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Invariants of equivalence classes of plats

By Shinji FUKUHARA

Abstract. We study equivalence classes of plats in RB®. Some equi-
valence classes of integral matrices are assigned to equivalence classes
of plats. From the matrices we obtain numerical invariants of equi-
valence classes of plats.

1. Introduction.

By connecting strings in pairs on the top and the bottom of a braid
(Figure 1), we obtain a plat (Figure 2).

Figure 1 Figure 2

If it comes from a braid with 2n-strands, it is called a 2n-plat. Two
plats are said to be equivalent if there is a homeomorphism % which
carries upper and lower halves of R® to themselves and a plat to the
other plat (Figure 3).

One of the main problems on plats is to decide when two plats are
equivalent. The problem has been studied through considering Heegaard
splittings of 2-fold brached covering spaces along plats [See 2,8, 9, 10, 11].
Our method does not depend on 2-fold branched coverings but seems to
relate to infinite cyclic coverings. In this note we assign a matrix to a
plat and show that if two plats are equivalent then assigned matrices are
equivalent in our sense. Furthermore we produce a numerical invariant
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Figure 3

from the matrices which is similar to the invariant obtained by Lustig-
Moriah [8,9]. Generally it needs a large amount of calculation to obtain
the invariant. But it is quite elementary and can be done by an electric
computer.

Our invariant distinguishes two plats which are equivalent as links.
The equivalence classes of 6-plats correspond to the equivalence classes of
Heegaard splittings of associated 3-manifolds via 2-fold branched covering
spaces. So our invariant can be used to distinguish Heegaard splittings
of 3-manifolds which are homeomorphic.

Acknowledgement. The author would like to thank the referee for
helpful comments and advices.

2. Definitions.

Let R ={(x, v, 2) € R*|2=0}, R ={(z, ¥, 2) € R*|2<0} and p: RS—R? be
defined by p(x, v, 2)=(z,y, —2). Let A=A,UA,U---UA, be a union of
arcs which are properly embedded in R as shown in Figure 4.

AN

Figure 4

It is assumed that the ares are unlinked and unknotted. Let A'=
AiU ALY --- AL be defined by Ai=p(A;) for any i=1, ---,n. Then A’ is
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the union of the arcs in R?.

DEFINITION 1. Let B,, be the braid group of 2n-strands. Here in
this note we regard an element of B,, as an isotopy class an orientation
preserving homeomorphism ¢: (0R%, 0A)—(0R%,0A).

DEFINITION 2. Let ¢: (0R3%,0A)—(0R%,0A)=(0R*,9A) be a homeo-
morphism. The identification space (R%, A)U 4R, A’) can be identified
with R® containing L=AU A’ as a link. In this situation we call
(R%, A)U4(R%, A’) a plat representation of the link L. We also call an
isotopy class [¢] a plat (or 2n-plat). Hence we call an element of B,,
a plat in this note.

Next we give definitions of equivalence of plats. Two definitions
will be considered. One is required to be orientation preserving while
the other is not.

DEFINITION 3. Two plats [¢] and [¢] are said to be (orientation
preservingly) equivalent if there is an orientation preserving homeomor-
phism h: R, U;R*—R%U4R®> which satisfies &I(R%)=R%, h(4A)=A and
h(A’)=A’. In particular if h preserves orientations of A and A’ it is
said to be orientation preservingly equivalent.

Next we define a subgroup K,, of B;..

DEFINITION 4. An element [¢] of B,, belongs to K,, if and only if
there is a homeomorphism ¢ : (R%, A)—(R%, A) such that @|aR%=4.

Under the definitions we obtain the following lemma.

LEMMA 1. Two plats [#], [¢]1€ B, are equivalent if and only if there
are g, 9. € K,, which satisfy ¢=g,oog,.

The proof of the lemma is due to standard argument (See, for exam-
ple, Birman [3, Theorem 1]) and we omit it. Note that if [¢] and [¢]
are orientation preservingly equivalent then g, and g. can be taken to
preserve the orientation of A.

3. Jacobian matrices.

Any plat ¢ : (OR%,04)—(0R%, 0A) induces an isomorphism ¢, :
7,(0R% —0A)—r,(0R% —0A). The group =,(0R%—0A) is identified with a
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free group of rank 2n by taking a,, ---, @, b, ---,b, in Figure 5 as a
generating system.

A1 Az A,,
L— ——b\
Xy Xy [(xy*x
b,
a, as n
R’

Figure 5

Then ¢ : (0R%,0A) — (0R%,0A) induces an isomorphism ¢, :
F(a, ---,a, by, ---,b,)>F(a,, ---a, by, ---,b,). Let G denotes an infinite
cyclic group Z when we work in oriented case and a cyclic group Z, of
order 2 in general case. The group G will be presented as G=<{t|¢)
for oriented case while G={t|t?!=1) for general case. Let a:F=
Fla, -+, @by, -+, b,)—>G be a homomorphism defined by a(a:)=1, a(b;)=t
for i=1, ---,n. We denote ~: ZG—ZG an involution defined by (3 n.t) =
St Hereafter we Work on orientation preserving equivalence and
simply call it equivalence. But it will be easy to modify statements to
adapt to non orientation preserving case.

Next we define Jacobian matrix J@, which is associated with a plat

(a¢a,)” 1. (a¢(a)>”_1 com\®

ob
Jbye= (a¢ >’LJ=1""'/"’ <q65l() >’L.7 1,-

Here a matrix (c;;)* denotes (a(c;;)). The symbol gx— denotes free

P.

derivative of Fox [6]. We denote four submatrices of Jé, by A, B,C
and D as follows:

CA>

J¢*:<D B
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A
where the size of the four matrices are nXn. The submatrix <B> of Jo

A
is important for our purpose. We denote it by Ré,. Namely R¢*=<B>-

4. The main results.
THEOREM 1. Suppose that two plats [¢], [¢]€ B,. are equivalent. Let
/

A A
Ry = <B> and R¢y= <B’>' Then there are nXn unimodular matrices

U, G and an nXn matrix W which satisfy

v ola)e=(5)

where, for U= (u;;), *U denotes 'U, that 1s *U= (u;,).

To prove the theorem the following is a key.

U 0
LEMMA 2. If ¢ belongs to K,, then Jo4 has a form <W *U“)

where U and W are as in Theorem 1.

PrOOF. The idea of the proof is similar to that of Fukuhara-Kanno
[6, Lemma 4]. We set

Ull U12
welly

UZ 1 UZZ

where U,; are mXm matrices. It suffices to show that U,=0 and
U_utUm:Em

Let 4 :7,(0R% —0A)—m,(R% —A) be a homomorphism induced from the
inclusion map. Then ker ¢ is the normal closure of a,, ---,a, Since ¢
extends to a self-homeomorphism of (R%, A), &«(a;) belongs to ker <.
Hence ¢4 (a;) is a product of conjugates of a,, - - -, a, and can be presented

€ —1\a a
as Py (a;)= Hk'"zlgkas,';g,:l(ek: +1). Since (69_;%;,;.(],‘ > :(1—g,,a,§;:g;‘)“ %) =
) ]

0, we have

(1) <a";(z*') )“zo (i=1,---,m).
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This implies U,=0

Let us consider the covering space of 0R% —9A, denoted by 9R% —0dA,
which is associated with « : 7, (0R% —04)=F(a,, -+, @, by, - -+, b,)>G. Let

T GR?:: 0A—0R% —0A denote the covering map. We choose a sufficiently
large disk D in oR’ which satisfies DD3A. Let X=0R—D. We can
assume without loss of generality that ¢|X=td for any ¢ € B,,. Take a

base point p, of dR% —0A such that p,€ X. Let 13; be a base point of
0R% —0A such that ﬂ€ﬂ"1(po). For @, and b; in n,(0R% —08A) we choose
their liftings E;; and l’)v with respect to = where we assume that they
have ﬂ, as their starting points. Note that E,- is still a loop because
ala)=1 while b, is not. Set X=r"'X). We can regard a, and b, as
elements of Hl(aRgaA) and H,(0R%—0dA, X) respectively. Now let us
consider the intersection pairing

¢, Hy(0R', —0A)QH,(0R. — 04, X)—>ZG
which is defined by <z, y>=2,cc9(9%, y) Where

(,): H\(0R, Z0A)QH,(0R, —0A, X)~Z

denotes the ordinary intersection pairing. Then it follows immediately
that the pairing ¢, > has the properties:

(2) (4o, y)=<Lx, yy+<&', v, {x, y+y>=<Lz, y>+<{x, vy,
gz, y>=9Xw,yy and <z, gy)=g<{x, y¥).

It is also obvious that
3) (@i, by=0,€ZG and <a; a;»=0.

We recall the formula of free differential calculus. Let » be an element
of m,(0R%.—0A) and & be its lifting. Let us represent w as a word in
F(a,, ~++,a, by, -+, b,) like w=w(a,, -+, a, by, --+,b,). When we regard

@ as a 1l-chain on R?—/aA we obtain

(4) o=3 (22 ) a+x( gg’ )B.

From (1) and (4) it follows that
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dla=dla)= 5 (B0 Yo £ (205 =5 (L0 )a

J

and
36 =9 =3 (0L Va4 £ (20,
Hence
5,;=<$(a), $(6;)>
(3 (L) £ (B0 e £ ()
SR (5

This implies U,'U,=E, completing the proof.

PrOOF OF THEOREM 1. From Lemma 1 and 2 there are nXn uni-
modular matrices U, G and an nXn matrix W and H which satisfy

w o B o 3
w *u*)\b B\ H G) \DD B/
Comparing (1,2) and (2,2)-components of the both sides of the above

equation we obtain Theorem 1.

We consider equivalence relation between matrices like Rd,.

A A’
DEFINITION 5. Two matrices R¢*=< B) and R¢*:<B’> are said to

be equivalent if and only if there are m Xm unimodular matrices U, G
and an nXn matrix W which satisfy

(o)) ()

In term of this equivalence we can restate Theorem 1 as two plats
¢ and ¢ are equivalent only if R¢, and R¢, are equivalent.
We choose a nice representative from an equivalence class of Rd,.

A A
THEOREM 2. Let ¢ be a plat and let R¢*=<B>. Then (B) 18
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equivalent to a matriz which has a form

0 0
0 AZZ
1 ®
0 B

where A; and By are (n—1) X (n—1) matrices while A and B are nXn
matrices.

Proor. From the definition of free differential calculus and the fact
that é(a,---a;,)*=1 we have

On the other hand, since é(a,---a,)=a, - -a,, we have

(o))

J

The two equations above imply

® X (o5 =0

for any j=1, ---,n. Applying the fundamental theorem of free differ-
ential calculus we have

1= (9(b) 1= 5 (2L 6,17+ £ (20 g, -1

i\ da;
== 1)1=1< aggl() . > ’

Since Z@G is a domain, this implies

(6) - 5 (Bé@&)" 1



This implies

(7)

Due to (5), (6) and (7), if we multiply <

1
0

o o

-0

from the left and by
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1
1

o o

0

=(t—1)%(-

i=1

1
0

(=]

>

i=1

1
0

(=]

- o

0

1
0

(=

1 00

$(a:)

0
0

ob; )

A>b
B y
0 0 0
0 0 0
0 0 0
00 --- 0
10 --- 0
00 --- 0
0 0
00
01

from the right, we obtain a matrix which has a form

of Theorem 2.

0
0
1
0

0

A22

*

B22

where A,, and B,, are (n—1) X (n—1) matrices.

o o
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This completes the proof

We call a matrix which has the form as in Theorem 2 a reduced

form of Rgy.

THEOREM 3. Let ¢ and ¢ be plat representations of knots. Suppose
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that ¢ and ¢ are equivalent. Let

0 0 0 0

0 A 0 A
R¢*~ 1 % ’ R¢* -~ 1 % .

0 Bzg 0 Béz

Then there are unimodular matrices U and G and a matric W which
satisfy

(1) A;2:UA22G
(i) By= WAG+*U~ByG.
ProOOF. Let
0 0
A\ [0 Ay
B) |1 *
0 B
and
0 0
AN 0 A
B) |1 =«
0 B,
U,
be equivalent. Then there are matrices U= <u“ 2>,
Un Uy
gu Gp W, le)
G= d W= such that
<G21 G22> o <W21 We
v v )5)=(2)°
w *U-*\B/ \B'/
Then it follows
8) UA=A'G
9) WA+*UB=B'G or *UWA+B=*UBG.

The equation (8) means
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(10) (un U12><0 0 )_(0 0 ><gu G12>

U21 UZZ 0 AZZ 0 AéZ GZI G2Z '
From this we obtain U,A,=0 and A%G,=0. Let us recall that det A,
and det A, are essentially Alexander polynomials of the knots. So

det A,,#0 and det A%,#0. This implies that U,=0 and G,=0. From
(10) we also obtain U, An=A%G»=0 which implies (i) of Theorem 3. We

*uu *Uz1 Ju G12
h *U= d G= .
ave (0 ’ Uﬂ) an <0 a22>

Note that U, and G, are also unimodular because U and G are
unimodular. Now we calculate the both sides of (9):

*u, XU\ [w Wi\/0 0 1 *
(11) *UWA B_'—_< 11 21>< 11 12)( ) < >
+ 0 *U)\Wa W0 4u)T\0 Ba

. (1 Uy Wip Ao+ ¥ Uy W Ao+ *)

0 *Up WnAzn+ Bx
and
*Uy *U21> <1 {2> <gu Gy
12 *UB'G=
12 < o *u)lo Bl\o GZ)
:<*uugu *2y,Gro+ *uuB{szz"l'*UmBészz)
0 *UZZBézGZZ

Comparing the (2, 2)-components of (11) and (12) we have
(13) * Uzz szAzz + B, =* U‘nBészz-

Since U,, and G,, are unimodular we multiply Uz' from the left and G%'
from the right to both sides of (13). Then we have

* Uzz W22A22+ Bzz =* UvzzBészz-
This implies (ii) of Theorem 3 completing the proof.

REMARK 1. The first equation (i) of Theorem 3 shows A’=UAG™.
This means the matrices A and A’ are similar. Let us substitute G in
the second equation (ii) of Theorem 3 by A’'UA. Then we have

(14) *W+ BA'=*UB'A"'U.

The entries of the matrix BA~! are elements of the quotient field, say
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F, of ZG. Then BA™' can be regarded as a bilinear form from ZGX
ZG—F|ZG. So is B'A’"'. The equation (14) means the bilinear form
BA™:ZGXZG—F|ZG and B'A’™': ZGX ZG—F|ZG are isomorphic. Hence
we proved that an isomorphism class of BA™' is an invariant of the

' A
equivalence class of <B>

If we substitute ¢ by —1 then Theorem 3 holds for non orientable
case.

We need the following lemma to show the equivalence classes of our
matrices give rise to a numerical invariant.

/

A
LEMMA 3. Let B and B

holds:

) are equivalent. Then the following

ged (ai)=u ged (ai)

i, 5=1,...,m i,i=1...,m
and
det B=vdet B’ mod ged (as))
=1, n

1,5 ceey

where u and v are units of ZG.

Lemma 3 can be easily obtained from (8) and (9) of the proof of
Theorem 8. Using the lemma we have a corollary.

. [A

COROLLARY. For a matrix B) ged; joy,...a(a;) and

det B mod ged; ;- ... .(a:;) are, np to multiplication of umits, invariants
A

of an equivalence class of <B>

REMARK 2. Corollary above holds for non orientation preserving
case if we substitute ¢ by —1.

5. Examples.

We would like to give very simple examples. Though these examples
can be shown to be inequivalent using Heegaard splittings of covering
spaces [See 1,2,11], we show it somewhat directly.
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stands for

— n full twists.

\

? ¢
Figure 6

Let consider the following two plats ¢ and ¢ (Figure 6).
Here we denote ged(4m —1, 4n—1) by d and suppose that d is neither
1 nor 3. To simplify calculation we substitute ¢ with —1. Then

‘/’ 0 0 0
0 1—4m 0
(Bo)==(4) T~ 0 0 1-dn
B ‘ 1 * *
| 0 1-2m 0
L0 —14+4m 1+4n
and
: 0 0 0
0 1—4m 0
(R¢*)’=—1=<A'>“_l~ 0 0 l-dn)
B’ 1 * *

|
) 0 1+4m 0
‘0 —144m 1+4n

We have det Bj,—det By=(1+4n)(1+4m—1+2m)=6m(dn—1+2)=3 mod

d and ged; ;.. .(ai;)=d. Since d is neither 1 nor 3,3#0 mod d. Thus
A A’

det B,,#det B}, mod ged; ;-,,... .(a:;). This implies that <B> and <B’> are

not equivalent. In conclusion we can say that ¢ and ¢ are not equivalent

by Theorem 1. Note that these two plats are equivalent as knots.
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