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Nonpositively curved manifolds with small volume
By Kenji FUKAYA

Abstruct. In this paper we study nonpositively curved manifold
with small volume and prove that such a manifold has locally an
Euclidean factor as direct summand.

§0. Introduction

Roughly speaking, the set of Riemannian manifolds of nonpositive
curvature can be devided into two categories, one of rank one and one of
higher rank. By the work of Gromov, Ballmann, Burns-Spatzier, etc. the
nonpositively curved manifold of higher rank is fairly well understood,
namely such a manifold is isometric to a locally symmetric space. In this
paper we concern with rank one manifolds of nonpositive curvature. The
most important example of rank one nonpositively curved manifolds is a
manifold of (strict) negative curvature. But there are families of rank
one nonpositively curved manifolds which do not admit metrics of negative
curvature. (See Examples 0.4-0.6 below.) In this paper we will study how
much is the difference between these two classes. The examples mentioned
above are obtained by taking a product of nonpositively curved manifolds
and patch them along their boundaries or corners. So one possible question
is whether all nonpositively curved manifolds of rank one are obtained in
that way. The main result of this paper is a partial answer to this ques-
tion in case when the supremum of the injectivity radius of the manifold
is sufficiently small. K, stands for the sectional curvature of M and 1,
stands for the injectivity radius of M.

THEOREM 0.1. There exists a positive number ¢, depending only on
the dimension n such that tf M is a Riemannian manifold with —1<
Ky<0, supiy<e, then there exists V,.C M with the following properties.

(0.1.1) YV, +M.

(0.1.2) The universal covering space of V., is isometric to a direct product
W.x R, where k is positive.
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(0.1.3) Each conmected component of the inverse image of V; in the uni-
versal covering space of M is convex.

REMARK 0.2. Theorem 0.1 is due to V. Schréeder [8] in case the
dimension is 3, and to V. Buyalo [2, 3] in case the dimension is 4.

COROLLARY 0.3. If M satisfies the condition of Theorem 0.1 them <t
admits a polalized F-structure (Cheeger-Gromov [4]).

REMARK 0.4. It follows from Corollary 0.3 that the manifold M there
has a sequence of Riemannian metrics g, such that —1<Ky <1 and that
the volume of (M, g;) converges to 0. In case when the dimension is three
it is known (by Schroeder) that M admits a metrics g; which is of non-
positive curvature in addition. In case the dimension is greater than 3
this property is conjectured (by Buyalo) but is not proved.

Next we recall some examples to illustrate the phenomenon dealed with
in this paper.

Example 0.5 (Heintz [7]): Let M, and M, be 3-dimensional manifolds
of constant negative curvature. We assume that M, are complete non-
compact with one end. We may assume that their ends are diffeomorphic
to T®. We patch M, and M, along their ends and obtain A{. One can prove
that M admits a metric of nonpositive curvature. Since z,(M) contains Z2,
it follows that M does not admit a metric of strictly negative curvature.

Example 0.6 (Gromov [6]): Let 2 be a surface of rnonpositive curva-
ture. We assume that 2 is noncompact and its end is isometric to the
direct product S'x[0, ). We take two copies of the direct product X X
S!, and patch them by the diffeomorphism: S'xXS'—S'xS', (x,y)—(y,x),
to obtain M. It is easy to see that M admits a metric of nonpositive
curvature of arbitrary small volume but does not admit a metric of strictly
negative curvature. This manifold is a first example of our theorem.

Example 0.7 (Fukaya-Januszkiewicz, see [5]) : Let 2 be as in Example
0.6. We take 6 copies N, -+, N, of the direct product ¥ x 3 xS'. The
end of N, is diffeomorphic to M X S'x[0, ), where M is as in Example
0.6. Let N; ., N;,C N, be a subset diffeomorphic to 2 xS'xS'. We patch,
for example, N, and N, along N, , and N, ; by the diffeomorphism: X X
EXS'—-IxEXS', (2,8t — (x,t,8). The manifold N’ we obtain has a
singularity whose neighborhood if isometric to the product of S'xS' and
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the sum of 6 copies of {(z,%)|x=0,y=0,x,y<e}. By modifying the metric
in a neighborhood of singularities we get a smooth manifold of nonpositive
curvature N. We remark that we can make the volume of N arbitrary
small. In this case the covering V; in our main theorem has 13 members.

Examples 0.5-0.7 and our main our main theorem support the following.

CONJECTURE 0.8. Let M be a manifold of nonpositive curvature. Then
M admits a decomposition M =JIM,; such that M, is diffeomorphic to a
manifold with corners and M, is a product of one of the following mani-
folds : manifold of strict negative curvature (possibly with (totally geodesic)
boundaries and/or cornes): locally symmetric space of higher rank (closed).

The organization of this paper is as follows. In section 1 we recall a
construction due to (essentially) Buyalo. In section 2 we prove Theorem
0.1 assuming a lemma, which will be proved in section 3.

This work is done during authors stay in IHES, under a finantial sup-
port by Taniguchi Foundation (Projet Akizuki). The author would like to
express his sincere gratitude to IHES and Taniguchi Foundation. He would
also like to thank Professor Buyalo for a discussion on the topics closely
related to this paper.

§1. Buyalo complex

Let M be a manifold with nonpositive curvature, X be its universal
covering space, I'=n,(M) and ¢ be a sufficiently small positive number
which we fix later. For ¥ X, we put

I'.(x)=the group generated by {rerlld(x,rx)<e}.

By Margulis’ Lemma [".(x) has an Abelian subgroup of finite index. Let

A’B\(/F) be the set of all commensurability classes of almost Abelian sub-
groups of I. By AB(I) we denote the set of all conjugacy classes of

AFF}. We put
ABM)={I.(2)llzeX}C AP,

and let AM) be its inverse image in A/E(?‘). Now we define a simplicial
complex B(M) as follows. The set of vertexes is AB(M). The set [I,],
-« [I":), spans a k simplexes in B(M) if, after changing an order and
representatives, we have I',C---CI",. This complex is essentially the same
as one defined in Buyalo [1,2]. So let us call it Buyalo complex of M.
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Example 1.1. Let M be as in Example 0.5. Then B(M) is

o—(—

2
z Z z

Figure 1.

Ezample 1.2. Let M be as in Example 0.6, then B(M) is

Figure 2.

By these examples it is natural to expect that there is a map from M to
ABM). For rel’, we put

¢, =inf{d(x, r(z)) |z X}.
For AEA,\(-’M), we put
Ci={zeX|Vre Ad(r(x). x)=c,}

By rank 4 we denote the rank of maximal free abelian subgroup of A.

For A< AB(M),[A]e AB(M), we put
C[_,“:I"C/]/F,

~—

UMy={ze X|I"(x)D 4},
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u(A)=rT-Unr
Here we remark that Margulis' Lemma implies that C,=C, if 4 is com-

mensurable to 4’. Moreover 7-C;=C,4,. Hence Cps is well defined.
We put

Ck: U CcAJ-

rank A=k

Cs, (}\(l?) UdJk), are defined in a similar way.

§2. Proof of Main theorem

It is easy to see that C, is isometric to a direct product R*xC’, where
k=rank A. Thus, the most essential part of the proof of Theorem 0.1 is
to show that

U Ci=X
d€ABM)
under our assumption.
Let ¢, be the Margulis constant.

LEMMA 2.1. Let e<e,. If x<= Ulk)—U.k+1), then there exist a
family of geodesics I, joining x and points in C,, which depends smoothly
on x. The geodesics I, are contained in Uk)— UJ(k+1).

PROOF. Choose a lift of z, say 2€X. Put A=I.(%). We have rank
(A)=k. Since C, is a convex submanifold of X and since X is simply
connected and of nonpositive curvature, it follows that there exists a unique
minimal geodesic [: [0.1]—X, joining & and C,. Now let &’ be another
liftt of 2. We obtain I’. Take ye[l such y(z)=z’. It is easy to show
that r(l)=10". Hence we can put {,=n=l where r: X —M is the projection.
To prove that I, depends continuously on x, we remark that if x,e U(k)—
U(k-+1) and if x, converges to x< U.k)— U.k+1) then we can choose Z,
converging to . It follows that I".(%;)=17".(%) for sufficiently large 7. (Let
us remark here that we use Margulis’ Lemma essentially in this step.)
The lemma follows immediately.

We may assume [,(0) =z, l(1)eC,. We define ¢;,: Ulk)—Ulk+1)—
M by

Gr.o () =1,(t) .

Roughly speaking, the next lemma asserts that we can perturb ¢, so that
they are patched together to give a deformation retract from M to UC,.
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MAINLEMMA 2.2. There exists ¢, independent of M such that there
exists a continuous family of smooth maps ¢,: M—M with the following
properties.

(2.2.1) polw)=2 .
(2.2.2) oi(w)=Ce  if w€U,k).

The proof of Lemma 2.2 is differed to the next section.

Now we are in the position to prove \UC,=M. We consider only the
case when M is compact. In case it is noncompact we can just use ho-
mology of compact support in place of usual homology. We may assume
that M is connected. Then H,(M; Z,)=Z, and H,(Y; Z,)=0 for an arbi-
trary proper subset of M. On the other hand, Lemma 2.2 implies that
UC, is a deformation retract of A. It follows that \UC,=M as required.

Now we are going to prove Theorem 0.1. As V, we take connected
components of C,—C,,,, k=1,2,---,n. We have already proved (0.1.1).
(0.1.2) and (0.1.3) follow immediately from the definition of V;. The proof
of Theorem 0.1 is completed assuming Lemma 2.2.

§3. The main lemma

We prove Lemma 2.2 by an induction on k. We take ¢, <e,<-+-<e¢,,
where ¢, depends on e,;,2>k and ¢, is the Margulis constant. We put

U,={r(x)e M|rand ', (x) 2 k},

and will construct ¢ : U.—U. by an induction on k. Note that our as-
sumption implies UU,=M. Let m is the maximal number such that U.
is nonempty. For simplicity, we construct ¢:™ and ¢" " only. The rest
of the construction is quite similar, and is omitted. We put

Ue= U, (k).

First we remark that U n=Uy. S0 we may take ¢/™ =¢n ..
To define ¢" ", we choose ¢,-, so that if x= U,,., then the geodesic
Om-1..1t<[0,1]} is contained in U, Y U,_,. (See Figure 3 below.)



Nonpositively curved manifolds 61

Figure 3.

Let €U, Un-,. Then by changing ¢,-, if necessary we may assume
that there exists a geodesic g, in C,_, joining ¢n-, ,(2) and ¢, .(x). We
may assume that p, depends smoothly on z, and . (0)=¢., . (x), g (1)=
oém.1(x). We may assume also that there exists a family geodesics I, .
joining ~ and p.(s) which depends smoothly on s and xa€U,NU,-, and
which is contained in U,. We choose a smooth function x on U,VU,-,
such that

=0 if x€Up,—Un,
y(x)] =1 if aeU.

fm-1

(m—1),
€[0,1] everywhere.
Now we define ¢"" by
fr-1v)  if w€U, ,—0U,
¢V (x) =1 ™ (x) if z«U.,_ (m—1)

Uy o>, 2() otherwise .
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It is easy to see that this map has required properties. The proof of
Lemma 2.2 is now completed.
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