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Existence of symmetric capillary surfaces

via curvature evolution

By Naoyuki ISHIMURA

Abstract. The curvature flow is applied to the capillarity problem.
The existence of symmetric capillary surfaces is proved rather easily
by this method.

1. Introduction and results

Let us consider a capillary tube in a gravity field over a bounded domain
QcR*. We assume that the fluid surface contained in the tube can be
described as a graph x,.,=u(x,,---,,). It is well known that u verifies
the equation

Du

with the boundary condition

(2) T/Z\IITIQD%ZL—TT:COS 7 on 99,

where Du denotes the gradient of u and N is the unit outer normal on
092. Here rk=pg/o (>0) represents the capillarity constant with p, the
density difference across the surface, g, the gravitational acceleration
and o, the surface tension. The contact angle y is always assumed to
satisfy

i
o<r< ™.
=3

The character of the equation (1) is quite different according to the sign
of the term xu. We call +xu case as the positive gravitational field
and —«ru as the negative one.
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This capillarity problem has been attracted many mathematicians
and several existence theorems under various situation are already known.
We recall, for instance, results of Concus and Finn [1][2], Finn [5], Finn
and Gerhardt [7], Gerhardt [8][9], Giusti [11][12][18], Huisken [14], Simon
and Spruck [18] and Ural'tseva [21]. For further references and other
information we refer the reader to the excellent text of Finn [6].

All the above works discuss directly the equilibrium problem. Some
of them deal with the minimization of the functional

3) J(u):j ¢1+|D“u|2dwilg /cuzdx—s cos uds
Q 2Ja 20

in the class of bounded variations BV(R). See for instance Massari and
Miranda [17; § 3.8].

In this paper, on the other hand, we attack the problem (1)(2) by
the curvature flow method; one considers the gradient flow of the func-
tional (3). Although there exist many kind of gradient flows for (3),
recent investigation on surfaces moving by their mean curvature suggests
that the following type of evolution equation is appropriate:

du

(4) S =vIT |Du‘|2<:div

Du

WT—D“F.?W) in 2%(0, T).

Here and hereafter we assume that Q= B; is the ball centered at the
origin with radius R. Moreover we only disscus the radial solution of
(4).

One advantage of employing the evolution method is that we can
obtain the smooth solution directly; if one minimizes (8) in BV(2) one
must discuss separately the regularity of the minimizer.

Remark that this normal velocity equation is different from that
investigated in Gerhardt [10] or Lichnewsky and Temam [16] by the
factor 4/1+|Dul®2. While Huisken [15], Ecker and Huisken [3][4] and
Tso [19][20], also partly because of the geometrical reasons, consider the
above normal velocity equation. Both evolutions are gradient flows for
(8), of course. To our knowledge, however, they all did not seem to
discuss the application of this method to the capillarity problem.

We now state our main results. First, as is easily seen, the case
of positive gravitational field is rather easy. We have the following
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THEOREM A. Suppose the symmetric u,€ (Bg) satisfy W—%_(TW(R)
=cosy. Then the evolution problem
du —( 1 rey .
22— V1 E<_<—_’_>—u> n BpX (0, o
(5) 7t V1i+u i\ T ) K 7 2 X ( )
6 _ % _—cosy om dBpX(0, o
(6) Vira 7 e X ( )
(7) u(, 0)=1u,

has a smooth solution u and as t—oco, U converges to the unique solution

of

1 r"u, . .
®) T"_1<W>r—xu in By
9) __ % ___—cosy on 9B
V144l B

It is to be noted that the existence theorem for (8)(9) is essentially
already known. See for instance Finn [6; Chapter 3], Gerhardt [&].
However, our proof is very elementary and short, compared with the
above works.

Next, the case of negative gravitational field needs some considera-
tion. Since it seems to be difficult to handle it generally we content
ourselves with finding a solution, using fixed point argument effectively.
Let M>3R coty, N>cot y be constants determined later and set

EM,Nz{ue(Jl(BR); u(x) =u(r), max|u|M, max|u,.|<N,
%

% _ _(R)=—

«/1+u3( )

where r=|z|. If #>mncosy/RM then there holds Ey y+#¢. We want to
construct a solution in the class Ey y. For that purpose choose any
f€ Ey y and consider the problem

du

w)  B=vivu (J( Do) 46) in Bax(0, )

K " n—1 i
FSOT u(r)dr_cosr},
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1) T/lu__r*_uz_zcosr on 9B X (0, o)

(12) u(-, 0)=1u,,
where u, is assumed to satisfy

T%@(R):cos 7, max|u0,|g%, max|u,,|<N.

We show that for sufficiently small «, (10)(11)(12) has a global solution
staying in the class Ey y, taking M, N appropriately. Then one can
define the mapping T : Ey y—Ey y which assigns f to u.:=lim, .u(-, ¢).
T turns out to be compact and hence it has a fixed point, which is a
solution to the equilibrium problem. We thus obtain

THEOREM B. Let xozmin{ nsiny , n_lsin 7}. Then for all &

3R? R?
satisfying k£<k, we have a solution to the problem
1 ,’.ﬂ.—l U, .
(13) , F<.'\/1——+E>r: — KU m BR
(14) % ___cosy om 9B,.
' vVitw;

Note that this kind of fixed point arguments is also used in Huisken
[14] for the stationary problem in somewhat different manner and a
related result is exhibited. His method of proof, however, is rather
complicated than ours and one could not easily apply it to compute the
constant x, even in the radially symmetric case. In this context our
Theorem B seems to be new and among other things the proof is trans-
parent and short.

Acknowledgement. The author would like to thank Professors K.
Masuda, H. Matano and Y. Tsutsumi for constant encouragement. Thanks
also go to Professor Y. Giga for his interest in this work and to the
referee for his insightful comments.

2. Proof of Theorem A

The proof of Theorem A involves standard a priori estimates. First we
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give a bound for |u|. Let u be a smooth solution of (5)(6)(7). Define
the comparison function:

d(@)=—+vE'—[zP+L @€ B,

where we set L:sup]uol-{——nR—+R +1. Then it is easy to compute
K

F R — Ds
40 _ Dol (di 5
@ V1Tl < YT RDeE " )

= —7/—|?<R iy RS |x|2—,cL)

>0.
The parabolic maximum principle implies
u<0 in Bg X[0, o).

The estimate for —u will be derived similarly and we establish the
desired bound for |u|.
Next we prove the estimate for the gradient |u,|]. To do so put

v=4/1+4u:. Observing that u, satisfies

du, _ U, _ 2uul, n—1 n—1

- U, WUy
dt  14+ul (14ud? r? * r
——«/u—l’%;b—zlm—VI—i—uilcu,,
we have
d ( 1 d? n—1 d))
a_ el | 77
<dt Tt dr + v dr
wr,  2usul,  m—1ul u, dv__ .,
S v° r v " dr Kb
and so

<d%_< l—iuf ;; +n;1 %“ h ”“;—,.»”SO-

The parabolic maximum principle then leads
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sup v <max {sup¢1+u§,, 1/sin 7} ,

in view of the bound for |u|. Hence the desired bound for |u,| is ob-
tained and standard results imply that (5)(6) (7) has a global in time
solution.

Now it remains to show the convergence of u. To show this com-
pute the time derivative of (3):

d _ . Du A b
d—tJ(u)_—SQ<dlvﬁl—Dulz—xu> vIFDulfde

<0.

Therefore in view of uniform estimates for |u| and |u,| we obtain

S:o .‘a <div #_TLW— /cu>2 v/ 1+ |Dul*dx

=dJ (o) — J (Ue) <0,

from which we conclude that u converges uniformly to the solution of
the equilibrium problem. This completes the proof.

REMARK. Observe that the assumption of symmetry makes the dis-
cussion transparent. In fact when we deal with the non-symmetric case
we have to do complicated computation in deriving the boundary gradient
estimate, where no difficulty exists in the symmetric case. See for in-
stance Simon and Spruck [18] in which the equilibrium problem is treated.
As to the interior gradient estimate one can give a time independent
bound easily by modifying the argument of Ecker and Huisken [4; The-
orem 2.3], even in the non-symmetric case.

3. Proof of Theorem B

We prove the Theorem B by slightly modifying the argument of the
proof of Theorem A. Let M>3R coty, N>coty be taken and fixed so
as to satisfy

ncos;;<x<£ 1 n—1 1

“RM RVOETIE "SR VIENT

and define Ej y as in the Introduction. Let w be a solution of (10)(11)
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(12). We first give an a priori estimate for |u|. We consider the next
comparison function:

_ 25 (T Ils)
olr)= 3M”LVt?mW“

where I(fr):rl—"f s*-1f(s). Then we find
0

do ——s2( a: Do
—— — A1+ 1Do)? ( div————
o VTl ( lV«/1+|Da|2+'cf>

=0.
Since |I(r)|<RM/n, 6,/4/140%(R)=cos r, and max|u,| <M/3, the maximum
principle yields

_%M_%Mgagu in BpX (0, o),

if there holds k< L1
! "SR VIR TIT

larly using the comparison function

_2, (0 I
o) =g M LVﬁ?ﬁﬁ“

An upper bround for u proceeds simi-

and hence we conclude that
sup|u| <M in BgX (0, oo).

Next we give an a priori gradient estimate for . For this purpose
set

w=log v=log 4/1+u2.

G-t e
g p(de)osi e

Compute

_ U, dw if — 2 i f,
v dr v
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re vt v dr v dr v

2
<_n—1 u? +1 dw _ u, dwx U, KF,.

If there holds

N
<
T VIFuw

then we are done. Otherwise

(i_<1 d +ui+ 1 i_ Uy ,gf))w
1

5
v

dt \v? dr? r dr v dr v

2
n— u u
<o W kf,<0
T v ()

n—1 1
R* V14N

if we have £< , and again the maximum principle implies

that
|u,| <N in By X (0, oo).

In any case we establish the desired gradient bound.

Now we can define T: Ey y—Eyy by Tf:=u.. Here we put u,.=
lim,_. u(-,t), since we see easily u(-,t) converges to the solution of the
stationary problem, as in the proof of Theorem A. Standard parabolic
regularity theory shows that T is compact and hence it has a fixed point.
It is an easy matter to see that this fixed point is the solution of (13)
(14). This completes the proof of Theorem B.
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