J. Fac. Sci. Univ. Tokyo
Sect. IA, Math.
40 (1993), 517-528.

A Note on the Fractional Powers of Operators
Approximating a Positive Definite Selfadjoint Operator

By Mihoko MATSUKI and Teruo USHIJIMA

Abstract. Let A be an unbounded positive definite selfadjoint
operator acting in a Hilbert space X. Suppose that there is a family
of bounded positive definite selfadjoint operators {4,:0<h<h}, where
A, is defined on a closed subspace X, of X. This note concerns the
uniform boundedness and the rate of convergence for the family of
fractional powers {A3:0<h<h} as h tends to 0, with a fixed real ex-
ponent s, under certain conditions on the family {4,:0<h<h} approx-
imating the limit operator A. The conditions are expressed in terms
of the rate of convergence of A;'P,—A™!, where P, is the orthogonal
projection form X onto X,.

Introduction

This note concerns the uniform boundedness and the rate of con-
vergence for a family of fractional powers of bounded positive definite
selfadjoint operators {A,:0<h<h}, where A, is defined on a Hilbert
space X, which is a closed subspace of a Hilbert space X. Our con-
clusions are stated under a family of conditions which describe the rate
of convergence of A;'P,— A" in a certain sense, where A is the limit
unbounded positive definite selfadjoint operator, P, is the orthogonal
projection from X onto X,, and the parameter L tends to 0.

The problem comes from the authors’ work on the numerical analysis
of a finite element method applied to the linear water wave problem.
According to their formulation, the linear water wave problem can be
represented as the initial value problem for an abstract evolution equa-
tion: idztg—i——i—Ago:gb with values taken in an appropriate Hilbert space
X, where A is a realization of a first order pseudo-differential operator
which maps the boundary value on I’y of a function, being harmonic in
the domain 2 with vanishing normal derivative on the boundary portion
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complementary to I',, to the value of its exterior normal derivative on
I',, Here Q is the water region, and I, is the boundary portion of @
corresponding to the water surface at rest.

Using a standard technique of the finite element method, we have

full discrete approximation problems, for example: 90”“_2?_*'90"“1 + A,

=¢,, where ¢, and ¢, are elements of the finite dimensional subspace
X, of X, and A, is a non-negative selfadjoint operator acting on X,. We
have treated a family of approximate problems including the above ex-
ample. In order to derive error estimates for the solutions of the ap-
proximate problems, the result of this note has been freely used.

The proof of the result of this note is based on integral representa-
tion formulas of A~¢ and A;*P,p for ¢ € X and Heinz’s inequality. The
aim of the note is to show the proof concretely, independently on the
full context of the authors’ original problem in numerical analysis. The
authors feel that the result itself is interesting from the point of view
of abstract study. As far as the authors know, there is no appropriate
literature from which we can quote the present result.

The organization of the paper is as follows. In §1, the setting of
the problem and the result are stated. In §2, the background of the
study is explained. Finally § 8 is devoted to the proof of the result.

We are grateful to Professor Y. Giga of Hokkaido University for
his advice on the proof of Proposition 1. We also thank Professor H.
Fujita of Meiji University for his remark on the s-independence of the
constant C in Theorem 1. On the occasion of the resubmission of the
manuscript, we should like to add our thanks to the referee of the paper
for his constructive comments which have improved substantially the
quality of the paper.

§1. Setting of the problem and conclusions

Let A be a positive definite selfadjoint operator acting in a Hilbert
space X. Let {X,} be a family of closed subspaces of X for h¢€ (0, k]
with h<co. Suppose there is a positive definite bounded selfadjoint
operator A, acting on the space X,, which itself is considered to be a
Hilbert space with the inner product induced from the original Hilbert
space X.

We assume that the spectrum of A, are uniformly bounded below
by a positive constant ¢ with the property that A>qa. Assume further
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that there is a positively valued bounded function ¢(h) with the follow-
ing properties (¢—0), (e—1) and (e—2).

(e—0) sup e(h) =&é<oo.
0<h<h
(e—1) lim e(h) =0.

There exists a positive number «
(—2) independent of &€ (0, k]

_a

tisfyi A<
satisfying || 44| < o)

We denote the orthogonal projection from X onto X, by P,. Let s
be a real number. In this paper, we use the fractional powers of operators
A® and A;, which are defined through the operational calculus formulas
with the aid of the resolution of the identity corresponding to the self-
adjoint operators A, and A,, respectively. We say that condition (A.,)
holds, if there exists a constant C independent of h such that for any
h€(0,h] and ¢ € D(A*) the following inequality satisfies:

(A.,.) [(A*Py— Ao | <Ce(R)+[| A%

We say that condition (¢,) holds if both (A.,) and (A..) hold.
Further we consider the following conditions (4,,) for s>0, and (B,)
for s€R.

(Ae) (A7 Pi— Aol <Ce(h)"llell for g€ X.
(B.) [AiPipl| <CllA%||  for ¢ € D(A").

In the above two conditions the constant C may depend on s, but
does not depend on k€ (0, h].
The following are the conclusions of this note.

THEOREM 1. Condition (A,,) implies condition (A.,) for s€[0,1] with
the constant C independent of s€[0,1].

THEOREM 2. If s>0, then condition (e,) tmplies condition (A,,) for
o €[0, s] with the constant C independent of ¢ € [0, s].

THEOREM 3. If s>0, then condition (¢,) tmplies condition (B,) for
o €[0, 1+5s] with the constant C independent of o €[0, 1+s].
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THEOREM 4. If —1<s<0, then condition (A.,) implies condition (B,)
for o €[s, 0] with the constant C independent of o €[s, 0].

§2. Background of the study

Our companion paper Matsuki and Ushijima [2] treats the fully
discrete approximation of the following conservative second order linear
evolution equation with values in X.

2
‘leZ +Ap=¢,t>0,
() do
»(0)=¢, (0)=¢".

dt

A family of approximate problem (E,.), with the parameter k€ (0, k]
and the time mesh 7 € (0, o), are obtained from (E) by replacing X and
A with X, and A,, respectively, and by discretizing the time variable
through Newmark’s method. In order to give error estimates for the
solution of (E,.), we have used freely the results mentioned in the above
Theorems. The second author already used the partial results of Theorems
in his previous works (for example, [4], [5]).

The framework of the present setting of (E,.) corresponds to the
finite element approximation of the evolution linear water wave problem.
Some of earlier results of the authors were given in [4], [6] and [6].
The selfadjoint operator A in the linear water wave problem is closely
connected with the Steklov eigenvalue problem for the harmonic functions
in a domain. In [6], we have shown that condition (A4.,) with e(h)=h
holds for s€[—1/2, 1/2] if the problem is suitably well set.

§ 3. Proof of the results
PRrOPOSITION 1. Let D=A""' and let D,=A;*P,. Then for s€(0,1)
it holds that

(1) A-rp = Sin(ms) S“’ s 1D+ D)o dy for o€ X,

T

(2) - A;ﬂPhg;:_sﬂl_(ﬂ r VD, (v+ D)o dy  for € X.
T

0
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Proor. The theory of fractional powers of operator tells us that
the right hand side of (1) coincides with D¢ (see e.g. Krein [1]). Hence
if one admits the equality A—*=D*, there is nothing to do as for the
proof of the validity of (1). For the sake of selfcontainedness, however,
the following discussion is added, which assures directly the validity of
(1), where A~ is the bounded operator defined through an operational
calculus formula.

Let {E(2); A€ R} be the resolution of the identity corresponding to
the selfadjoint operator A. It is to be noted that E(2)=0 for 2<qa. As
is well known, for any f(2) € C((0, o)) N L*([a, o)) we can define uniquely
a bounded operator f(A) through the formula:

fa=|" fndEQ.
More precisely, f(A) is determined in the following weak form for any

p.PeX,
(e )= FAAER.9)

= lim [* fWdER.9).

e10,atoo

As an example of the above operational calculus, we have f(A)=A" for
f(A)=2"* with s>0. For (,v) € (0, 0) X (0, ), and s€ (0, 1), let

Fla, v) =2 (w4271,

Since, as a function of 2, f(4,v) € C((0, o)) N L*([ar, 0)) for a fixed para-
meter v € (0, o0), we have

flA,v) =y "D+ D), v>0.

For the moment, we admit the validity of the following equality (8).

(3) r f(A, u)du:r (Sw 1, v)dv) dE().
0 a—0 0
Let F¢ be the right-hand side of (1). Then we have
Fo= Sin(zs) S“’ F(A, v)g dy
T 0

_ sin(zs) S“’ (S“ £, u)du)dE(X)go

T a—o0\Jo
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o

- g 1 dE(Q)o

a—0
A o,

sinece it holds that
r F(a, v)dy=1-" r oot 1) de

0
—=21"B(s, 1—s)

—s T
sin(zs)

Hence we have (1). The validity of (3) comes from the fact that it holds
for any ¢€ X,

[ ram aEwg, o)) ds

0 a—0
(4)
=7 ([ e v1d ) aE@e, o).
a—0 0
Fubini’s Theorem establishes the validity of (4) since f(4,v) is positive
on (0, )X (0, c0) and since the right hand side of (4) equals

=

. <o
sin(rs)

Substituting
(X, A, D, gD) = (th Ahy A;l, Ph¢)

into (1), we have

A;lph¢:S_if17(rﬂ S:’ VAT (w4 A7) Pap dy

(5)
for p€ X.

Hence (2) follows from the fact that
(6) (A v+ A 'Pup=D,(v+D,) "¢ for o€ X.

To prove (6), let ¢=(v+D,)"¢. Then we have (v+ A;'P)¢=¢.
This implies (v+ A;')P,¢=P,p. Hence we obtain
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Pip=(v+A;") " Pip.
Therefore it holds that

D,(v+D,) e =Dyp=Ay'Pig =Ai' (v+ A" P
R

ProoF OF THEOREM 1: It suffices to consider the case s€(0,1), for
(4.,) holds trivially, and (A.)=(A.,).

Let D=A"!, and let D,=A;'P,. For ¢€ X, by Proposition 1, it holds
that

A_’SD—A;HP;,¢
) :iinn(”—s) S:’ #={D(2+ D)~ —Dy(2+ Dy) '} d2
— sintm) [ #(a+D) 1~ (14+-D) g di.
We have
22+ D)~ (4 D) di
(3)

gzg“ 227 daol = {f)“ lell.

Let C, be the constant in condition (A.,). By the second resolvent
equation and condition (A.,) we have

| #(G+D)—G+D1e da)

[ 24+ D) (D=Dy)(1+ D) g da |
) <[ xcemaiglda

=Cye()" 2~ dlel

e(

=coe(h>f1<m—“‘u¢u.
—8
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Therefore equality (7) and estimations (8) and (9) imply

|A=*0— A;*Pup| <C.e(h)|loll for g€ X
with

(10) ¢, = Sin{zs) (2+ Co )gz+c,,.

T s 1l-—s

ngeafter we use the constant C, defined by (10) for s € (0, 1), together
with C,=1 and C,=C,.

PRrOPOSITION 2. Condition (A.,) with C=C, implies condition (B.)
with C=a'C,+1 for s€[0,1].

Proor: Since we have for ¢ € D(A*)

A;Phgo:AZPh(A_R——A;’Ph)AB§0+ PhASSD,
it holds that
[Ai Pupl| <N AR (A — Ai*P) Ao + | Aol

< (by Theorem 1)
<a'e(h)~*Cie(h)|| A%0| + [ A0
=(a’C,+1)[| A%
|

To prove Theorem 2 we quote a theorem concerning Heinz’s inequality
from the book of Krein [1] as the following Lemma 1.

LEMMA 1. Let A, and B, be positive selfadjoint operators acting on
Hilbert spaces X, and Y, respectively. Suppose there is a bounded operator
T from X into Y and that M is a constant greater than or equal to
IT|l. Suppose also that TD(A)C D(B) and that there is a constant N
such that

|BTxz| < N||Az|| for all x€ D(A).
Then we have for t€[0, 1]

TD(A')C D(B")
and
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| B To|| <M'**N*| A'z| for all xe€ D(AY).

For the proof of Lemma 1, see Theorem 7.1 of Chapter 1 of [1] and
the remark after its proof.

Proor OF THEOREM 2: In Lemma 1, set

(XY, A, B T, M,N,t) :<X, X, c(h) A" T, Af—lp(%ﬂ, c,.C., i),
€ S

where C,, and C,, stand for the constant C in condition (A4.,), and (A.,.),
respectively. It holds econdition (A4,, with C=Ci/"Ci*<max(C, C,).
Then we have the conclusion. It is to be noted that (e(h)°'A%) =e(h) A°

for t=2 [ |
s

ProOF OF THEOREM 3: Let n=[s]. The proof is given through an
induction argument on n.
Let »=0. Then we have by Proposition 2,

(11) - [Ai Pl <C.J| A0 for ¢ € D(A).
For ¢ € D(A™*"), we have
AT P =A; "' P (A — A P,) Ap+ A P, Aop.

Therefore it holds that

| Ai " Pupl| <[ A | (A7 — Ay Py) Aol + [ A Pu Al
Conditions (e—2) and (A.,.) with C=C/, and inequality (11) yield

| A Pupl| <a'*'e(h) " 7'Cle(R) || A" Ag|| + C.] A* Ap)| .
Hence we have
(12) | Ai* Pl <(a'**Ci+C))| Aol for ¢ € D(A™).

Namely we have (B,;;) with C,,;=C,+a""'C.. The validity of (B,) for
¢ €[0,s+1] with C=max(1, C,,,) follows from Lemma 1.

Now we assume the validity of Theorem 3 for s with [s]=n. Suppose
[s]J=n+1. By Theorem 2 condition (¢,) implies condition (A, ,_,). Hence
the induction hypothesis implies the estimate (11). The preceding argu-
ment from the estimate (11) to the estimate (12) for the case of n=0
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is also valid for the case of general n. Therefore we have (B,,,) with

Cop=a'Cl4+a’Cl_,+ - - - +(Xx_r'ajﬂcﬁ_[s]+ds_r3]Cs_[s]+ 1,

where C/_; denotes the constant in condition (A,,_;) for ¢=0,1, ..., [s].
The validity of (B,) for ¢ €[0,s+1] with the constant C independent of
o follows from Lemma 1. [ ]

Before entering the proof of Theorem 4, for the sake of clarity we
restate conditions (A.,_,) and (B_,) for s>0.

(A.,-) (A7 Pi— Aol <Ce(h)' A0l @€ X.
(B-.) [Ai*Pip|| <CllA™0|, ¢€X.

Auxiliary we introduce the following condition (C_,) for s>0.

(C-.) [(Ai*Pi— A7) <C[A™'¢[, p€X.

In the above 3 conditions, C is a constant independent of h, but possibly
dependent on the specified condition. Due to the triangle inequality,
conditions (B_,) and (C_,) are mutually equivalent.

PROPOSITION 8. For any s€[0, 1], condition (A. _,) implies condition
(B_,).

Proor: It suffices to show the validity of (C_,) under condition (A, _,).
Let D=A"", and let D,=A;'P,. Since the case of s=0 or s=1 is easy
to see, we assume that 0<s<1.

For ¢ € X, by Proposition 1 and a calculation similar to the proof of

Theorem 1, it holds that
A~p—A;* P

(18) = SI0(78) [* 24 D3+ D Dy(a+D0) e d2

T

= SI0(58) [ (34 D) (D D)1+ D) d.
T 0

By condition (¢—2) and condition (4,,_,), we have

e(h) _ _
g 2(1+D,)-(D—Dy)(a+D)~'p d2 “

0
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<[ rpa-coetr- 10 D)ol d
<aclh)C_ sy~ " 77 A gl
e ]
Analogously to (14), it holds that
”S:h) 2(A+Dy)(D— Dy)(2+D) "¢ 2 ”

grm 22O, e(h)y=r- 27 | A~gllda
(15) ) 1
=C.ety =S 4 g
1—s

_ 1 —
= C~a1—_?“A oll.

From (13), (14) and (15), we obtain
|A~ o— A Pip|| <Cl|A™ ¢|| for p€ X
with

C;: Sin(ﬂ.'S) (ﬁ‘l‘ 1 )C_sg(a‘l" l)C’_s .

T s 1—s
]

ProPOSITION 4. For any s€[0, 1], condition (B_,) implies condition
(B_,) for g €[0,s] with the constant C independent of o € [0, s].

ProoF: Set in Lemma 1

(X! Yv Av B’ T’ My N! t) :<Xv Xh! A—s’ ;a, Ph; 17 C_,, E")y
8

where C_, stands for constant C in (B_,). Then we have for ¢ €[0,s]
[ 4i Pipl| <C™|| A0, p € X.
Replacing C”¢ with max(1, C_,), we obtain the desired conclusion. [ ]

PROOF OF THEOREM 4: Propositions 3 and 4 imply the conclusion of
Theorem 4. ]
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