>0.

For open KCRY and >0 we define

Eu(K)={ fe oK) |sup sup, 17 (@) exp( —T¢*(lal) ) <oo).

K aeNIOV

For open QCR" we set

€)= proj ind EL(K), E,(2)= proj proj &y (K),

KccQ l-ow KccQ -0

D2 =E R )NDD), Diy(Q)=Ewr(R") ND(R).

The elements of 9),,,(2) and 9),,,(2), respectively, are called ultradifferenti-
able functions of Roumieu type and of Beurling type, respectively. The
elements of the corresponding dual spaces are called ultradistributions.
All spaces are equipped with their natural topologies, dual spaces carry
the strong topology, denoted by X;. For details we refer to Braun,
Meise, and Taylor [2]. There it is shown that the condition of non-
quasianalyticity, 2(8), implies that 9,,(2) and 9 (2) are non trivial.
For w(t)=t%, 0<d<1, the class &, is the classical Gevrey class of ex-
ponent 1/d.

4 Ultradifferential operators. Suppose that G € H(C") satisfies for some
k>0

log|G(2)|<k(14+w(z)) for all ze C",

then we define an ultradistribution T; by

Te, /7=

[ GOr s = £ (—iaEOpo), e urn.

N
a€Ny ol

1
(2m)"

By [2], 8.5, the first representation shows that T¢ € 9, (RY)’, the second
one shows that T is supported by the origin, thus by [2], 5.3, T¢ is in
fact in &, (RY). We define

G(D): D o)(RY)' =Dy (RY), G(D)pr=Texp.
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G(D) is continuous by [2], 6.3. We say that G(D) is an ultradifferential
operator of class (w). If G € H(C") satisfies log|G|=0(w), then we define
an ultradifferential operator G(D) of class {w} in an analogous way. Fol-
lowing Chou [3], we say that an ultradifferential operator is elliptic if
there is ¢>0 with |Im z|>e|z| for all |z]|>1/e with G(z)=0.

5 Notation. Let (z,); be a sequence in C\{0} with |z,|<|z;,,|]—>c0. Then
we let

n(r)=#{jllz;| <}, N('r):jr_wdt_

6 THEOREM (Rubel and Taylor [6], 5.2). Let o be a weight function.
A sequence (2;); in C\0 1s the precise sequence of zeros of an entire func-
tion h with log|h(z)|=0(w(z)) 1f and only if

(@) N(r)=0(w(r))
and

(b) there is A>0 such that for all ke N, 0<r<R

L 5 1fog(ob) ) olR)

r<izI<k 2RI rk R*

k

7 THEOREM. For each weight function o there are an even entire
Sfunction f€ H(C) and a constant C satisfying

log|f(z)|<Cw(z)+C for all z€C, (1)
log|f(x)|>w(x) for all xER,

|Imz|>lé—| Jor all z with f(z)=0.

Proor. We may assume that o is C'. For K with «(2t)<Ko(t),
t>0, we set

p=min{k € N|k even, 2*>K}.
For j&e N and [=0, ---,p—1 we set

a,= min{r>0|re’(r) = pj}, zlzexp<(2l+1)—”i>, 21=Aa;
D
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The convexity of woexp implies that r—r«’(r) is non decreasing. Thus
for a;<r<a;,,

pi=a,0 (a;) <re’(r) <a,,,0'(@;,,) =p(d +1).
On the other hand, pj=n(r), thus
n(r) <ro'(r) <n(r) +p.

This implies

N :S ”it) dt gg twt,(t)dtga)(r), @)
N(r)zj:Wdtzw(r) —w(l)—plogr, 3)
’n(t)éj‘jt%s)dSSN(et)gw(et)ngw(t). (4)

For k=1, ---,p—1 we have Y ?54;*=0, and thus
1

<l ISR 2Y )

=0 for 0<r<R, k<p. (5)

By (4), we have n(t)=0(w(t)). By the monotonicity of w and 2(B) this
imples n(t)=o(t), thus the sequence (z,,);, is of genus zero or one (see
Boas [1], 2.5.5). Hence the canonical product

2P
a?

f(z):jlitlj:(l— z )exp( il >=ﬁ<1+

24, 2,1 =1

exists; here the second identity is a consequence of (5) and of the fact
that the 1, are the pth roots of —1. Itisclear that f is even, has the
required zeros, and satisfies

max|f(z)| =f(r)=f(—7).

|z]=7r
From this, Jensen’s formula, and (3) we derive

log f(+7) Z%S:zlom Flre")|dt=N@r)>o(r) —o(l) —plogr.

We use Theorem 6 to show that there is an entire funection h with



Komatsu’s second structure theorem 415

zeros (z;,),, that satisfies (1). Once we know the existence of at least
one such function, it is not difficult to see that (1) holds for f, too.
Hypothesis (a) of Theorem 6 is satisfied because of (2), while (5) implies
(b) for k=1, ---,p—1. The case k>p will be treated like in the proof
of Rubel and Taylor [6], 3.5. The estimate (4) is applied several times.

1 1 :lg’* dn(t) _ n(t) R+SR n(t) dt
k T<IZJ~ISR ‘Zj|k k r tk ktk r r tk—l—l
K 0(R) | 12 & SZ"*‘* w(t)
S A
<K oR N LA
<Kol g Boen|, A
_K*w(R) . 21
G HE Bl s
_I_{.__(‘@ Kitlw 1
=k R Z )i
K'oR) K o) 1
k Rk r 1—KJ2

Thus, by 6 there is an entire function h with log|k(z)|=0(w(z)) and
precise sequence of zeros given by (z;,);,;. If we assume h(0)=1, then
Hadamard’s factorization theorem (Boas [1], 2.7.1) implies the existence
of be C with h(z)=¢"f(2). This yields the estimate from above for f
since

log| f(2)| =logV/[h(2)h(—2)| =0 (w(2)).
The next theorem corresponds to Komatsu’s second structure theorem

[4], 10.3, for the case of weight functions in the sense of 2.

8 THEOREM. For any p€ &, (RY) and any >0 there are an ellip-
tic ultradifferential operator G(D) of class (w) and f€ELRY) with p=
G(D)f.

Proor. By an appropriate version of the Paley-Wiener theorem
(Braun, Meise, and Taylor [2], 7.4), there are C and k with
|2(t)| <Cexplkw(t)) for all te RY. (6)

By Theorem 7, there is F'€ H(C) even, with no zeros in a conic neigh-
borhood of R\{0}, satisfying
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(14+k+l)o(x)<log|F(x)| for all x€R. (7)
Since F' is even, we can define G ¢ H(C) by
Gl)=F(VzZ+ - +2%).
It is clear that G(D) is an elliptic ultradifferential operator of class (w).
For tcRY we have log|G(t)|=log|F(|t])|>1+k+1)w(t), thus for i€
Em(RY)
J ((;_ ) dma(t) <C{  exp(— (1+D0()12(0) dmate).

By [2], 7.4, this shows that the following defines an element f of
(€11 (RY);)’, which coincides with &,,,(RY) by [2], 4.9:

__1 £(—1)s Ny/
D= | LG A0, 2€E®YY.

For ¢ € 9,,(R") we have by [2], 7.2 (with <T, ¢>=<(T, ¢(—-)>)

A V/\
:__(2;)NLN (=) F o xp (£) dmn (2)

={f, Terd>={G(Df, $>.

It remains to prove fe &)

: 1 ([ A=) _yepmic
@)= s || o S im0

< ) XD (o () ] ()

<oy S exp(—loy) + allog )|, exp(—o(t)dma(y

=0 exa(tsup({fle—ot))

< esftmn(r(24)0)
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< exp(lp(0) +1g*(121)),

9 COROLLARY. Let QCRY open, KCQ compact, vE D, (), and 1>0
be given. There are an ultradifferential operator G(D) of class (w) and
he &L such that

SupphC 2 and Supp(v—G(D)h)C\K.

Proor. Choose y € 9, (2) with x(t)=1 for all ¢€ K, apply Theorem
8 to g=yv and suitable I’ depending on y, and set h=yf.

10 COROLLARY. For any p€&,,(RY) and each weight oc=o(w),
there are an elliptic ultradifferential operator G(D) of class {0} and f€ &}
with p=G(D)f.

Proor. By Braun, Meise, and Taylor [2], 7.6, there is a weight o
with p=o0(w) and pe &, (RY) &, (RY). Enlarging o if necessary, we
may assume because of [2], 1.9, that p=0(s). We apply 8 with ¢ in the
place of w. We get Tc€E ) (RY) CE,,(RY). Thus G(D) is of class {w}.
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