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Solvability of Mizohota and Lewy operators
By Soon-Yeong CHUNG, Dohan KIM and Sung Ki KIM

Abstract. The Mizohata operator and the Lewy operator have
solutions in C*(R,; ¢’(R)) and C=(R?%; ¢’'(R,)) respectively, where ¢’
denotes the strong dual space of ¢ which is the space of real analytic
and exponentially decreasing functions. In fact, this space is much
smaller than the Aronszajn space.

Introduction.

It is well known that the Mizohata equation

ou ., o0u _ ! 2
SeHits=f,  fECHRY

and the Lewy equation

%—H% +2i(:c+iy)% =f, feCy(RY

have no solution in the space @’ of distributions, or in the space B of
hyperfunctions (see [10] for the historical backgrounds). But, Baouendi [1]
showed that the Mizohata equation has a solution in the Aronszajn space
of traces of heat kernels. In this paper, we deal with the space G(R™)
of real analytic and exponentially decreasing functions, which turns out to
be invariant under the Fourier transformation in Section 1. Also we show
that the differential operators of infinite order act on & continuously. In
Section 2 applying the above result in Section 1 on the Fourier trans-
formation only we show that the Mizohata operator and the Lewy operator
have solutions in C*(R,; G'(R)) and C*(R?; G’'(R,)) respectively, where
C*(X: Y) denotes the space of Y-valued C* functions on X and &’ denotes
the strong dual space of &.
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§1. The space S(R") and its dual.

We introduce here the space of real analytic and exponentially decreas-
ing functions and its strong dual. Moreover, we show that the Fourier
transformation is an isomorphism of these spaces.

DEFINITION 1.1. We denote by & or &(R") the set of all g=C~(R")
such that for any k, A>0

(1.1) |$l4.n = sUp |0 ¢(’xl)l€|3x? kx| <o
TERT 1@
aENg

where NV, is the set of all nonnegative integers. The topology in & defined
by the semi-norms in (1.1) makes & a Frechet space. In fact, it is the
projective limit topology over all A>0 and k>0.

Furthermore, the space & is a nuclear Fréchet space and therefore
reflexive. We note that every function ¢ in & is real analytic by the
Pringsheim’s theorem.

Because of the growth condition (1.1) the space & is a subspace of
the Schwartz space S. Thus we can define the Fourier transformation of
¢ & by

(1.2) 3(6)=,.e <= p()da
and the Fourier inversion formula

1 i<z.6> 4
(1.3) $)= e e < BE)E

holds.
Also,

[agde={pgde
erd=8- @, for all ¢,¢eg.
LEMMA 1.2. The spaces G is dense S.

PROOF. Since CT(R") is dense in S it suffices to show that every
funetion in CH(R") can be approximated by elements in & in the topology
of S. Let us consider the Cauchy-Weierstrass kernel



Solvability of Mizohata and Lewy operators 65

_ -n/2_-n |90|2
w(x)=2r) "2 " exp| — 5.7 )

Then w.(x) belongs to & and it is clear that for any p=CH(R")
limwsxp=¢ in §.
£=0

Thus it remains to show that w.x¢ belongs to &. For any k,h>0

[0%(w.x@)(x)exp k||

_ R al
mEI&'f,l
0wz —y)lexp k|x
<cig) sup [ wla—ylexpida
IERNT (2 al
yEsupp ¢
aeN{)'
§01(¢)|ws|k'n

which completes the proof.
If ¢ belongs to & then it can be easily shown that

|0“p(x)|exp (x, ks)

0.4 T
nENg
for any k, h>0 and s=(s;,-:-,s,), s;,==*1, j=1,-- , n. Furthermore, it

defines a family of semi-norms on & which is equivalent to the semi-
norms given by (1.1).

On the other hand, the Pringsheim’s theorem shows that every ¢ @
can be holomorphically extended to an entire function ¢(z) in C* which is
given by @(z)=¢(x+1y), z=x+iy. Now we are in a position to state and
prove the main theorem in this section.

THEOREM 1.3. The Fourier transformation F: ¢—¢ is a topological
isomorphism of G(R™) with inverse given by the Fourier imversion for-
mula (1.3).

PROOF. First, we note that for each {, y= R",

(1.5) [one < Pg@ida={ < gz,

Im 2=

Because of the growth condition (1.1) of ¢= &, this can be easily proved
by the Cauchy’s theorem. It follows from (1.5) that for k>0 and s=
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(s;), sj==x1,5=1,:-- ,m,

(1.6) Sme‘i<’”'c>¢(x—iks)dng e i<tk E> 4 (2)d 2

Im z=-ks
=e<th>4(¢)
But, since z“¢= & for each a= N§ we obtain from (1.6) that
(1.7) o619 §(8) = o< > (" 9()) ()
:Snne'i<”‘$>(w—iks)"¢(m—i/cs)dw

On the other hand, for the holomorphic extension of ¢(x) we obtain that
for z=x+1y, ly| =k,

(1.8) |¢(z)|exp k|x| =exp k|| - Y 9 f,(x) (zy)*

5 la“¢(m‘)lf>§p‘>klml
«a O(.h

[(yh)“|

162" 3 @lylh)’
<27 @les
if we choose h>0 so that 2kh<1. It follows from (1.7) and (1.8) that
10°$(§)lexp(€, ks)

¢ERM a!h“”
aENB‘

1Z1 | po s | .
<C sup e'*'e—iks|''|d(x—1iks)|

zERM O.’!h/“”
aEI\I{)1

<C(k,h) sup l¢(z)lexp k’|x]

2ERM+i(1y1sk)
<C'(k, h‘)|¢|k'.h'

for some A’ and k’=max(|ks,1+2/h). This means that for any k>0 and
h>0 there exist k’>0,h'>0 and C=C(k, ) such that

(1.9) |€5|k,n§C|¢|k'.nu pEg.

Then the proof is completed by (1.9) and the Fourier inversion formula.

DEFINITION 1.4. We denote by &’ the strong dual of &. In other
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words, € &’ if and only if there exist k, A>0 and C=C(k, h)>0 such that
(1.10) lu(@)| <Clglin, ¢€G.

It is clear that the space S’ of tempered distributions is a subclass
of &’ by Lemma 1.3. We give here other examples:

It is obvious that every analytic functional u belongs to &’, i.e
A'(R*)C g’, since there is a continuous injection :

4

g — A(R™).

Other examples of elements in &’ are measures dyp such that for some
a>0

Se—alxld#<oo X

For ue &’ we define the Fourier transformation 4 by
(@) =u(g), ISKa
It follows from Theorem 1.3 that we have the following theorem.

THEOREM 1.5. The Fourier transformation is an isomorphism of
G'(R™).

It is clear that the space & is stable under the differentiation. Now
we give a stronger version.

THEOREM 1.6. Let P(x,0)=2"s-00.(x)0* be a differential operator
of infinite order satisfying that for any M >0 there exist L>0 and B>
0 such that

sup |0%a.(x)| < BM'#'BIL'*'|a!

zERM

for all @ and B. Then the operator P(x,0): G—G is continuous.
PROOF. Let ¢ belong to & and h,k>0. Then it follows that

sup |08 (a.(x) 9% (x))exp k||

rERT

I\

sup ‘Eg(f)fiﬂ’ran(x)-a“”gb(w) exp k||

la

|
L‘ Apleah' T a+7)!

24

IA

2ﬁ<5)BM'ﬂ-f'(ﬂ—r)!

rsBNT

< B|@lxa(Lh)' ' BU(M + 1) F12! 7+ P!
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Then it follows that for any k>0,h>0,
sup |07 (P(x, 9)¢(x))|exp kla|

zERN

< Blgl, 1Bl @M +21)'F1 3 @10
la|=
Thus, for any H >0 if we choose M >0 and />0 so small that 2Lh<1/2
and 2M +2h<H, then we obtain

lp(xva)¢(m)lk,II§B|¢|k,h

which completes the proof.

REMARK. Park and Morimoto [5] introduced the space Q(C™) of entire
functions f(z) satisfying that for each k>0 and z=x+1y
sup  |f(2)|expklx]
2ERT+i(1y 1<k}
is finite, which is a complex version of &(R"). However, it is quite dif-
ficult to deal with partial differential equations in the complex space.

§2. Solvability of the Mizohata operator and Lewy operator.

The partial differential operator with constant coefficients is solvable
in A'(R™) (see [8],[10]). Thus it can also be solvable in &’. On the other
hand, the following Mizohata equation

a_u $ U _
2.1) 4t o

=f, [fECHURY
has no solution even in A’(R? for some f<=C5(R? if k is an odd number
(see [10]). But the equation (2.1) has a solution in the space of Aronszajn’s

traces. We will show here that (2.1) has a solution in our much smaller
space C=(R,: G'(R)).

THEOREM 2.1. The Mizohata operator has a solution in C*(R,; &' (R))
for feC5.

PROOF. Taking the Fourier transformation on the both sides of the
equation (2.1) with respect to x variable we obtain that

o R
2.2) ET3 —tten=F(€,1)
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and supp f(&,t)CR:x[—T, T, for some 7>0. Then the ordinary dif-
erential equation (2.2) has a solution

DI PN _ Lo 3 k+1_ k+1:l

2.3 a(e, 0= 7,9 exp Sy @ =5t |ds.

Note that @(£,t) is a C* function of & and ¢. Since f is bounded there
exists a constant C=C(T) such that

|2(&, ] = Cexpl (¢ + T**) €]/ (k+1)]

for all (¢,t)e R®. Therefore, i(&,t) is of exponential growth with respect
to & variable for each ¢>0. Then i(&,t) belongs to G'(R.) for each t>0,
so that the inverse transform of # with respect to & variable gives the
required solution of the given equation.

Now consider the solvability of Lewy equation

2.4) u o +2i(:c+iy)%

am ay :f (xv Y, t)} feco

It is well known that this equation is also not solvable even in the
space 9’ of distributions.

THEOREM 2.2. The Lewy operator has a solution in C*(R?*; G'(R,))
for f=C5.

PROOF. Putting z=x+1y and performing the Fourier transformation
with respect to the ¢ variable we obtain that

ofl

oz —2z2t0=f(2,2,1)

(2.5) 2

and supp fc{(z,y)||z|<T}x R. for some 7>0. Furthermore, it follows
that

ST = e
Then
Sy 5 -—_.1‘_ lelz[ o 3 ~rlzt2]
iz, 2, 7)= 5 . *f(2,2,7)e

where * denotes the convolution with respect to x, y variables. Since
f=0 for |z|>T, @& is well defined and C* function. Since fe *'*'" is
bounded and of exponential growth with respect to =, #(z,%,7) is a C~
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function which is of exponential growth with respect to r. Thus 74
belongs to &’(R.) for each 2z, so that the inverse transform of @4 with
respect to the r variable gives the solution of (2.4).

REMARK. Recently, we obtain that every C=-function U(z,t) in R}*!
defines a Fourier hyperfunction u€ &’ (an element w=¢&’ which will be
called a Fourier ultrahyperfunction resp.) in the sense that lim,., U(z, t)
= if and only if U(x,t) satisfies the conditions :

(i) (@,—A)U(x,t)=0 in R}*"

(ii) For every k>0 there exists C>0 (There exist £>0 and C>0
resp.) such that

|U(x, t)| < C exp Ic<|w|+t+%>, t>0.

’

From these facts it follows that &’ is slightly bigger than the space
of Fourier hyperfunctions. The other problems related to the solvability
of more general equations and structure theorems will be considered in a
forthcoming paper. (See [2],[4] and [5] for the related results.)
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