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Minimizing Tangent maps from 3-ball to

complex projective spaces
By Atsushi FUJIOKA

Abstract. The author studies a sufficient condition that the tan-
gent map of a holomorphic map from S* to CP™ is not a minimizing
tangent map and gives an example of minimizing tangent map from

B® to CP™.

§1. Introduction

Let M, N be compact Riemannian manifolds.
non-empty boundary and N is isometrically imbedded in R*.
For wueC=(M, N), we define the energy functional K by

We assume that M has

E(u) =SM \dul2d Vol,, ,

where
kodimy ou' ou'
2( oo — af ‘ i
|du|*(x) Z 3 0" )5 @) (@)

((g*%(x)=(g**(x))"' is the metric tensor of M) and dVol, is the volume

form of M.
A map which is a critical point of E is dalled a harmonic map.

If we define a subspace L"*(M, N) of the Sobolev space L'*M, R*) by
LYY M, Ny={us L"*M, R*); w(z)e N, a.e.xs M},

E is extended on L'* M, N).
Now, let p=L"* M, N) be fixed and we consider the Dirichlet problem

whether we can find a map f such that

E(f)= inf E(u)
ueLl 2(M, N)
u-peLl %M, RE)
feL"*¥M, N)

f-pe Ly (M, RY,
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where Ly*(M, R*) is the completion of C¢(M, R*) in L'*(M, R*. We call
such f a minimizing harmonic map.

In general, a minimizing harmonic map is not C*. So it is a natural
question whether a minimizing harmonic map is C* or not. And when a
minimizing harmonic map is not C*, we consider the question what hap-
pens around a singular point where f is not C~.

Schoen-Uhlenbeck studied this problem in [13] and they showed that
aronud a singular point of a minimizing harmonic map rescaled maps con-
verge to a minimizing tangent map (in abbreviation MTM) wu: B™—N,
where m=dim M and B™ is the unit m-ball.

We shall explain their result more precisely. Let 2, be a singular
point of a minimizing harmonic map f and B™ the geodesic ball with
radius 1 centered at x,. Then there exists a sequence {s,}7., which con-
verges to 0 such that u,: B™— N defined by

u(x) = f (exp, (0.7))

converges to a MTM in 1'% B™, N) as 19—, where we call w: B"—N a
MTM provided that u is defined by u(x)=g(x/|z])(xs B™) for a harmonic
map ¢ from the standard unit m —1 sphere into N (such a map is auto-
matically harmonic) and it is also a minimizing harmonic map.

So it is important to investigate MTM.

Several examples of MTM are known previously. First, Jiger-Kaul
[10] showed that w: B™—S™ defined by u(x)=(x/|x|,0) is a MTM if m=>=7.
This is also shown by Schoen-Uhlenbeck [14]. Brezis-Coron-Lieb [1] proved
that a non-constant MTM from B* to S? is defined by u(x) = Roa/|x|, where
R is in SO(3). Further, Lin showed that u: B™—S™! defined by u(x)=
xflz] is a MTM for any m in [12]. Schoen-Uhlenbeck [14] showed that a
MTM from B™ to S™ must be a constant map if m<d(n) with d(8)=3,
d(n)=1+min{n/2, 5}(n>3). This result leads to the fact that a minimizing
harmonic map from any m-dimensional manifold to S is always C*= if
m=d(n).

In this paper we investigate MTM from B’ to complex projective n-
space CP™ with its Fubini-Study metric and obtain the following results.

THEOREM 1. Let g:S*—CP" be a holomorphic map of degree>2.
Then f:B*—CP" defined by f(x)=g(x/|z]) 18 not a MTM.

THEOREM 2. Let ¢:S*—CP" be a totally geodesic embedding. Then
f: B*—CP" defined by f(x)=c(x/|x]) 1s a« MTM.

The author would like to express his sincere gratitude to Professor
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T. Ochiai and Dr. H. Nakajima for their useful suggestions and great
encouragement. He also would like to thank Dr. M. Schoji for her kind
help to check the numerical calculation in §4.

§$2. Preliminaries

In this section we give some basic facts to investigate MTM from B*
to CP™.
The problem we want to consider is the following.

Problem @. Classify all MTM from B to CP™.

In the case of n=1, it is studied by Brezis-Coron-Lieb [1] (see §1).
Let f: B>>CP" be a MTM, then f satisfies the following condition.

f|am=s21 S*— CP™
is a harmonic map.
E(f)= inf Fu).

weL!, 2(B3, cP™)
n-feL}? B3 rk)
So we may consider the problem @ by the following procedure.
(1) Choose a harmonic map ¢: S*—~CP".
(2) Define f: B*—CP" by f(x)=g(x/|z]). (We call f a tangent map.)
(3) Examine whether
E(f)= inf E(u)
uelLl 2(B3, cPM)
u-feLl 283, RF)
holds or not.
So we need to know harmonic maps from S? to CP".
Let’s state a definition.

DEFINITION. A full map from S® to CP™ is one whose image lies in
no proper projective subspace.

The following theorem is well known.

THEOREM (Burns [2], Din-Zakrewski [4], Glaser-Stora [6]).

There 1s a bijective correspondence between full harmonic maps from
S* to CP™ and pairs (¢, r), where ¢: S*=>CP™ is a full holomorphic map
and r 18 an nteger (0<r<mn).

We add some more explanation to this theorem. If »=0, the corre-
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sponding full harmonic map is just a full holomorphic map and if r=mn,
the corresponding map is a full anti-holomorphic map and otherwise the
corresponding map is neither a holomorphic nor an anti-holomorphic map
i.e. not a * holomorphic map. Further, a non-full harmonic map is con-
siderd to be a full harmonic map into CP*' CCP™" for some n'<m.

So a harmonic map from S? to CP" (n=2) is either

(1) =+ holomorphic
or
(2) non + holomorphiec.

We divide harmonic maps from S* to CP" in two type for the follow-
ing reasons.

First if an orientation of S? is reversed, a holomorphic map (resp. an
anti-holomorphic map) becomes an anti-holomorphic map (resp. a holomorphic
map), so we state only about holomorphic maps. Second a holomorphic
map has the minimum energy in its homotopy class (Lichnerowicz [11])
and the holomorphicity is invariant under a composition of an automorphism
of CP™. 'This fact is useful to prove theorem 1. And finally by Siu-Yau
[15] any non =+ holomorphic map from S* to CP" has not the minimum
energy in its homotopy class. This result leads us to conjecture that the
tangent map of a non + holomorphic map is not a MTM. This is yet
obscure and if the first eigenvalue of the Jacobi operator (see [5] for its
definition) of a non + holomorphic map is less than —1/4 (it is obvious
that it is less than 0), the tangent map is not a MTM (Dr. H. Nakajima
told this fact to the auther).

Theorem 1 tells us a sufficient condition that the tangent map of a
holomorphic map is not a MTM. Theorem 2 is an example of non-constant
MTM from B® to CP". The auther believes that an example of theorem
2 is the only non-constant MTM from B® to CP”".

§3. Estimates of the degree for holomorphic maps

Let g: S2—>CP™ be a holomorphic map of degree d(>0).

We may assume the holomorphic sectional curvature of CP" with its
Fubini-Study metric is 1.

By the holomorphicity of g, the energy of g depends only on its degree
(see §2). So we have E(g)=8xrd.

We identify S% with C\U}} by the stereographic projection.

Using the homogeneous coordinates of CP", we write ¢ as

9(2)=[go(2) : g:(2) : *++: ga(2)]
for zeC.

«~
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Now suppose that the tangent map f of g is a MTM.
We fix 0<e<1 and choose a function » on [0, 1] such that

7(r)=0 (0Zr<e)
7(r)>0 (e<r=l)
(1)=1.

Separating B® into the radial direction and the S? direction (i.e. cor-
responding x& B\{0} with |2|€(0,1] and «/|z|=S?), we define ¢: B>>CP"
by

o(r,2)=[go(2) : n(1)g.1(2) 1 -++: 9(r)ga(2)]
Since f is a MTM,
E(f)<E(p) .
Here if we define ¢,: S2=>CP"(r&[0,1]) by
o) =pr,2) (2€C(),

E(g)= Idpl*dVoly

Il

(vt ], {2 ot

0

1

- gong |de,|%d Vol sedr +S

s

=04+ (1—¢)X8nd

'S [9'1%1 90219112+ <+ + g |Dridedr
c {(lg\1>4 -+ +1ga 19>+ 1901521+ ]2]%)% °

Sszpdgp,wd Vol sedr

<

3\,
dgo<W>' rd Vol sadr

+16§

€

Since E(f)<E(p),

LdeSS]S 17 Bgol®(1g. 4 - +ga|)ridedr
2 ~Jede {(Igl|z+ "‘+lgn|2)1]2+lgo|2}2(1+|z|2)2 .

Changing variable and setting t=c¢/r, a(t)=7x(c/r) (t<[e,1]), we have

IS 2’ *1gol*(19:1*+ -+ +194l")d2d?
c {(lgil®+ - +lgal)a®+ 19072 (141217 ~

Fas|

£
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Letting ¢—0, we have

£d<slg ]a/|2|9012(|gl|2+ +|gn|2)dzdt )
2 "= Jode {(lg1]% 4 -+ 192190+ 19022 (1 + |2/%)?

for any function a:[0,1]—[0, ) such that «(0)=1, a(1)=0.
Set

0

R lgol*(1g:]*+ -~ +1ga]%)d2 e
F(S)—So{gc {{g:12+ -+ +1g.1Da*+ g0} (1 +|2]%)? da

and choose
a)=F"Y(F1)1—1).
Then we have

ir. g 2
5 A< F(1).

So we obtain

<£d>1/z<SIJS lgo (g1 12+ -+ +1g.|Ddz o
: =Jole {(1g:°+ - +1g.1)8" +1gol* (1 +|2]%)* )

Let A be an isometry of CP™ then we can identify A with an element
of SUmn+1). Since the energy is invariant under a composition of an
isometry and f is a MTM, it follows that Aof is also a MTM. So if we
write Aog:S*—CP" as

Aog(z)=[Ago(2) : -+ : Ag.(2)]

ds.

and set
I.f/(z)IZZéIgi(z)lz,
we have
T\ _ (! | Ag,l*(lg1*—1Agol*)dz 12
(3.1) <zd> <{ 1, (Ag P (1—s) T TgPs? A +127 ) %

Let dm be the biinvariant measure on SU(rn+1) with its total volume
1. Integrating the both sides of (3.1) over SU(n+1) with respect to dm,
we have by Schwarz inequality

T\ |Agol®(1g]2— | Agel2)dmdz 1172
(3.2) <2d> SS01SCSSU(M {([AgoP0—5%) + g% (A +1219* |

We set w=g(z) and calculate

| Awo|*(|1w|* — [ Aw,|?)
svn+n {(|Awo|*(1—s%) +|wl|?s*}?

ds.

dm .

I(w) =S
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Note that I(cw)=I(w) for ce C\{0} and dm is the biinvariant measure
on SUmn+1). So for w=[1:0:--:0] we have

I(w)=I(w) .
And if we set

¢c 0
S(U@1) x U(n)):[< B)eSL(n—H ;C); e UQ),Be U(n)},
0

the integrand of I(@) is S(U(1) X U(n)) invariant.
Hence if we define a function G on CP*=SU(n+1)/S(UQ1) % U(n)) by

CTR R S —
G([zo Ceeer g -])_____ lzolz'*‘ ct +|Z,,|2\ I20|2+ ot '*'|2f'nl2

[2,]* ( 2 2 2
== -+

we have by [8 p. 369 theorem 1.7]

s

1w)={  GdVolepn.

(Here we normalize dVolcpr by SCPndVolcpn:L)

So
|22+ - +124]°
Itw)=| Ml ——d Volgps
CP"{1+82|31| +]"u'2+‘zn| }
:S lx|? ZL_L dx, - dw,,
ren (148%x[?)? 7" (Jz|*+1)"*!
oo 2n1.2‘n+1
ZSO AT s o) o7
Setting
G"(S)ZS: (1+s2%:(21n:r2)"“ ar,

we have from (3.2)

d§2{S: des}z.

We set In=S: VG, 9 ds.
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REMARK. The main idea of the above discussion follows Brezis-Coron-
Lieb [1]. In [1] they proved d<2 for m=1 and discussed in the case of
d=1. If n=2, we can estimate the degree of g by the following lemma.

LEMMA. I, I,< \/%

The proof will be given in the next section.
By this lemma we have the estimates of I, in the following.

PROPOSITION. I,,<\/1g— for n=8.

PROOF. Since

Guo)=|

© 2n7.2n+1

0 (1 +82,’.2)2(1+,r2)n+1

dr,

n
n—1

Gn(8)< Gn_l(s).

So
G,.<s)<§G3(s> @=3). =m

We can now prove the first main theorem.

THEOREM 1. Let g:S?—CP" be a holomorphic map of degree>2.
Then the tangent map of g is not a MTM.

PrROOF. If the tangent map of ¢ is a MTM for =3, we get degree
g<mn from the above proposition. Hence ¢ is not a full holomorphic map
by [7 p. 173]. So ¢ is a holomorphic map into CP* CCP" for n' <m.

Then we can use the estimate of the above proposition for CP™ and
finally since I,<+/3/2, g must be a holomorphic map of degree<?2 into a
totally geodesic submanifold CP? in CP". =

§4. The proof of the lemma

In this section we shall prove the lemma 1n §3.
First by direct computation we have

_n—2 n(k+1)
G,(s)= Eo (n—k)(n—k—1)(1—s?)**?
_ 2n’s"+2n log 5 n(n+1)

(1_82)n+2 - (1_32)n+1 .
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2nr
1+s*r?)3(1 4 pr?)

(Using a parameter B and differentiating Sw ( dr by B, we
0
can calculate G,(s) inductively.)

Expanding this in powers of (1—s?), we have

n(k+1)
o (m+k+1)(n+k+2)

Guls)= 3 (1—s%"

for 0<s<1.
First we estimate I,.

PROPOSITION. [2<\/%.

PROOF. Setting t=1—s% we have

2(n—1) N

(=60 3, 6 i

And

flog (1—t)}*=2 2(1 P L >t“

a2\ N k=1 k

Here we find

n—1 5o 1o
T Dt ~02Exy S
for n=2 i.e.
n(n+1) o 1
2ty “O-BEX 2

for n=1.
Indeed, for 1<n <36 we can check this directly and for n=37 we have

n(n+1)

1

So the above inequality holds for n=37.
Hence we have
(1 —5%)2G,(s) <0.242 % {log (1 —1t)}2.
So
(1—5%2%G,(s) <0.242 X 4(log s)®.
And we get

121 Iogs
Gals) < \/1253
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Therefore
1
Izzg VG()ds
0

121! log s

<\/125
i

17
58

Next we estimate I,
PROPOSITION. L< \/%

PROOF. Setting t=s%, fi(t)=(1—1)%Gs(s)/(log t)?, we have

3t+1 1
(1 )a 10 t‘l‘ +1 (l_t)z

(log t)*

We investigate increase and decrease of fy(t).
Differentiating f, by logt, we have

fo(t)=3

flt)=— 186(t+1) (log 8)*+3(1—1) (¢ +4¢ —1) log ¢+ (1~ §)*(t*~8t—17)

t(1—1t)'(log t)®
Setting

(1=t)(t?+4t—1) (1—2)%(t*—8t—17)

— 2
fit)=(log )"+ ———g gy log b+ ———gr gy
we have .
v —t+108 41682 4+14¢+1
o= 6¢(t+1)° og t
=45t 4+1682 4102 —23t—7
9t(t+1)° '
And if we set
£ =1 t_z—t5+5t‘+16t2+10t2 23t—17
=08 b T 0P+ 1667 14 +1

we have
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(1—t)(t+1)(2¢*—35t2 — 54t +3)

Sat)= St(—t'+ 1082+ 1682+ 14t +1)2

135

So we get increases and decreases of f,, f; and f, as in the tables below

t 0 28 1
Se(t) + 0 —
Ja(2) / maximal N 0
t 0 a, 1
fi(t) - 0 +
S1() N minimal Y 0
t 0 Qay 1
Sol(t) + 0 —
So(®) / maximal AN

We cannot get the precise value of a,, @, and «,, but we can

0.0129<a,<0.0130 by approximating «, from f,.
If we set u=1-s% we have

220 - 3(%—1) n
A= G6= 2 G Ty

(L L)m
2\ N k=1 ko ’

; 159 / log s \?
G < 335 ( 125

Comparing this with

18

Ms

{log (1—w)}2=2

n

I
[

we get

(We use the same method as in the case of I, and obtain

n(n+1) ‘ n 1
Wt mra) S0-EEX 2

We calculate directly for »=63 and for »>63 we have

get
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n(n+1) LI
L3 mrd 102X mo.

Since we find f,(0.0129), £,(0.0130)<0.282, we have for 0<a,< - <a,
<V0.0129< Va, < vV0.0180<b, < -+ <b<1

eides [y, JgVOOIZ | o o
[, VE@ds= \/125><~——w0__..0129)2_1><( 0.0130— +/0.0129)

141(* log s
+\/mgosz—lds
141 ”2J (1 log s
{\/1—25 folw) |\ ' eE T ds
3 Y (it ]
—.E{fo(ai)”“—fn(awl)l/z}g ' Sgsds
i=1 0 s°—1

{1z o0, #Eges

- 'é1{fo(bi)uz_fo(bi“)”z}gl 10g8 ds.

i= biHSZ—l

Here for 0<a<1,

go slogsds——~log 1+ loga+ RZO (2?::1‘)2
log 1 loga+a+ %-I-jz-;—,
J ds=%2 +plo T logo— 8 i
>E82_ —log 1+ loga— a—%—g—%—o 09xa’.

Using these inequalities and setting a,=0.05, a,=0.026, 0,=0.012, a,=
0.004, b,=0.29, b,=0.43, b;=0.58, b,=0.75, b;=0.9, we get

S; \/G—s(s—)ds<\/§,

REMARK. The auther calculated the above estimate by computer.
Computing by Fortran using single and double precision, he checked the error

is enough less to get the estimate I,< v'3/2.
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§5. An example of MTM

Since m,(CP") #0, from Schoen-Uhlenbeck [13] there exists a non-constant
MTM from B® to CP*. In this section we give an example of non-constant
MTM.

Let n:C""'—>CP" be a natural projection and V be a (complex) 2-
dimensional subspace in C**!. We give C"*' a Hermitian metric and let
#y be the orthogonal projection from C"*! into V. Let P'(V) be the pro-
jectification of V and p: V—P!V) be the natural projection and V* be the
orthogonal complement.

Then it is easy to see that there exists a map =y : CP"\a(V*)—=P (V)
such that the following commutative diagram holds.

Tv
Cu+1\VJ. RN V

S

CP"\n(V*) — PY(V)

Ty

THEOREM 2. Let ¢: S?)—>CP" be a totally geodesic embedding. Then
the tangent map of ¢ is a MTM.

PROOF. First for v=TCP" there exists a constant ¢>0 such that

elvl*=| |dm ()G,

VEG,(CT+L
where dG is a biinvariant measure on Grassmannian manifold G,(C**!)
with its total volume 1. We find that ¢<c from computation below and
Fubini’s theorem (see also Coron-Gulliver [3 p. 85].)

Hence if we set v=du(d/dxz*) (a=1, 2, 3) for u: B*—>CP", it follows that

oldul*=| |d(zyow)|?dG .
VEG,(CT+])
So
cE(uw) =SVEGZ(C'M) E(ryou)dG .
If we choose u=uq,(x) =us(r,2z)=[2:1:0:---:0], we have ¢=1 since E(u,) =

E(ryou,) =8r for almost all V.
Since the energy is invariant under a composition of an isometry,

from [9 p. 334 theorem 11.1] we may assume that the tangent map of ¢
is u,.
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And since E(zyou)=E(r,ou,) for any uwe LV3(B?, CP") such that u—u, s

Ly*(B*, R*) ([8 theorem 1.1]), we have

[1]
(2]
(3]
[4]
5]
[6]
[7]
(8]
[9]

(10]

(1]
(12]
(13]
(14]
[15]

E(u) :S E(ryou)dG

Go(CTtly

\Y

E(EV Ouo) dG

502(0"4-1)

=FE(u,). =
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