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Moishezon-Fano Threefolds of Index Three

By Iku NAKAMURA

Abstract. We consider an analogue of a Fano threefold of index
three in the category of Moishezon spaces. This is by definition a
(compact complex) Moishezon threefold with the first Betti number b,=0
whose anticanonical line bundle ¢, is effective and divisible by three.
We prove that if moreover its linear system |c,/3| is free from fixed
components, it is isomorphic to either a smooth quadric hypersurface
in P% or a certain P&-bundle over Pg.

§0. Introduction.

This is a continuation of [N1], where we study threefolds with their
first Chern class ¢, divisible by three and the second Betti number b,(X)
equal to one. The purpose of the present article is to study threefolds
with ¢, divisible by three and possibly with b,(X)>2 under certain mild
conditions. This class of threefolds is an analogue of Fano threefolds of
index three in the category of Moishezon spaces. A smooth quadric
hypersurface Qf in P¢ is, up to isomorphism, the unique projective Fano
threefold of index three [Is]. However there are many Moishezon three-
folds with their first Chern class equal to 3¢,(D) for some nonample ef-
fective divisor D. Our consequence is summarized as follows.

THEOREM. Any Moishezon threefold with the first Bettt number b,
equal to zero and with the first Chern class ¢, (the anti-canonical line
bundle) divisible by three is isomorphic to either Q% or a Pi-bundle over
P. if the linear system |c,/3| has mo fixed components.

We recall that any Moishezon threefold with ¢, divisible by at least
four is isomorphic to P under a similar assumption. See (2.1) and (5.1)
in this article. The remaining case in the above theorem where the
linear system |¢;/3| has fixed components will be studied in [N4] under
the stronger condition that the threefold is a global deformation of a
Pi-bundle over P:.

Part of our consequence in the present article was announced in [N3].
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Notation.
Bs|L| the scheme-theoretic base locus of |L|
¢(X) the 4-th Chern class of X
g(a b, ¢) OPI (@) DO (b)DOpi(c)
F, Proj(0,,(b)0)
9*|L| {9*D; D¢ |Ll}
(X, F) dim H*(X, F') for a coherent sheaf F
k(X, L) L-dimension of X [Ii]
Ngj» the normal bundle of C in X
Oy, Os, Oy the structure sheaf of X, S, Z respectively
Oy the formal completion of Oy
wx (or Ky) the dualising sheaf (canonical line bundle) of X
g, W, W¢ the dualising sheaf of S, [, C respectively
Wx/4 the relative dualising sheaf of X over 4
P(F(a,b,c))  Proja,b,c))
1X, F) GGZ; (=1 (X, F)
( e O )x the intersection numbers on S, X

§1. Some P>-bundles over P

In this section we work over an algebraically closed field £ of any
characteristic.

First we start with recalling some algebraic 3-folds with ¢,(X)=3¢,(L),
that is, P*-bundles over P'. Choose integers a>b>0 such that a+b—2
is divisible by 3. Let 3n=a+b—2>0. Let &:=%(a, b, 0) =0,,(a)PDO,.(b)
@O0, X=P(F) and let 7 : X—P' be the natural projection. Let H be a
tautological line bundle of X with z,H=<%. Then the canonical sheaf
Ky of X is given by the formula,

Ky=—3H+rn*detF+K,)=—38H+(a+b—2)F
where F' is a fiber of #. Letting L:=L(%)=H—nF, we have Ky=—3L,
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L’=deg 7, L=2. Since n4L=FR®0,,(—n), and Rz L=0(q>1), we have
H'(X, L)=H(FQ0,(—n)) (9=0).

We see that R'z,(—pL)=0(¢>0,p=1,2), whence H*(X, —pL)=0 for the
same values of ¢ and p. There are 3 cases.

Case 1. n=0, a>b>0.
Case 2. a>b>n>1.
Case 3. a>n>b>0.

Case 1-1. Assume that a=b=1. Then A°(X, L)=5 and Bs|L|=4¢.
The morphism h,: X—P* associated with |L| has a hyperquadric W with
Hessian-rank 4 as its image. In fact, we can choose elements x,, z,(resp.
%y, 5) from H°(Op(a—n)POP0) (resp. H° (0P O, (b—n)PO0)) such that
ToTs =T, %s. M, 18 a small resolution of W whose exceptional set is P(0H0
@P0,,) =P* with normal bundle =O0,,(—1)PO0p(—1).

Case 1-2. Assume that a=2, b=0. Then A°(X, L)=5 and Bs|L|=¢.
The morphism h,: X—P* associated with |L| has a hyperquadric W with
Hessian-rank 3 as its image. In fact, we can choose elements z,, x, and
2, from H°(0,,(a)D0P0) such that xi=wxx,. h, is a divisorial contraction
whose exceptional set is E:=P(050,,(b)P0,,)=P'XP'. The restriction
map hoz: E—P' is a P-bundle whose fiber C has the normal bundle
Neix=0pnPO0n(—2).

Case 2. In this case, h*(X, L)=n+4, B:=Bs|L|=P(0D0DO0,,) =P
Since 74 L=4X0,,(—n), any element of H°(X, L) is written as s,(x)y,+
$i(x)Y;+8:(x)y. for some (s, sy, 8:) € H(FRO,,(—n)) and suitable homo-
geneous coordinates y;. In particular, h*(X, L)=a+b—2n+2=n+4. Since
8:(x)=0, B:=Bs|L|={y,=y,=0}=P'. Let D and D’ be members of |L|
defined by

D:s= io s(@)y;=0, D':¢'= io s!(@)y:=0.
The intersection I:=DND’ is the locus of s=s’=0. If four elements s;
and s} (i,7=0,1) have common zeroes w € P!, then [ contains a surface
7 '(w). Assume that Dand D’ have no irreducible component in common.
Let 4:=s,8/—8,85€ H (Op(n+2)). For any zero w of 4, we have a line
C,:=(s=¢=0}N7" (w))a in z7}w) with multiplicity ord, 4>1. Hence
we have
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=B+ Y. ord,(d)-C,

w€ zero(4)
where deg 4=n+2. It is clear that (LC,)x=1. Hence (LB)x=(L%x—
(n+2)=—n. Let f:Y—X be the blowing-up of X with B center, K
the total transform of B, and N:=f*L—FE. We see also that Ny x=

O(—a)PO0s(—b) and E=F,_,(a—b>0).
Let Np:=N®Og, and ¢, (resp. e, or f,) a section (resp. a section or
a fiber) of fiz: E—B with (e})z=a—b (resp. (¢%)z=—a-+b). Then we see

(f*L)p=f*(Lp)=—nf,, Np=e+(b—n)fo, Erx=—e—bf,,
(N%)e=n+2, K'Y, N)=n-+4, Bs|N|=¢, H(Y, N)=H"(E, Ny).

Let C, be a proper transform of a line C, in F(=P? by f. Since
C, intersects B transversally at one point, (EC,)y=1 and (NC,)y=0.
Hence the morphism ¢ : Y—P"*+® associated with |N| has an image ¢(Y)
~g(E). Since (N%);=n+2 and h°(E, Ng)=n+4>5, the image g(E) is a
cone over a smooth variety of minimal degree. In fact, if b>n, then
g(E)=E=F,_, and Y is a P-bundle over g(E). If b=n, then g,; contracts
¢ so that g(E) is a cone over a smooth rational curve g(e,) of degree
n+2 with g(e.) its vertex.

Case 3. In this case, h'(X, L)=a—n+1(>n+4), B:=Bs|L|=P(06D
O, (0)P0,,)=F, and |L|=|(a—n)F|+B. The image of a morphism bk,
associated with |L| is P*. The natural projection = is the same as that
associated with |F|.

Note. Some P*bundles P(F) over a curve C of genus g>1 can satisfy
¢,(X) =8¢, (L), where & is a locally free sheaf of rank 8 on C. However
we have h'(X, Oy)=g>1.

§ 2. Threefolds with K;=—3L.

In the sections 2-4 we work over an algebraically closed field £ of
any characteristic.

(2.1) PROPOSITION [N1, (A.1)]. (char £>0) Let X be an algebraic (or
a Moishezon) 3-fold defined over k and L a line bundle on X. Assume
that h'(X,0x) =0, Kxy=—aL for some integer a>4 and h'(X, L)>2. As-
sume moreover that there is an irreducible reduced member in |L|. Then
X=P:
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Proor. We have h'(X, —pL)=0 for p>0 by the assumption. See
(2.3). Hence h*X, —pL)=h'(X, —(a—p)L)=0 for p<a. Therefore h*(X,
—pL)=0 for 1<p<a—1. Since %(X, —pL) is a cubic polynomial in
p, (X, —pL) is identically zero if a>5, which contradicts y(X, Ox)=1.
Hence a=4 and we have (X, —pL)=(1—p)(2—p)(3—p)/6, whence L*=1.
Since h*X, L)=h'(X, —5L)=0, we have h'(X, L)>4 by Riemann-Roch
theorem. Let [ be a complete intersection of two general members of
|L|. Then by the same argument as in [N1, (A.1)], we see that [=P
It follows that X=P2 g.ed.

See also (5.1). By (2.1) it is natural to study the case of index three.
The sections 2-4 are devoted to proving

(2.2) THEOREM. (char £>0) Let X be a Moishezon 3-fold or an alge-
braic 3-fold defined over k (we assume projective if char k>0) and L a
line bundle on X. Assume that h'(X, Ox)=0, Ky=—3L and h°(X, L)>2.
Assume moreover that there is an irreducible reduced member in |L|.
Then X=Q*® or P(¥(a,b,0)) (a>b>n>0, a+b=3n+2).

We note that some of P*bundle over P' may have no irreducible
reduced members in |¢,/3| even when ¢, is divisible by three. See §1.
See also (5.2). The assumption of projectivity for char k>0 in (2.2) is
necessary in the proof of (4.1) because Kodaira-Enriques classification of
surfaces in char k>0 is available only in the projective case [Mu]. In
what follows in the sections 2-4, we consider the 3-fold X satisfying
the conditions in (2.2) Our proof of (2.2) is completed in (4.2).

(2.3) LEMMA. Let l:=DND’ for distinct members D, D' € |L|. Assume
that D and D’ have mo irreducible components in common. Then
(2.3.1) hY(X, —pL)=0 for p>1,
(23.2) Rh¥X, —pL)=0 for 0<p<3,
(2.3.3) Rr(,0)=1, h'(l, 0,)=0.
(2.3.4)

2.34) L=Ll=2, (X, —pL)=%(1—p)(2—p)(3——2p).

ProoF. By the assumption a general member of |L| is connected
reduced. Choose a general member D of |L|. Then A°(Op)=1. We also
see that h°(Op 4...,p,) =1 for general D,c |L| and any positive integer m.
Then the above assertions (2.3.1)-(2.3.3) follow easily. See [N1, (1.4) and
(1.6)]. By (2.3.1) aud (2.3.2) we have (X, —pL)=0 for p=1,2, while
(X, —pL)=1 (vesp. —1) for p=0 (resp. p=3). Since y(X, —pL) is a
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cubic polynomial in p, we have (2.3.4). q.e.d.

(2.4) LEMMA [N1]. Let l:=DND’ as in (2.3) and B:=Bs|L|.

(2.4.1) Any irreducible component of 1 is a smooth rational curve
C. For the component C, one of the following is true if C is not con-
tained in B.

(2411) LC=2, Nex=04(2)%.
(24.1.2) LC=1, N¢x=0:0H0.(1).
(2.413) LC:(), Nc/X:O(;@OC(—Z) or Oc(—‘l)@z.

(2.4.2) For any pair C, C' of irreducible components of I, C and C’
intersect nowhere or transversally at a point, while no triple of irredu-
cible components of | meet at any point.

2.4.3) [ is one of the following.

(

(2.43.1) 1=C and LC=2.

(2.4.8.2) 1=2C, l,.q=C and LC=1.

(2.4.33) 1=2C+C, l,w=C+C', LC=1, LC'=0 where C and C’ inter-
sect.

(2.4.34) 1=Cy+C,+---+C, with LC,=LC,=1, LC;=0 (1<i<m—1)
where C;_, and C; (1<i<m) tntersect, while C;NC,=¢ (otherwise).

(2.435) l=mC+---+m,C,+B, LC;=1, LB=—(m,+ - - - +m,)+2<0
where B=P', C;NC;=¢ (i#7J), while C; and B intersect transversally at
a point p;.

See [N1, (3.1)-(3.5)] for the precise structures of I. The assertions
follow from the proofs of [N1, (3.1)-(3.5) and §8]. Compare § 1.

(2.5) COROLLARY. K’ (X, L)=5 (resp. —LB+4>5) and B:=Bs|L|=¢
(resp. PY).

ProorF: See [N1, (3.7) and (8.8)]. Note B:=Bs|L|=¢ except (2.4.3.5).
q.ed.

§3. The case where B=¢.

(3.1) LEMMA. Assume B=¢. Let h:X—P*be a morphism associated
with |L|, W:=h(X) and d:=deg W. Then dim W=3, d=2, and h is a
birational morphism of X onto an irreducible quadric hypersurface W.

Proor: Since B=¢, we have h’(X, L)=5 by (2.5). Hence we have
a morphism h: X—P* associated with |L|. Then we have d>5—dim W.
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If dim W=1, then d=1 by the irreducibility of a member of |L|, a con-
tradiction. If dim W=2, then d>3, which shows that a general complete
intersection [:=DND’'(D, D’ € |L|) has 3 movable irreducible components
C; with LC;>1. However there are no such cases by (2.4). Hence
dimW=3, d=L*=Ll=2 by (25). q.e.d.

(3.2) LEMMA. If W 1is smooth, then X=W=Q°.

Proor: By the assumptions, Ky=—3L=—3h*H for a hyperplane H
of W. Let »w be a meromorphic 3-form on W with its polar divisor 3H.
Then the pull back h*(w) is a meromorphic 3-form on X with (h*w)=Kyx
~—3h*H. Hence h*w has no new zeroes caused by the vanishing of
the Jacobian of h, whence b is unramified. Consequently X= W by (3.1).

g.e.d.

The following lemma is more or less well-known.

(8.3) LEMMA. If W={(x;) € P* f(x)=0}is a singular quadric hyper-
surface in P*, then f(x)=xi—x,0, 0r TXs— %, by choosing suitable homo-
geneous coordinates of P*.

Proor: A singular quadric hypersurface W is a cone over either a
smooth conic in P? or a smooth quadric in P3. Since a smooth conic in
P? is a rational curve, its normal form is given by f(x)=2x!— =z, There-
fore it suffices to preve that a smooth quadric surface @ in P®is defined
by f(x):=zsx;—x,2.=0. Let p be a point of @, T,Q the tangent plane of
Q@ at p. We may normalize p: (x;)=(1,0,0,0) and T,Q : ;=0 by choosing
suitable homogeneous coordinates z;. Then the equation f(x) defining @
is of the form

S(x) = (g4 g (1, o, X3)) T3+ B2y, ).

Therefore by taking x,+g(x) instead of x, and by redefining 2, and x,
suitably, we have f(x)=x®;— 2,2, as desired. g.e.d.

(8.4) LEMMA. Assume that B=¢ and SingW+¢. Then

(8.4.1) No divisor on X 1s contracted to a point by h.

(8.4.2) There is an irreducible curve C on X with LC=0. If LC=0
for an irreducible curve C on X, then it is a smooth rational curve with
Neijx=00(—1)® OcPOc(—2).

(8.4.3) W 1is the unique normal algebraic variety with the properties
that
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(8.4.8.1) X\h*(SingW)=W\SingW,
(3.4.32) h7'(q) is a smooth rational curve C with LC=0 for any
g € SingW.

Proor: First we prove (3.4.1). Let H be a hyperplane of W. As-
sume that there is an irreducible divisor E on X such that h(E) is a
smooth point of W, say ¢q. Let p be a point of E, (s,t,u) a coordinate
system at p such that E is given by s=0. If ¢ is a smooth point of
W, then we choose a local coordinate y; at ¢ and write a local generator
o=dy, Ady.\dy, of the dualising sheaf wy. Since L(E)={p}, we may
assume that h*y,=s'f;(s, t, u) for some integer ¢;>1 and regular f;. Let
the divisor (h*®) be ¢E+---. Then e>e,+e,+¢,—1>2. However since
Ky=—38L=—3h*H, we have (h*w)=0, which is a contradiction.

We can derive a contradiction in a similar manner if q is a singular
point of W. For instance, assume that (W, q)={(v.) € (4 0); YsYs=Y:Y2}
with suitable coordinates ¥,. Then a local generator of the dualising
sheaf of W at q is given by w:=(1/y,)dy, Ady, Ady.. Let h*y,=s"fi(s, t, u)
for some ¢;>1. Then we have (h*w)=e¢E+ .-, e>e,+¢,—1>1, a con-
tradiction. If (W, q)={(y:) € (4%, 0); ¥i=Yyo¥.}, then w:=(1/y,)dy, Ady.\dys,,
(h*0)=eE+--- and e>e,+e,—1>1. Thus we derive a contradiction in
any case.

Next we prove (3.4.2). If LC<O0, then C is contained in B(=4¢).
Hence LC>0 for any irreducible curve C on X. Since W is singular,
the birational morphism h contracts some curves. Hence there is an
irreducible curve C with LC=0. Let q:=h(C). Choose two general
hyperplane sections H and H’ of W which pass through ¢q. Then their
pull-backs D:=g*H and D’:=g*H’ are irreducible by (3.4.1) if H and H’
are general enough. Therefore the structure of I :=DND’ is given by
(2.4), where C is a component of [. By (2.4) C is a smooth rational curve
with Ngjx=0:(—1)% or O:H0:(—2).

Finally we prove (3.4.3). The Jacobian of h is nonvanishing on
X\h 1(SingW) by the proof of (3.2). Hence & is unramified and birational
there so that it is an isomorphism there. Let g be a singular point of
W, p any point of h~Y(q). If dim h*(q)=0, then (X, p)=(W, q) by Zariski
main theorem, which contradiets that (W, q) is singular. Hence dim h™*(q)=1
by (3.4.1). Any general member of |Oy(1)| passing through the point ¢
of W is reduced, possibly reducible. Therefore any general member D of
|L| passing through p is reduced by (3.4.1). For general D and D’¢€ |L]|
passing through p, a complete intersection l:=DND’ is of type (2.4.3.4),
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say, l=Co+ - --+C, with the notation there. Since LC,=LC,=1, C, and
C, are mapped onto lines on W respectively. Any pair of lines on W"
passing through the point ¢ are algebraically equivalent to each other
(as lines passing through g), so that C, and C, meet the same component
C, for general D and D’, whence m=2. Therefore h'(q);a=C..

It remains to prove the uniqueness of W. Assume that we are given
an algebraic veriety V and a morphism g : X—V with the property (3.4.3).
2:=h*(Sing W) is the union of all rational curves C on X with LC=0.
Then W\SingW=X\¥=V\SingV by (3.4.3.1). By (3.4.8.2) we have a
natural bijection from W onto V, which induces an isomorphism of
W\Sing W onto V\SingV. Since both W and V are normal, we have
Ow =15 (Ow~singw) =J (O singv) =0y, wWhere 7 : W\Sing W—W and j : V\Sing
V—V are inclusion maps. Hence W and V are isomorphic. g.e.d.

(3.5) LEMMA. If B=¢ and if dim SingW=0, then X~=P(F(1,1,0)).

ProOF: Step 1. Assume dim SingW=0. This means that W has
isolated singularities. Then by (3.3) we may assume W={(x:) € P*; .,
—x,x,=0}. Let ¢ be a unique singular point of W. Let W,=W, :=
{(xi) € P*; x;=2;,=0}(=P?, where (i,7)=(0,1), (0,2), (3,1), (3,2). Then
H,:=W,;+W,€|0x(1)| for j+#k, whence D,:=h*(H)€c|L|. Since dim
h™(q)=1 by (3.4.2), D; has two irreducible components Z;; and Z.(j+k)
with W,;=h(Z,,;), Wa=h(Z,). We define Z,:=Z,,. Each Z,; is nonsingular
outside h7'(q) by (3.4.1). We see that Z, (resp. Z,,) is linearly equivalent
to Zy (resp. Z.). Let C:=h"(q), C;:=W,;N W,=P, and let C, be the
proper transform of C;,. Since C,NC+¢, we set p;:=C;NC.

Step 2. Since D, contains C, either Z;; or Z, contains C. Assume
CcZ; Then we prove CZZ,. We may assume (¢,7,k)=(0,1,2) with-
out loss of generality. So we assume CcZ,. A complete intersection
l:=D,N D, contains both C, and C, as well as C. Sinece LC,=1 for any
1, | is of type (2.4.3.4) with m=2. By (2.4.3) or [N1, (3.5)],

L,=Ic,=(x,Y) (p#Di, D).

In particular, both D, and D; are smooth along C\{p,, p.}, whence CZZ,,.
Similarly it follows that CC Z,, while CZZ,,.

Step 3. By STEP 2, we (may) assume from now on that CC Z,,. Now
we prove po=p, p:=p; and Z,NZ.,=¢. Since D, is singular along C,, it
is singular at p,., Hence p,=p, or p,=p, because D, is smooth along
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C\ {p,, p.} by STEP 2. If p,=p,, then Z, N Zy+¢, whence Z, N Zy contains
a curve. As W,N Wy={q}, we have Z,NZy=h""(q), contradicting STEP
2. Therefore p,=p,. Similarly p,=7p..

Step 4. We prove that Z,=Z,~F, and Z,=Z,~=P*. Since W;;=P?
it is sufficient to prove that Z;, is smooth. Consider [=D,ND; at p,(=p,).
By [N1, (3.5)],

IL’WOZIC”’O: (w, yz).

As we saw above, D, and D, are smooth along C\ {p,, »,}. Since D,=27,
+ Z,, is singular along C,, we may assume by the form of the ideal I,
that Ip , =(yz) and I, , = (x), whence Z, Z, and Z, are smooth at p,.
Similarly we also see that Z,, Z,,, and Z,, are smooth at p,(=ps;). Con-
sequently Z;; is smooth everywhere.

Step 5. Let F:=0x(Zy) =0x(Z;) € Pic X by STEP 1. Since ZyNZy=¢
by STEP 3, (X, F)=2 and Bs|F|=¢. Therefore we have a morphism
n: X—P' with general fiber F'=P? where we may view F=Z, or Z,.
The morphism = is given by the rational function A*(x/x,)=h*(2./s).
Then 74(L) is a torsion free sheaf of rank 3 because L;,=h*Hy,=0p(1).
Therefore by a theorem of Grothendieck we have . (L)=%(a,b,c) for
some a>b>c¢ under the notation in §1. As h(X, L)=5 and Bs|L|=¢ by
(2.5), we have a¢+b=2, a>b>0, ¢=0. It follows from H®(X, L)=H'(W,
Ow(1)) that a=b=1 and that h*(x,) and h*(x,) (resp. h*(x,) and h*(x))
are bases of H°(Op(a)P0P0) (resp. H*(0DO,,(b)P0)). Thus we have a
birational morphism ¢:X—P(¥(1,1,0) (=: P(¥)). Since Ky=—38L=
—3g*hi (Ow(1)) =9*Kpq by §1, ¢ is unramified. Hence X=P(¥). q.e.d.

(3.6) LEMMA. If B=¢ and if dim SingW=1, then X=P(F (2,0, 0)).

Proor: By (3.3) we may assume W={(x;) € P% xi—xx.=0}. Let
Wii=W, :={(x:) € P, z;=2x,=0} (=P?), and let Z;; be the proper transform
of W,; by h where (i,7)=(0,1), (1,2). Let 3:=SingW, E:=h"*(Y); and
¢;;:=Z;NE. The Cartier divisor (x;) of W is W, + W,,, while the divisor
(x,) (resp. (w,)) of W is 2W, (resp. 2W,). Hence W, is linearly equi-
valent to W,,. We have

Di:=(h*z) =2Zy+a.E (i=0,2), D, = (h*w,) =Zy+a,E-+ Zss

for some positive integers a,. Let W,:=(x.)=h(D,), and let D be a general
member of |Oy(1)| which does not contain 3, D:=h*D. Since Y is a line
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in P‘, the intersection ¥ ND is a single point q. Meanwhile W, (;=0, 2)
is a double plane, whereas W, is a union of two copies of P%. Hence
the intersection W;N D is a double line (=0, 2), or a union of two lines
(1=1). By (2.4) and by the same argument as (3.5) STEP 2, we have

li ::Di ﬂDzzct-{-Cl ('L:O, 2), ll ::DIQD:CO—I‘Cl—I“Cg

where C,:=h!(q), and LC,=LC,=1, LC,=0.

Since D;ND=2Z,ND+a;END, we have C;=Z,ND, a;=1 (:=0,2)
and C,=END. Since C; is smooth, Z,; is smooth along C; (:=0,2). Simi-
larly E is smooth along C,. We also have D,ND=Z, ND+a,END+Z:N
D=Cy+C,+C,, whence a,=1. We note that C,&Z,;, whence C,Ze¢;,. In
other words, h™'(q)Te;; for any g€ 3. Since C,=Z,ND intersects C,
transversally, we have (e,C,)z=(ZyC))x=1. Similarly (e,,C\)z=(Z,C\)x=1,
whence ¢;; is bijectively mapped onto 3. Since (¢;;D)x=(Z;;ED)x=(Z,;C,)x
=1, Z;; intersects E transversally along e;;, and e;; is smooth so that
e,;=3=P'. Therefore Z;; and E are smooth along e¢;;, whence Z; is
smooth everywhere. Since W,,NW,=23 and C,NC,=¢, we have Z,NZ,
=¢ and ¢, Ne,=¢. Thus we see Z;;= W;;=P* and (¢)) z,;=1. Asa Cartier
divisor DNE=C, of E is smooth for any g€ 2, so is E everywhere too.
We have

(e?j) E= (Zisz)x =((Di—E—Zy) EZ;)x=(Lei;)x— (e?j) 7;;= 0,

whence E=P'X P,

Since a;=1, Z, is linearly equivalent to Z,,., Let Z=2Z, and F:=
Ox(Z0) =0x(Zy) € Pic X. As O4(F)=0,(Z,) =0,, we have k*(X, F)=2 and
Bs|F|=¢. Thus we have a morphism = :X—P' associated with |F]|,
where = is given explicitly by a rational function h*(x,/x,)=h*(x./x,) on
X. Let §:=n4L. As & is a torsion free sheaf of rank 3 on P! by
L,;=0,,(1), we have ¥ =%(a,b,c) for some a>b>c¢ under the notation
in §1. Then since h°(X, L)=5 and Bs|L|=¢ by (2.5), we have a+b=2
and ¢=0. Since h*(x,)?=h*(x,) h*(x,), we have a=2 and b=0, whence we
have a birational morphism ¢ : X—P (). Since Kyx=—38L=—3g*h¥(Ox(1))
~g*K,q by §1, g is unramified. Therefore X=P((2,0,0)). g.e.d.

(8.7) REMARK. (char k+2) Assume that B=¢. If there is a smooth
rational curve C on X with LC=0 and Ngx=0;(—1)® (resp. N¢x=O0¢
@0:(—2)), then Hessian-rank W=4 (resp. 3), or equivalently dim Sing
W=0 (resp. 1).
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Proor: (8.7) is easily proved by applying (3.2), (3.5) and (3.6). Here
is however a direct proof as in [Mo, (3.23)]. We consider the normal
variety W with the property (3.4.3). Let h:X—W be the morphism in
(3.4). Let q be a singular point of W, C:=h"(q)rea=P"

Case 1. TFirst consider the case where N;y=0.;(—1)®:, We prove
OW,q:k[[uO, Uy, Ug, us]]/(uoua_uluz).

Let I; be the ideal sheaf of Oy defining C,m, the maximal ideal
sheaf of Oy defining the point gq. Note that dim m,/mZ=4. Then we
have a diagram of exact sequences.

0—— TIIg" —— Ox/It" —— Ox/Iz —0

0 — ke (Ie/TE*") — hx(Ox/I5") — hy(0x/T) — 0

J#. |s. [0

0 —— mj/m;*t —— Oy/m;?' —— Oy/m; ——0

Since hx0x=0y by (3.4.3), the composite of natural homomorphisms
h40x—0x—O0y/m:** is surjective, whence so is ¢, for any n. As h°(hy(Ox/
I.))=h(Ox/I;)=1 and h'(I;/I%) =4, the homomorphisms ¢, ¢, and ¢, are
isomorphisms. S"(H°(I;/I%)) (resp. S"(m,/m?)) are naturally mapped onto
H°(I3/I3%) (vesp. mp/my*'), so that ¢, is surjective. Therefore ¢, is sur-
jective. Hence we have an epimorphism

¢ : im hy(Ox/I8) — Og.,.
<

Now look at ¢; and ¢; (¢=1,2). We can choose generators y,, ¥, ¥, and
ys of H'(I;/I%)=H"(0;(1))®* such that y, and ¥, (resp. v, and y,) generate
the first (resp. the second) factor, satisfying the relation y,4;=v.%. in
¢l Ie.

Since r°(I/I3)=9 and ¢, is surjective, there is a unique quadratic
relation among y,, which is just the above one. Therefore we can choose
x; € Oy, such that ¢,(y,) =2, mod m? and x,x;—2x,2,=0 mod m. It is easy
to see that there is a formal solution ;€ Oy, such that &;=x; mod m?,
£ — 5,8, =0 in Oy, Let R:=k[[to, Uy, s, Us]]/(UoUhs—u,%;). Then we de-
fine an epimorphism p:R—Oy, by p(u;)=#. Since Krull-dim B=3, it
follows that p is (whence ¢ is also) an isomorphism. Since W is a quadric
hypersurface in P*, this also shows that Hessian-rank W=4.
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Case 2. Next we consider the case where Ng;=0,PO0:(—2). We
prove

Ow,q =Fe[[ %o, 21, Up, Us ]]/ (U7 — UoUs).

With the same notation as in Case 1, we see that ¢, and ¢, are
surjective. It follows that we have an epimorphism

@ : lim hy(Ox/I3) — Oy, .
e.

We can choose generators vy, ¥, ¥, and y, of H*(I;/I%) =H"(0.(2))PH"(O¢)
such that y, v, and ¥, (resp. y,) generate the first (resp. the second)
factor, satisfying the relation yi=y,y. in I%I}. Since char k+2, we can
choose z; € Oy, such that ¢,(y,) ==z, mod m? and zi—xx,=0 modmi It
is easy to see that there is a formal solution %;€ Oy, such that either
32— %%, =0 or #2—2%,%,—4r=0 for some m>3.

Let R : =k[[ %o, Uy, g, a1/ (U2 — totts) OF B : = [ %o, Uy, g, U] (03— Uty — UT).
Then R=0y , by the same argument as in Case 1. Since W is a quadric
hypersurface in P®, the second case is impossible and Hessian-rank W=3.

g.ed.

§4. The case where B+#¢.

(4.1) LEMMA. If B#¢ and if dim B<1, then X=P(%(a,b,0)) (a>b
>n>1, a+b=38n+2).

ProoF: By(2.4), B=P!. Let the normal bundle Bjx=053(—a)@PO0s(—b)
(@>b) and n:=—LB. By [N1, (8.8)+(8.10)], we have a>b>n>1, while
a+b=3n+2 by the relation c¢,(Np;x)=(c,(X)B)x—c(B)=3(LB)x—2. Let
f:Y—X be the blowing-up of X with B center, E the total tranform
of B and N:=f*L—E. Then by [N1, §8], we see that with the nota-
tion in [ibid.], (compare also §1)

E=F,, (f*L)g=f*(Ls)=—nfo, Ne=ey+ (b—n)fs,
Ey=—e,—bf,, (N%)z=n+2, (f*LE)y=0,
(f*LE?*)y=((f*L)sEg)z=n, (E%)y=3n+2, (N%)y=0,

K(Y, N)=n+4, Bs|N|=¢, H (Y, N)=H°(E, Ng).

Let W be the image of Y by the morphism g : Y—P**%, Then W=F
if b>mn, while if b=n, then W is a normal surface obtained from E by
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contracting a unique smooth rational curve e, with (¢%)z=—c=—(n+2).
Note that a=2n+2 if b=n.

Now we prove that there is a surjective morphism = : X—P' whose
general fibers are P?. First we consider the case where b>n. Then
g(f.,) is a line of P***, We can choose a hyperplane section H of W
containing exactly (a—mn) distinct lines because g*(H)z=Npy=e.+ (@ —n)fo.
Let ¢ be a general line g(f,) on W and F:=g (o). Let l,=g7'(g)(g€0)
be a fiber of g,» and r:=ENF. Then l,~P"* for general q and the divisor
F is irreducible. Since g,z is an isomorphism, r € |f,] on E. The curves
7 and [, on F intersect at a unique point transversally. Therefore we
have

(ER) r= (EZF)Y: (EEFE)E: — (e +bfo)fo)e=—1
(f*(L)3r=((E+N)%) r=((Ert+1))p=—1+2(cl) p=1,

whence «(F,f*(L))=2. Note that the above intersection numbers on F
make sense because F' is smooth along [, for general q€o and E, h*(L)
are Cartier divisors on Y.

Let F=f(F), and h:S—F the minimal resolution of the normalisa-
tion of F. Then there exists an effective divisor P on S such that the
canonical bundle of S is given by

Ky=h*(Ky+F)—P.

See [N2, (2.A)]. By the choice of F, we have an effective divisor @ of
Y such that N=(a—n)F+Q. Hence L=(a—n)F+Q where Q=ry(Q).
Therefore we have

Ky=—(3a—3n—1)h*(F)—3n*(@Q)— P.

Therefore S is either P? or ruled because S is Moishezon or projec-
tive by the assumption. If S has a pencil f, of smooth rational curves
with (f?)s=0, then we have

2=—(Ksf)s=(Ba—3n+1)(h*(F)f.)s+3(R*(@)f)s+ (Pf)s.

Since a>b and a+b=3n+2, we see 3a —3n—1>a+1>n-+3. Hence
(R*(F)f)s=(h*(Q)f:)s=0, whence (h*(L)f,)s=0. This implies that «(F, L)
=«(S, h*(L))<1, a contradiction. It follows that S=P? and that P=h*(F)
=0." Since P=0, F has only isolated singularities. (This is true in ar-
bitrary characteristic because F is a Cartier divisor of X.) This also
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implies that F is normal. Since P? has no curves with negative self-
intersection numbers, F'=P? Therefore Oy(F)=0,. Thus we have a
morphism 7 : X—P* associated with the linear system |F|.

We consider next the case where b=n. Then W has a unique isolated
singular point v,. A general hyperplane section of W passing through v,
is the union of mutually distinet (n+2) lines in P**3, any of which passes
through v, Let o be one of the these lines, F' the unique irreducible
component of the divisor ¢g=*(¢) on Y which is mapped onto ¢ by g. Let
F=f(F). We define I,=¢7"(q)(¢€0) to be a fiber of g,» and ¢:=ENF.
Then I,=P' for general q. Since g,z is an isomorphism outside e.., the
curves = and [, meet at a unique point transversally, while F' is smooth
along I, for general qc€o¢. Therefore in the same manner as above, we
have (f*(L)%)s=1, whence «(F,f*(L))=2. Then «(F,L)=2. Moreover
by the choice of F, we have an effective divisor @ of Y such that
N=(n+2F+@. Hence L=(n+2)F+Q where Q=,,(Q). Then by the
same argument as above we see that F'=P? and that Og(F)=0p.

Thus in either case we have a surjective morphism = : X— P* associated
with |F.

Next we prove that = is a P%-bundle. Let F'= Z m;F; be any fiber
1=0

of =, F; irreducible components of F’. We prove that F'=P% By the
upper semi-continuity, we have for any positive integer m,

W(F", mLg)>h(P?, O,2(3m)),

whence there is an irreducible component F, of F” such that «(F,, Ly)=2.

Let h:S—F, the minimal resolution of the normalization of F,. Then
the canonical bundle of S is given by Ks=h*(Kx+ F,) — P for some effec-
tive divisor P of S. Hence we have

moyKs= —3m,h*(L)— Z% m:h*(F';) —m,P.
i

Therefore S is either P? or a ruled surface. If S has a pencil of smooth
rational curves f, with (f?)s=0, then we have

2=—(Ksf)s=3(h*(L)f1)s ,
whence (h*(L)f:)s=0. This contradicts «(S, h*(L)) =« (F,, Lr)=2. Hence
S=p?
Since S=P?, we have P=0, h*(F,)=0 (1#0), h*(L)=0,2(1). Hence
F'=m,F, because F" is connected. Since P=0, F, has only isolated
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singularities. Since F, is a divisor of X, this implies that F, is normal.
Hence F,=S=P*. Since Oy (m,f")=0r, we have Or,(Fy) =0y, and h'(F,
Or,(kFy))=0 for any q,k>1. It is easy to see that R(F’, Op)=m, and
h'(F’,Op.)=0 for q>1, whence

mOZX(F', OF’) zx(F’7 OF) :X(sz OPZ) =1

This implies that F’ is reduced. Therefore F”=P

The direct image sheaf 74(L) of L is a torsion free (hence a locally
free) O,i-module of rank 8. It is clear that X is isomorphic to P(m(L))
and 74 (L)=%(a’, V', ¢) for some a’,b and ¢ with the notation in §1.
Since Pic X(=Z®%) has no torsions, L is uniquely determined by Ky~ —3L,
whence B is also uniquely determined. Hence as Ny x=0z(—a)POx(—b),
we have a=a’—c¢ and b=b'—¢ by §1. We have %(X,Ox)=1 by (2.3.2)
by h}X, Ox)=0, whence

e, L=c,6,/3=8y(X, Ox) =8,
x(X, L)=x(X, Ox) + (¢i+¢,) L/12+¢,L*/4+ L?/6 =5.

It follows from yx(X, L)=yx(P', ) that a’+b'+c¢'=2. Since a>b>n>1
and a+b=3n+2, we have a'=a—n, b'=b—n and ¢’=—n. Thus X=P
(“ (@, b, 0)). g.e.d.

(4.2) COMPLETION OF THE PROOF OF (2.2). If B=¢, then X=Q*® or
P(¢(1,1,0)) or P(4(2,0,0) by (3.2), (3.5) and (3.6). If B#¢ and if dim
B<1, then by (4.1) X=P(%(a,b,0) (a>b>n>1, a+b=3n+2). This
completes the proof of (2.2).

§5. Theorems.

In the present section we work over an algebraically closed field %
of characteristic zero.

[N2, (3.3)] contains a gap in the proof. Here we correct it.

(5.1) THEOREM [N2, (8.3)]. (char k=0) Let X be an algebraic (or a
Moishezon) 3-fold defined over k and L a line bundle on X. Assume
that ¢,(X)=ac,(L) for some integer a>4 and h'(X,L)>2. Then (X, L)
=(P*, Ops(1)).

Proor: Let p:=p, be the rational map associated with |L|. Let
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F be the fixed components of |L|, d the number of movable irreducible
Z; of a general member D€ |L|. Then we have ¢,(X)=adc,(N)+ac,(F)
where N:=Z,. Let Z:=Z, Then by Bertini’s theorem Z is smooth out-
side Bs|L|. Let h:S—Z be the minimal resolution of the normalisation
of Z. For simplicity we assume Ky=—adN—aF. Then we have

Ks=h*(Ky+2Z)— E—G=—(ad—1)h*N—ah*(F)—E—G

where E and G are some effective divisors of S with Supp(E+G)C
h~*(Supp B) which measures the singularities of Z and the intersection
of Z with the other irreducible components Z;. See [NZ2, (2.A)].

If »*(N+F)=+0, then either S=P? or S has a movable rational curve
f with (f%)s=0. In the second case (K;f)s=—2, whence (h*(N)f)s>1
or (h*(F)f)s>1. However

2=(ad—1)(R*(N)f)s+a(R*(F)f)s+ (E+G)f)s=a—1>3,

a contradiction. Hence S=P:. Then X=P* by the same argument as
in [N2, (3.3)].

Next we consider the case where Ah*(N)=h*(F')=0. (The proof of
[N2, (8.3)] ignores this case.) Then we have E=G=0. Since Z;, E and
G are effective divisors, this implies that Z,NZ=FNZ=¢, E=G=0,
whence B=¢. By Bertini's theorem Z is smooth. Therefore S=Z and
S is an algebraic surface with Ky=0. Moreover p is a morphism of X
onto an algebraic curve W.

By blowing up X suitably we have a projective 3-fold X. Let ¢:
X—X be the natural morphism, r:=p-$, g the genus of W, and wgp
the relative dualising sheaf of =. By Fujita [F2, (2.7)], deg 74 (ws ) >0.
Therefore we have

(X, Kx—p*(wg) +9N)=h(Kz—7*(0p) +9¢*(N))
=h(W, px(wg ) +9p)>1

where p:=p(N). However K;—p*(wyp)+gN is algebraically equivalent
to a (strictly negative) Cartier divisor —(ad+9g—2)N—aF. Since X is
Moishezon, we have h'(K;—p*(wg)+9gN)=0, a contradiction.

Now we assume ¢,(X)=ac,(L) for some a>4 instead of Ky=—alL.
Then we can argue as above so as to prove X=P? in the first case where
h*(N+ F)+#0. In the second case where h*(N)=h*(F')=0, we see ¢,(S)=0,
whence S is either an abelian surface, or an algebraic K3 surface or a
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hyperelliptic surface. Hence by Kawamata [K, Theorem 1] deg 7 (12wg, )
>0, whence we derive a contradiction in the same manner as above.
This completes the proof of (5.1). g.e.d.

(5.2) THEOREM. (char k=0) Let X be an algebraic (or a Moishezon)
3-fold defined over k and L a line bundle on X. Assume that h'(X, Ox)
=0, ¢,(X)=38¢,(L), B(X, L)>2, and that |L| has mo fixred components.
Then X=Q?® or P(%(a,b,0) (a>b>n>0, a+b=3n+2).

ProorF: In view of (2.2) it suffices to prove that any general member
of |L| is irreducible. Assume the contrary. Let D=D+---+D, (r>2)
be a general member of |L|, smooth outside B by Bertini’s theorem.
We note that any D; is linearly equivalent to each other by h'(X, Ox)=0.
Let Z=D,, and let v: Z—Z be the normalization, ¢:S—Z the minimal
resolution and ¢ :=v-z. Then we have Ki=o¢*(Ky+Z)—E—G for some
effective divisors F and G as in [N2, (3.3)], whence ¢,(S)=(3r—1)¢,(c*D;)
+c¢,(E+G). If ¢%D,=0, then we can derive a contradiction in the same
manner as in (5.1). Hence D, , is nonzero effective on Z, so that S is
either P? or ruled.

We prove that both the cases are impossible. In fact, if S=P? then
D,NZ=¢ for :>2 because r>2. However 0=rZ2D,=L*>1, a contra-
diction. If S is ruled, then there is a pencil of rational curves F on S
with F?=0. Hence we have

2= K F= (3}— 1)o*(D)F+ (E+Q)F.

It follows that o*(D;)F'=0 and (E+G)F=2. However since E. 4+ G..aC
o*(D;) for general D, we have EF=GF=0, a contradiction. Thus »>2
is impossible. g.e.d.

(6.3) MOISHEZON-FANO THREEFOLDS OF INDEX 3. We call a Moishezon
3-fold X a Moishezon-Fano 3-fold of index 3 if h'(Ox)=0 and if X has
a line bundle L such that ¢,(X)=3e¢,(L), #(X,L)>1. It is natural to
exclude those threefolds with «(X, L)<0 because there are examples far
from being Fano threefolds. In the present article we studied Moishezon-
Fano 3-folds of index three under the condition that r°(X, L)>2 and |L|
has no fixed components. In [N4] we study those 3-folds in the fifth
class of the table (5.4) under some stronger conditions, which are satisfied
by any global deformation of P(f(1,1,0)) or P(¥(2,0,0)).

REMARK. «(X, L)>1 is equivalent to the condition that r*(X, mL)>2



Moishezon-Fano threefolds 447

for some positive integer m.

(5.4) Table. Threefolds with h(X,Ox)=0, ¢,(X)=3c,(L), (X, L)>2

| BsiLI | cp=1 with LC=0 | dimW* | SingW X
1 ’ 1) none 3 1] Q3
2 6 Nerx=0¢(—1)2 3 one point P(4(1,1,0))
I Noix=0c@0c(~2) 3 | m P(F(2,0,0)
4] curve none 2 et | P, b,0) S5
5 1 surfacé ? ? ? THx

* W isTthe imageYof the¥rational map h:X—Pm associated with |L|, m=h%X, L)—1. '
** The only known examples are those in Section 1 Case 3.

(5.5) THEOREM. (char k=0) Let X be an algebraic (or a Moishezon)
3-fold defined over k and L a line bundle on X. Assume that h*(X, Ox) >1,
¢,(X)=3e¢,(L) and £(X, L)>1. Then X is isomorphic to a P*-bundle over
a smooth algebraic curve 4 of genus h*(X, Ox).

Proor: First we prove h°(X, mKy)=0 for any m>1. Otherwise, we
have a nonzero effective divisor D of X which is algebraically equivalent
to zero. Since X is Moishezon, we have movable curves C, on X inter-
secting D properly. Hence DC,>1, which contradicts that D is algebrai-
cally equivalent to zero. '

Let alb: X—Alb(X) be the Albanese mapping, T the image of alb,
and 4 the normalization of 7. We have a morphism = : X—4. If dim
4=38, then K(X, Ky)=h(X, 2%)>1, a contradiction. If dim 4=2, and if
the genus of a general fiber is positive, then #(X):=(X, Kx)>0 by
Viehweg [V], a contradiction. Hence any general fiber of r is the dis-
joint union of smooth rational curves. Let C be an irreducible component
of a general fiber of 7. Then w;=K;®O;=—3L; which contradicts
C=P'. It follows that dim 4=1.

Let F be a general fiber of z. Then we prove that F' is an irre-
ducible smooth algebraic surface. We have a morphism # : X/ by the
Stein factorization of =. Let § (resp. g) be the genus of 4 (resp. 4).
If g>2 and if J is not isomorphic to 4, then §>g+1, which contradicts
h{(X, Ox) =dim Alb(X)=g. Hence d=4. If g=1, then Alb(X)=T=4.
In this case if §>2, then we have a contradiction in the same manner.
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If g=1, then 4=Alb(X)=4. It follows that 4=4. Therefore in either
case any fiber of = is connected. In particular, any general fiber F' of
z is an irreducible smooth algebraic surface. We note that Oy(F)=0Op.

We see c¢,(0r)=¢,((Kx+ F)r)=—3¢,(Ly). If some multiple of Ly is
zero, then F' is either a minimal abelian surface, or a minimal K3 surface
or a minimal hyperelliptic surface. In either case we have deg 74 (wx;,)>1
by [K, Theorem 1], whence h°(X, 12Ky)>1 because 4 is an algebraic curve
of genus >1. This contradicts h’(X, mKy)=0. Hence some positive mul-
tiple of Ly is nonzero effective so that (F, Ly)=(P? 0(1)).

We can prove in the same manner as in (4.1) that any fiber of =
is isomorphic to P2. The direct image sheaf z,(L) of L is a torsion free
(hence a locally free) O,-module of rank 8. It is clear that X is iso-
morphic to P(z4(L)). g.e.d.
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