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Growth property of solutions of —A4f=Af on
noncompact Riemannian manifolds

By Reiji KonNO

Abstract. In this work the nonexistence of nontrivial L*-solutions
of —A4f=2af for positive 1 on a noncompact two-dimensional Riemannian
manifold is considered. We suppose that the manifold is homeomorphic
to R? minus a disk and that its metric approaches rotationally symmetric
one near infinity. Completeness or boundary conditions are not required.
We claim that if the metric satisfies suitable conditions near infinity,
then there is no nontrivial L?-solution. The obtained result is an ex-
tension of one of the previous theorems in the rotationally symmetric
case.

§1. Introduction

In 1943, F. Rellich [19] proved that if a domain £ of R" includes
the outside of some sphere, then, regardless of boundary conditions, any
solution of the Helmholtz equation —4f=2f in Q for a positive constant
A can not be square integrable unless f=0. This result has later been
extended to wider types of equations such as the Schrédinger equation
—Adf+qf=A4f ([8], e.t.c.) and more general second-order elliptic equations
(e.g., [20], [6]), because those results imply the absence of eigenvalues
lying in the continuous spectrum, which is significant in quantum me-
chanics and quantum scattering theory. One will find in, e.g., [4] and
[18] precise histories and meanings of the theory of this kind.

Another problem is presented in connection with the Laplace-
Beltrami operator 4 on noncompact Riemannian manifolds. There are
many literatures dealing with this kind of problems in the study of the
spectrum of — 4 especially on complete manifolds having nonpositive
sectional curvatures. (For example, [2], [3], [7], [15], [16] and [17].) To
say nothing of the importance of such a global theory, we like to notice
that in some cases, the nonexistence of L*-solutions results only from
the behavior of metric near infinity. The present paper treats such a
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“local” theory without assuming completeness or definiteness of the sign
of the curvature. As long as the unique continuation property holds,
we have the nonexistence of positive eigenvalues of any selfadjoint
operator L such that Lf=2f implies —4f=Aif at least outside some
compact set in the sense of distribution.

Several conditions for guaranteeing the nonexistence of square inte-
grable solutions have been obtained if the manifolds are homeomorphic
to R minus a ball and rotationally symmetric. This article aims at ex-
tending one of the known results to not symmetric manifolds. Before
entering into the detailed discussion, however, we like to review typical
criteria in the rotationally symmetric case.

THEOREM 1 ([9], cf. also [11]). Let M be a two-dimensional Rieman-
nian mawifold which admits the local coordinates r, 6, r,<r<oco, € §*
by which the metric of M is represented as

ds*=dr*+p(r)*d6, (1.1)

r) betng a positive function of r. Suppose that
) p(r) s absolutely continuous, nondecreasing and p(r)—co (r—oo),
) r_d”'_:oo
o(r)
Then for any positive constant A and any monzero locally square inte-
grable function f which satisfies the equation —Af=2Af in the sense of
distribution, we can find numbers C>0 and r,>7, such that
dr

IRELE Cfm

holds for amy R>v,, where d. M=p(r)drdf and the range of integration
on the left indicates {(r,0) € M|r,<r<R, 6 € S'.

ol
1

(
(ii

THEOREM 2. Let M be an m-dimensional (n>2) Riemannian mani-
fold {(r, w)|r<r<oo,we $"'} and have the metric (1.1) where df is re-
placed by the line element of S"'. Let 2 be an arbitrary positive constant
and assume the following conditions:

(i) p(r) € C¥(ry, o), 0'(r)>0 and p(r)—>oo (r—oo),
(ii) p(r)70'(r)=0(1) (r—>o0),

(iii) p'(r)7"0"(r)=0(1) (r—>oo),

(iv) there exists a positive number o such that
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r p((i:)“ -

Then for any positive number ¢ and any nontrivial locally square inte-
grable solution of the equation —Af=2Af, we can find constants C>0 and
r>7, such that

[ israsu=cf 4
rg<r<R o p(7)°

hold for any R>7,. (Cf. [10] and [11] which treat the Schriodinger-type
equation —A4f+q(x)f=21f1.)

Obviously these theorems imply the nonexistence of nonzero L’
solutions. There is a gap between these theorems, which we have not
yet been able to fill. That is, we have not conclusively succeeded in
relaxing (ii) of Theorem 1 nor (iii) of Theorem 2. Besides, we do not
have any example of L*solutions when these conditions are not fulfilled.
(If one further removes (ii) or (iv) of Theorem 2, then p=¢ and f=
¢ 2=V form a counterexample.)

Tayoshi’s work [21] is a nonsymmetric version of Theorem 2, though
not a complete extension. Therefore, it contains a smallness require-
ment for the curvature. Our purpose is to extend Theorem 1 to asymp-
totically rotationally symmetric manifolds. Though an additional condi-
tion on p is needed, nothing will be assumed about the curvature.

The author expresses his heartfelt thanks to Professor John V.
Leahy for his valuable advice and kind help without which this study
could not be accomplished.

§2. Asymptotically rotationally symmetric manifolds

We consider here a two-dimensional manifold .4 whose metric is
represented in terms of parameters r € (r,, ) and € §* as

ds*=a(r, 0)dr*+2b(r, 0) p(r)drd0+c(r, 0)po(r)*d6>.

Here p(r) and a(r, 6), b(r, 0), c(r, §) are real-valued functions. They are
supposed to satisfy the following assumptions:

ASSUMPTION 1. (i) p(r) is a positive nondecreasing absolutely con-
tinuous function of » with o’'(r)>0 a.e.,
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(if) p(r)—oo (r—oo),

(i) rpm—ldr:oo.

7o

DErFINITION 1. We set

-es - 2

and sometimes use this ¢ as a variable which takes place of » without
changing the letters designating the functions.

DEFINITION 2. For each positive number m, the quantity h(r;m) is
the one which satisfies

§r+h(r;m) ds :mt(,r)

" p(s)
and ¢(r; m) is defind as

o(r; m)= ess inf p(s)%0’(s).

r<sLr+h(r;m)

AssuMPTION 2. For every m>0, one has
rsom m)o(r+h(r; m))~‘dr=oco.

REMARK. This assumption is rather complicated and looks not so
easy to be verified. But we shall see in the examples at the end of
this article that if p(r)t(r) is bounded and p’(r) <1, and moreover p(r)’(r)
is nondecreasing or nonincreasing, then Assumption 2 will be satisfied.

ASSUMPTION 3. p'(r)7't(r)=0(1) (r—>co).

AsSSuMPTION 4. The functions @, b and ¢ are of class C' and a>0,
¢>0, ac—b>>0.

DEFINITION 3. g=+4ac—b*, A=a/g, B=b/g, C=c/g.

AssumPTION 5. (i) A—1, B—0, C—1, as r—oco uniformly in 6.
(i) There are positive numbers k, [({<2) and r,>7, such that

gir,0)>k, g./9=—1o'[p
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for r>r, 6¢S'. Furthermore,
bge/(0'9") =0(1), tge/(0'9") =0(1)
hold as r—oco uniformly in 6. (The subscripts stand for the derivatives.)

DEFINITION 4. A function f(¢,60) is said to satisfy the condition of
Definition 4 in a region if there exists a positive continuous nondecreas-
ing function ¢(x) (x>0) corresponding to the region which fulfills

S z7 ') (x)dr<<oco and f satisfies
—0

| f(ts, 0,) —f(ts, 65)] Sﬁl’(’\/tf+t§—2t1tz cos(6,—0s))
for any two points (¢, 6,) and (f, 6.) in that region.

REMARK. The square root indicates the distance in the ¢, 6-plane.
This condition is a generalization of the uniform Hélder continuity, the
latter being the particular case where ¢(x)=Kx* with some constants
K>0 and 0<a<1.

AsSSUMPTION 6. As functions of ¢ and 6, the functions pt—*4,, pt~'B,,
ot72C,, t7'A,, t72B, and t7!C, have the limit values at t=0 (i.e., r=o0)
uniformly in 6 and satisfy the condition of Definition 4 in the neigh-
borhood of ¢t=0.

Our purpose is to prove the following theorem:

THEOREM 3. Let 4 be the Laplace-Beltrami operator on a two-demen-
sional Riemannain manifold M which satisfies Assumptions 1-6. Then
for any positive constant A and any monzero lecally square integrable
solution of —Af=Aif we can find numbers C>0 and r,>r, such that

Joel? '2dﬂ20§:,;‘f:—) 2.1)

holds for every R>w,.

This theorem is obtained by combining the following two theorems.
The first one is on an estimate for solutions in terms of the so-called
isothermal coordinates, i.e., the ones which satisfy (2.2) below. (They
give a conformal mapping from M to a region of R®. See, e.g., [22]).
The second is on the existence of an appropriate system of isothermal
coodinates.
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THEOREM 4. Let a two-dimensional Riemannian manifold M admit
an isothermal system of coordinates (u,v), uy<<u<oco, v € S* by which its
metric is represented with a positive function t(u,v) as

ds*=z(u, v) (du+dv?). 2.2)

Suppose moreover that t(u,v) is absolutely continuous with respect to u
Sfor a.e. v and of class C* with respect to v for a.e. u. Furthermore, we
assume that

o(u)=ess infir(u, v)
zres1 6u

satisfies ¢(u)>0 and
rgo(u)du:oo.

Then for every montriwial locally square integrable solution of —Af=2f,
2>0, we can find numbers C>0 and u,>u, such that

L __ \rdsH=cu 2.3)

holds for every U>u,, where d M is the volume element of M.

THEOREM 5. If a two-dimensional Riemannian manifold M satisfies
Assumptions 1-6, then there exist a number r, a function u(r,0) and a
multi-valued function v(r,0) defined for r>r, € S' which are of class
C' and satisfy

{v,: Bu,— Ap~'u,,
v,=Cpu,— Bu,.

Here (a) For each fized 0, the function wu(r,6) is monotone increasing
with v, and u(r, §)—>oco as r—oco. Moreover, wu,.(r,0) 1is absolutely conti-
nuous with respect to r. Meanwhile v, is single-valued, v,>0 and the
value of v(r,0) 1s determined up to the difference of 2kr (k=0, +1, +2,
o).

(b) u and v form a system of isothermal coordinates with

ds*=rt(u, v) (du?+dv?),

_ g
¢ Cul—2Bp  u,uy+ Ap~2ul’




Growth property of solutions of —Af=24f 457
(e) The function
. 0
o(u)=ess inf —7(u, v)
ues1 au

satisfies S o(u)du=co.

%o

§3. Proof of Theorem 4

Let | | and (,) are the norm and the inner product of L*(S*; dv)
and regard the function f(u,v) as an L*(S%; dv)-valued function f(u, -)
(shortly f(u) or f). Since —Af=Aifis

fuu+fvv+zrf:()y

f(u,v) belongs to Hi.((u,, oo) X S") provided f is locally square integrable
(ef. [1]).
Now set

F(u) =1+ (fo, )+ A(F, S)
(=141 =1L+ Af, ).

This is a real-valued absolutely continuous function of u. Let us denote
d/dw by a prime in the sequel.

LEMMA 1. F'(u)>20w) | flI* ae.

PROOF. F'(u)=2Re(fuutfot Acf, fu) + (], f)
=r.f. f)
>0 (u) || £11*

(Justification of the differentiation under (,) is given in [12].)
LEMMA 2. There exists a number w,>u, such that F(u,)>0.

Proor. Let I be an interval C (u,, oo) where f(u, -)#0. Set g(u)=
log| f||* for we I. Differentiation and the Schwarz inequality yield

o of Relfunf)HIAI 2Re(fufIT
=92 —
(=g Sl Yoo

2—W%”T{Hfull%(fw,f)+2(rf,f)}
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=—2¢ "™ F'(u). (3.1)
If we suppose, contrary to the statement, that

F(u)<0 for ae. u>u, (3.2)
then

—Flw)=—F(r)+ | F(s)ds
21 o(6)1.£15) I'ds

in virtue of Lemma 1. The left-hand side is independent of 7, while
the right-hand side is an increasing function of . Hence we can let
r—oco to have the inequality

—F() 23| ols)|£(5)Ids. 8.3

Now, (3.1) implies in particular
9”(u)>0 for uel

by the assumption (3.2). Hence g(u) must be bounded from below by
a straight line so that it can not tend to —oo at any finite point. That
means

flu, -)#0 everywhere in (u,, o)

and (3.1) holds almost everywhere. Moreover, we can find a constant
K>0 such that

g(s)—gu)>—K(s—u) for u,<u<s<oo. (3.4)
Therefore, from (3.1), (8.3) and (3.4) it follows that

u

g”(u) Zz]gmgo(s)ea(s)—a(u)ds
222r¢>(s)e"“’—">ds.

Hence

©

g (U)>g' (1) +zzﬁ o(s)e-E -V dsdu.

ugJ 1
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But we have

8
go(s)e‘K‘“‘“O’S X duds

%o

rrso(s)e“"‘*’"“’olsdu:_ro

uo U uo
=71{~SZ¢(3)(1—6"K‘3"“0’)ds

by dint of the condition Smgo(s)dszoo which is assumed in Theorem 4.

This shows that ¢'(u)—oo oand hence | f(u)|*=e*“—c0 as u—oo which
is impossible because Swgo(s) 17(s)|*ds<oo by (3.3) while rgo(s)ds should
u %o

be co. Lemma 2 is est;blished.

LEMMA 8. There exist numbers C>0 and u,>>u, such that for every
U>u,+1 one has

U—

S" (of, f)duzc'S ' Flu)du.
Uy uy+1
Proor. Let u;>u,, U>u,+2 be arbitrary and o(u)=0,,(u) be a C*-
funection which satisfies (i) 0<o(u) <1 (U, <u<<oo), (ii) o(u)=0 for u<u,
and u>U, (iii) o(u)=1 for u;+1<u<U—1, (iv) the parts of its graph
over the interval (u,, u;+1) and (U—1,U) do not change their shape
with 4, and U so that g=sup,,«.<.|0”(u)| does not depend on u; and U.
Then, integration by parts and the equation f,,+f.,,+Azf=0 show

1(Y 4 29, — v . 1 & 2
2 oifran={ o2 L firdu

— S o{Re( fuu F)+ | FullBdut
=§ AN fulF= (Foor f) = 2(cf, £ )}

Hence

SU((%+2027>f,f>du2510{Ilfu|l2—(fw,f)+2(rf,f)}du

*3

zj"a(umu)du,

3
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where we used the relation (f..,f)=—|f.|?<0. But, because of the

inequality inf,z(u, v)zgu ¢(s)ds+const.—~oo (u—co) we can find positive
%o
numbers k& and u,>u, for which

p<2kt(u,v) for u>u, ves

holds. Accordingly, for every U>u.+2 one sees

U

(22+k)g (of, f)duz.‘:;((%-l—%k) 7 f)du

%2

Y

SU cFdu

g

v

SU—I Fdu

up+1

which proves Lemma 3.

Now we turn to the proof of Theorem 4. From Lemmas 1 and 2,
we have F(u)>C>0 for u>wu, Hence for every U>u,+2, Lemma 3
shows
U
%o

S“0<u<Ulf|2dm:5 Ssllf(u, ) |2z (u, v)dvdu

\Y]

| @t prau
C(U—u,—2)
CU,

Vv Vv

where the same letter C was used to designate several different num-
bers. Theorem 4 is thus proved by considering u.+2 as u,.

§4. Proofs of Theorem 5 and Theorem 3

We begin with Theorem 5. Since dr= —p~'dt, the metric is expressed
in terms of ¢ and 6 in such a way that

ds?=p%*(adt*—2btdtdg + ct’d6®). (4.1)

First, we intend to show the existence of the solution of

Aur_?:’?{(Ctut+ Butg)o+ (Buot+ At—u,)} =0  (£0) (4.2)
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which has the singularity like —logt¢ at t=0. Note that we can think
of t and 6 as the polar coordinates of a plane and (4.2) as an equation
considered in the neighborhood of the origin.

In order to prove the existence, we will refer to the Hartman-
Winter theorem which is one of the improved versions of the theory by
A. Korn and L. Lichtenstein on the solvability of the Beltrami equations
([13],[14]). Before doing that, we had better express (4.2) in terms of
the Cartesian coordinates through

x=tcosd, y=tsinb
to have
ds* =t (ada®— 2Bpdxdy + rdy?)
where
a=a cos® 0+ 2b cos 0 sin 6+ ¢ sin? 4,

B=(c—a)cos d sin §+b(cos® §—sin’0),
y=a sin* @ —2b cos 6 sin §+c cos* 6.

Then ay—p*=ac—b* and

t? 0/~ 0 5 0 0(p 0 T 0
=t {0 (02 g )0 (p0 150, g
ng{ax 6x+ 6y+ay 6ac+ ay} (43)
in which A=a/g, B=p/g, C=7/g.
Now we set

u=—log t+£(t, a):S’ ols)-'ds+&(r, 0) (4.4)
™0
and want to establish the existence of and estimates for &(r,8). The
equation Ju=0 therefore reads 4&£=4(logt). Applying the expression
(4.3) to 4¢ and the middle member of (4.2) to logt¢ in place of u, we
obtain

(Ce.+Be,).+ (Be,+ Ag,),=t'C, +t*B,. (4.5)

We are now in a position to quote the following theorem given by
Hartman and Wintner [5].

THEOREM (a) Suppose that four functions A,(x,y), Bi(x,vy), Bz, y)
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and Ci(z, y) fulfill A,C,— (B,+ B,)}/4>0 and, as functions of the polar coor-
dinates (t, 8), satisfy the condition of Definition 4 near t=0. Suppose also
that D(z,y) and E(x,y) are continuous functions and ¢(x,y) is a func-
tion of class C®. Then there exists a number R, depending only on ¢’s
of Definition 4 corresponding to A, B, B, C, and on the bounds of
|A;l, | Bil, |Bal, |Cyl, |D| and |E| such that for any R<R,, the equation

(C.+BE,) .+ (B, +Ag,),+DE=E

has a C'-solution* in x*+y*<R? which satisfies E=¢ on x*+y*=R>

(b) If A, B, B,,C, are of class C' and their partial derivatives together
with D, E and the second order derivatives of ¢ satisfy the condition of
Definition 4, then the solution s of class C%

We note that A=A cos?0+2Bcos@sinfd+Csin’6, ete. Also, for an
arbitrary smooth function ¢, we have ¢,=cos@-¢,—t7'sinf-¢, ¢,=
sinf-p,+t*cosf-¢p, and ¢,= —pt~'¢,. Therefore, it is easy to see from
Assumption 6 that (4.5) satisfies the conditions in (b) of the Hartman-
Wintner theorem with an arbitrary ¢. Thus we are able to find a C*
solution & to (4.5) in a neighborhood of ¢=0, say, t<t,, Hence we have
a solution u=—logt+& of (4.2) whose difference from —logt is of class
C? in t<t,.

Consider an arbitrary rectifiable Jordan curve ['. If it is included
in ¢t<t, and does not surround nor pass through ¢=0, then from the
equation (4.2) we have

—H {(Cttt+ Butg),+ (Buu+ At-'u,) ) dtdo =0

interior of "

and Green’s theorem indicates that the value of the contour integral
S (But+ At=",)dt — (Ctu,+ Buy)d6 (4.6)
r

is zero. If I' encloses t=0, the value of (4.6) is not zero. But such a
value does not depend on I' so long as its orientation is unchanged.
We can evaluate this value by taking as I” the counterclockwise oriented
circle {t=0} and making 6—0. Namely:

2r

(4.6) =§ {—C(5,6)-8-(—6-+£)— B(3, 0)-&,)d0

0

* The definition is deseribed in [5]. But here we need only the case (b).
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- § (s, a)de—jz"{cw, 0)-5-£,+ B(6, 6)-&,}d0,

0

and because £€C? in t<t, we have |&|<const., |&|<const.t. Using
them together with the fact C(t,0)—1 (t—0) uniformly in 6, we obtain

(4.6)—>2r as 0—0.

Thus (4.6) has the value 27 for such I'. Let v=w(t, 0) be defined by

v(t, 0) :s”’e’ (But+ At'u,)dt — (Ctw, + Bu,)do

(tg,05)

for t<t, and 6 ¢ S*, where (t,, 6,) is an arbitrarily chosen fixed point and
the path of integral is taken at will within 0<t¢<t, Clearly v is a
multi-valued function whose values are determined up to the difference
of 2nr (n=0, =1, +2, ---). As is easily seen, u and v satisfy

t:Be At ,
{” WA AT Mo o t<t, OC S, (47)

Vo= — Ctu, — Bu,,
We can also write down these relations in terms of » and 6 using d/ot=
—pt~'0/or to have
v,=Bu,— Ap~ u,, ‘
for r>3r, ¢ S (4.8)
vy=Cou,— Buy,
This implies

du*+dv*=(Cul—2Bo~'u,u,+ Ap~*u}) (Adr*+ 2 Bodrd 6 + Cp*d6?)
— Cui - ZBp_lu,-ug + A‘O_Zug dsz
g

That is,

ds*=c(du?+dv?), (4.9)

— Y
= . 4.10
¢ Cul—2Bp~'u,uy+ Ap~u (4.10)

All kinds of estimates appearing in the sequel are derived from the
boundedness of & and its derivatives up to the second order. At first
we have



464 Reiji Konno

&1 <mo™'t,  |§o| <mit,

411
IErrlgmto—zt(l-f_{o,_*'t), |§r0|gmto—ltr ]Ec‘)ﬂlgmt’ ( )

here m is some constant and t<t,. From (4.4), (4.8) and the bounded-
ness of B, we have

u,=p7 (1+p&,) =0~ (1—mt) >0,
v,=C(1+p§,) — B&,>C(1—mt) —m|B|t>0

for sufficiently small ¢, or in other words, large* r, say, r>3r,.

Let J be the Jacobian

U, Uy

=Cou’:—2Bu, u,+ Ap~ ug. (4.12)

1),. ’Ug
Then

J=Cp7 (14 0&,)*—2Bp (14 p&,)&,+ Ap™*E}
>Cp~'(1+0(1)) (4.13)
>0 for r>3r,.

From these relations we conclude that the curve {u(r,8)=U} for each
constant U is a Jordan curve which surrounds »=0 and the function »
gives a C'-mapping from this curve onto S*. Moreover, the curve cor-
responding to a larger U encloses those to smaller U’s so that % and v
form an isothermal coordinate system over a part of .M.

What remains is to show (e¢) of the theorem. To this end, we enu-
merate the estimates near r=oo of the derivatives which follow from
(4.11) and Assumptions 4-6. (Note that t=o(p’) by Assumption 3.)

u,=p7(140§,)=0(07"),

us=&,=0(t),

v,=Bo7!(1+0§,) — Ap~'€,=0(07(| Bl + 1)) =0(0™"),
v,=C(1+p¢,) — B, =C+o0(1),

U,y =—p07%0" +&,.=—07%'(1+0(0"'t)) = —p~%0'(1+0(1)),
Uy =&,,=0(p7"t),

Uge=80,=0(1),

* From now on, we denote the bounds of “sufficiently large r” by the same letter r;.
It is not confusing if we replace old r; by a larger new one.
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v,,=Bu,,+ Bu,— Ap~ U, ,+ Ap~20"u,— A0 u,=0(0%0’),
'v,.g = Bu,-g + Bgur - Ap_lugg - Agp_lug = O (p—lt) )
Vo= Cpur6+ Cgpu, — Bugg - Bgug :O(t) .

In order to calculate 9/0u, we first note the following chain rule.
Let f(r,0) be an arbitrary function for a while. Then

{urfu+vrfv :frv
Upfut VoS s =F0,
and Cramér’s formula shows

S So

v, Ve

fo=d"

J being the Jacobian (4.12). Since t=J 'pg according to (4.10), we have
g, J

v, Vg

(09). (09)s
v, Vg

to=J* —pgJ-? . (4.14)

Applying the estimates enumerated above to

J. Js
o =0 (Uy Vg F UpVrg— U gUr — UgVrr) — Vr (U gV + Uy Vg — UiggVr — UgVsg),
r 6
we have

the right-hand side=(C+o0(1)){—Cp~%0’+0(07%0")+O(p~%)}+0(07?)
=—C~"0'+o(0™"0’) (4.15)

because of Assumption 3.
The first term on the right-hand side of (4.14) is estimated as

J*0'g{C(1+0(1)) +Cpp'~'g./g+ " (O(B) +0(t)) g,/ 9}
>J%'gC(1—1) for r>3r

on account of Assumption 4 with a slight change in taking the constant
! within the range 0<l<2. Using (4.13), (4.14) and (4.15) we obtain

7.>C7(1+0(1))g(1=1)p%"+ C}(1+0(1))gp*0’
>(2-1)C*gp*’ for r>3r

by changing [ again but keeping that 2—1>0. However, since C—1
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and g(u,v) is bounded from below, we eventually conclude that there
is a constant K>0 for which

t.>Kp*o' for a.e.r>3r (4.16)

holds.
Now, let m be the number which appeared in (4.11). Temporarily
we fix an r>7, and put

0=nh(r; mr)

h being the function in Definition 2. Furthermore, let max, o, u(r, 8)
be attained at ¢=6,. Then it follows from u,=p'+¢&,, t'=—p ' and
.| <mo't that

r44d
r

w(r+3, 6) =u(r, 0)+ j ’”p(s>—lds+j £.(s, 0u)ds

r

>u(r, 6,) +mrt(r) — erHp(s)“‘t(s)ds

»

=u(r, 6,) +m(z—1)t(r) +mt(r+9).
On the other hand, (4.11) shows

u(r+4d, 0) —u(r+a, 6,) :Se &s(r+9, w)dw

2}

> —m|0—6,[t(r+0)
> —mxt(r+9).
Consequently
u(r+9, 0) >u(r, 0,) +mx—1){t(r) —t(r+0)}
2u(/ry 00)

since t(r) is nonincreasing. Set U=wu(r, 6,) =max, u(r,d). Then

min u(r+9,6)>U

0go<en
and we have at last come to know that the contour {u(r,8)=U} lies
between the circles of radii » and r+h(r; mr). This fact together with
(4.16) shows that the function ¢(U)=essinf, g7, (U, v) satisfies

e(U)> essinf Kp*(s)p'(s) =Ko(r; mr)

r<8Lr+h(rymn)
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hence by virtue of Assumption 2, we are led to

rgo(U)dUzKrgo(T; ma)olr+h(r; ma))-*(1+0(1))dr

Thus Theorem 5 is proved.

Let us turn to the proof of Theorem 3. Suppose that the solution
of —A4f=2f does not vanish identically on {(r,0)¢ M|r>a} for any a.
By dint of Theorem 5 there is an isothermal system of coordinates at
least over a part of M which is favorable to Theorem 4. From the
assumption above, f is not identically zero in that part, hence f satisfies
(2.3). The inequality (2.1) is now clear if we substitute the correspond-

R
ence U«R and the relation U :g_ dr/p(r)+o(1l). Thus we have only to
show the unique continuation propoerty of f all over M, because if so,
S0 should imply what we supposed above. To this end, set J:Y ds/p(s).
"o

This gives a C'-diffeomorphism between (7, 6) and (s, 0). Hence, recalling
that a, b, c€C* and ac—b*>0 everywhere, we have the property of
Definition 4, this time the Lipschitz condition, for A, B and C uniformly
in every compact set K of d, -plane. Moreover, since the Beltrami
differential equations (4.8) are written as

v,=Bu,—Au, v,=Cu,— Bu,,

the Hartman-Wintner theorem again indicates that there exists a posi-
tive number R, depending only on K such that we can find C'-solutions
u, v in each disk CK of radius E,. In terms of w and v the equation
—A4f=2f has the representation f,.+f.,.+4c(u,v)f=0 in that disk with
a continuous z. It follows, e.g., from [1] and [18] (p. 226) that f has the
unique continuation property in the sense that if a locally L? solution
vanishes on some open set in the disk, then f=0 throughout the disk.
From this fact the unique continuation property on the whole | is
clear, because the ¢, 6-plane is covered by the disks of such a property.

§5. Examples of p(r)

Our assumptions on p(r) are rather indirect. The following examples
will offer criteria which are easier to verify.



468 Reiji KonNO

Example 1. If p(r)t(r) is bounded and p'(r)<1 a.e., and if p%’ is a
nonderceasing or nonincreasing function for sufficiently large », then
Assumption 2 is fulfilled. To see this, let us suppose p(r)t(r)<C/2. Then
for an arbitrary positive number m, we can find a number r, such that
for r>r, we have

p(r)t(r) <C(1—mt(r)). (5.1)
Hence

SMC?d(%szp(HmC)"szp(r)‘l(HmCﬂ(T)“‘)"‘

because p'(r)<1. But the relation (5.1) implies C>p(7)t(r)(1+mCo(r)™?)
and hence

gr+m0£_2mt(/r)
r p(s)
which means

hir, m)<mC for r>r,.

If p%’ is nondecreasing, we have ¢(r; m)=p(r)%’(r) >const.>>0 so that
r o(r; m)p(r+h(r; m))"‘erconst.Sm o(r+mC)~*dr=co.

"1 1

While if p%’ is noninecreasing, we obtain
o(r; m) >p(r+mC)*’ (r+mC)

which implies
S’” o(r; m)p(r+h(r; m))-dr> Smp(r+mC)p’(r+mC)d'r=oo.

"1 1

Example 2. Consider
(1) =po(r) — pt(r) (1 —K(r))sin r (r>1,)

where p,(r) is a positive function with absolutely continuous derivative.
Moreover, let k(r) be absolutely continuous. We assume (i) p,(r)—>oo,
(i) 0<pi(r) <1, (i) O0<k(r)<1, (iv) k(r)7K'(r)—0, (v) pi(r)k(r) is non-

increasing, (vi) pé(fr)k(’r)equ: [,oo(s)+1]‘1ds>—>oo, (vii) S“’ o) 041 B () dir =
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co, (viii) pi(r)~*el (r)k(r)~*—0, where the limits are considered when r—co.
With these conditions we can show that p(r) satisfies Assumptions 2 and
3. In fact, one has p(r)<p,(r)+1 and

o' (r) =ps(r){1—(1—k(r))cos r+ k' (r)sin r— oj(r) 0/ (v) (1 —k(r))sin 7},
t(r)= exp( — ST o(s) ‘lds> gexp(— S: Loo(s) + 1]’1ds> (5.2)

"o
which imply
const.
sitrk(riexs( | [oe)+11ds)
"o

0<p'(r) it (r) < (for large 7),

hence o'(r)7't(r)—>0 (r—>oo) (Assumption 3) is shown. Moreover, (5.2)
yields

N _,Oéﬁ)i — 0o(7T0) +1
t(r)gexp< Sro )41 ds) _—po(r)+1 )

Therefore, by putting ¢=2(p,(r,)+1)m where m is an arbitrary positive
number, we have

j’“p(sr*dszc(powc)+1)—1
+eps(r+0c)+11"  (0<36<1)

~

=c[py(7

[+

>__ ¢
2(po(r)+1)
>mi(r)

for large r. Hence h(r;m)<c. On the other hand, from p’(r)>const.
oh(r)k(r) and py(r+c)—c—1<p(r)<po(r)+1 it follows that

o(r; m)o(r+h(r; m))™
>p(r+c)p(r)? essinf o'(s)

r<sLr+c
> (oo(r+¢)+1)"oo(r+¢) —c—1)%- const. pf(r+c)k(r+c)
>const. p,(r 4+ ¢)ps(r+c)k(r+c)

for large r, where we used (i) and (v). Thus the required inequality
in Assumption 2 is obtained.

REMARK. It can readily be understood that p,(r)=7* (0<a<1) and
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00(r) =log r meet the requirements (i), (ii), (iii) and p{,(r)exp(S: [oo(s)+ 1]‘1ds>

—oo and pj(r)*pl/(r)—0. Moreover, if p,(r) fulfills these conditions, the
particular choice k(r)=1, ie., p(r)=p,(r) is valid. The choice p,(r)=7r°,
kEiry=r—" (0<a<1, 0<8<L1, r,>1) gives an example of p which contains
the sine term.

Example 3. To illustrate the requested decreasing order of a, b and
¢, let p(r)=7. In this case t=r"" and of course p satisfies all the condi-
tions required. Choose for example a=1—7r"*cosf, b=r"*sind, c=
1+7r*cosf where the exponent « is taken larger than 2. Then g=
v1—r2 and A, B, C are very close to a, b, ¢ respectively as well as
their derivatives. Therefore, t72A,~at**cosd, t72B,~—at*'sind, t°C,~
—at*?cosl, t7lA,~—t"'sinf, t2B,~—t*%cosf and ¢t Cy~t*'sinb.
Thus we see Assumption 6 be satisfied with e.g. the Holder condition.
Assumption 5 is obvious.
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