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The nullity of harmonic tori in Lie groups
By Masanori HIGAKI

Abstract. Recently Burstall et al. showed a construction of har-
monic tori into Lie groups by using loop algebras. In this paper the
auther estimates the nullity of harmonic maps constructed by his
method.

§1. Introduction

Let ¢: (M, g)—(N, h) be a smooth map of Riemannian manifolds. The
energy E(¢) of ¢ is defined by

— 1 2
Blg)=| ldpld.,

where the differential d¢ can be viewed as a section of the vector bundle
T*M@p 'TN on M and we denote by |del(x) its norm at a point z of M,
induced by the Riemannian metrics. We say that a map ¢: (M, g)— (N, h)
is harmonic if it extremizes the energy on every compact subdomain of
M. If M is a circle S', a map ¢: S'—N is harmonic if and only if it is
a closed geodesic parametrized proportionally to arc length. The Euler-
Lagrange equation of the energy functional E is

Trace, Vdp=0,
where we denote by V the connection on 7*M &¢ 'T'N. The Hessian of a
harmonic map ¢ is given by

H, (v, w)= S | (Ao —Trace,R¥(dg, v)dp, wd,

where v and w are sections of the vector bundle ¢ 'TN, A? is the Laplacian
on sections in the vector bundle ¢ 'T'N, and R" is the curvatnre of the
Levi-Civita connection on N. The operator on sections in ¢ 'TN

J,=A?—Trace, R¥(dp, -)d¢

1991 Mathematical Subject Classification. Primary 58E20 ; Secondary 58F07, 22E65.



204 Masanori HIGAKI

is called the Jacobi operator and elements of its kernel are called the
Jacobi fields. The dimension of its kernel is called the nullity of ¢. In
the case M is the circle S', Jacobi fields is well-known in the theory of
geodesics. For the fundamental facts about harmonic maps see Eells-
Lemaire [3].

In recent years harmonic maps from a Riemann surface into a Lie
group have been investigated extensively. Harmonic spheres into a Lie
group were studied by Uhlenbeck [5] and harmonic tori into SU(2) were
studied by Hitchin [4]. Burstall [1] showed the construction of harmonic
tori into a compact Lie group. On two-dimensional domains, the energy
functional is conformally invariant, so we can identify harmonic maps of
a 2-torus into a Lie group with harmonic maps of R? into a Lie group
which are doubly periodic with respect to some lattice. In this paper we
estimate the nullity of harmonic tori into Lie groups which are constructed
by Burstall et all. [2] using loop algebras.

In §2 we review Burstall’s construction in [1],[2]. His starting point
is the very important observation of Zakharov-Shabat-Uhlenbeck, which
states the relation between harmonic maps of R? into a Lie group G and
one parameter families of g®-valued 1-form on R?. We identify R? with
the complex line C and let

a=a' +a”

be the type decomposition of a, where a’ is a g°-valued (1, 0)-form and «”
is a g%valued (0,1)-form. Thus a”=a’, where the conjugation in g¢ is
with respect to the real form g. For each 1€ C*, we define a g°-valued
1-form A; on R? by

_1-2

Al—za-l- 5 —al

Then

FACT 1. (Zakharov-Shabat, Uhlenbeck [5]) The following statements
(i) and (i) are equivalent.
(i) For each 2€C*, A; satisfies the Maurer-Cartan equation.
(ii) There exists a harmonic map ¢ of R® into a Lie group G and
the pullback of the Maurer-Cartan form of G by ¢ is equal to
AL

Thus we can obtain harmonic maps of R?® into a Lie group G if we
construct g¢-valued 1-forms A; satisfying the condition of Fact 1 (i).
Burstall [1] showed the method to construct such 1-forms by using the
flow of some vector fields on the finite subspace of the loop algebra
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2,={&: S'—g; &(1)=0}.
An element & of 2, is expanded as follows

5: 2(1_1'2)571 (Enegcyénzs—n)~

n#0
Now for each de N, we define finite dimensional subspaces of £, by
Q,={€Q,; £,=0 VY|n|>d}
and define the vector fields X,, X, on £, by

1 . . )
72‘(X1_71X2)(5):[5,2@(1_‘1)&1" Eef,.
Then Burstall proved the following.

FACT 2. (Burstall [1]) The vector fields X,, X, are complete and com-
mute each other. Using the flow &: R*— Q, generated by X, and X,,
define the g-valued 1-form A; on R? by

A;=29(1—A)éydz—21(1—271)E_4dZ
then A; satisfies the Maurer-Cartan equation for each i€ C*.

Thus we can obtain a harmonic map ¢ of R? into a Lie group G when
we give a natural number d and an initial condition £(0)= 2, of the flow.
A harmonic map ¢ is unique up to left multiplication by a constant ele-
ment of G. If such a harmonic map is doubly periodic then we obtain a
harmonic map of a torus R?*/ A into a Lie group . Burstall showed the
sufficient condition for a harmonic map of a torus R?/4 into a Lie group
G obtained by the above construction. Let ¢ be a harmonic map of a
torus R?/A into a Lie group G then ¢ 'd¢(d/dz) is viewed as a map from
R? into g°. Burstall proved that ¢ 'd¢p(d/dz) takes values in a single Adgec-
orbit in g°. Moreover he proved the following fact.

FACT 4. (Burstall et al. [2]) Let ¢ be a harmonic map of a torus
R/ /A into a compact semisimple Lie group or a unitary group G. Suppose
0 'dp(0/0z) takes values in a single Adgc-orbit of semisimple elements in
a¢, then ¢ 1is obtained by the above construction for some dEN.

In § 3, we estimate the nullity of ¢ using above d. First we prove
that the natural number d in Fact 4 is not unique.

LEMMA 1. Let d’ be any natural number grater than d. Then the
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given harmonic map 18 also obtarned by a flow on 8,.

Now we define natural number d(p) as smallest number having such
property. We prove the following theorem.

MAIN THEOREM. Under the same hypothesis as in Fact 4, the har-
monic map ¢ satisfies

d(¢) < (The nullity of ¢)

Acknowledgements The author would like to thank Prof. T. Ochiai
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§2. A review for Burstall’s construction

First we consider harmonic map of R? into a compact Lie group G.
We fix a bi-invariant Riemannian metric on G. Let g be the Lie algebra
of G and 6 be the Maurer-Cartan form of . Then ¢: R*—(G is harmonic
if and only if

2.1) d*(p*0) =0.

And ¢*0 satisfies the Maurer-Cartan equation
1
(2.2) d(@*0)+ 5 [9*0 Ap*0]=0

since @ satisfies it. The equation (2.2) means that the connection d-+ ¢*@
on the trivial bundle R*X G is flat.

Conversely, given a g-valued 1-form « on R?® which satisfies (2.2) there
exist a gauge transformation ¢: R*—G, unique up to left multiplication
by a constant elements of G, such that

p*0=a

moreover if « satisfies (2.1), ¢ is a harmonic map. Thus it suffices to
consider g-valued 1-forms a on R? satisfying (2.1) and (2.2) to obtain har-
monic maps of R? into a Lie group G.

Now we introduce a complex coordinate on R? and let

a=a +a”

be the type decomposition of a g-valued 1-form « on R? where a’ is a
g-valued (1,0)-form and «” is a g®-valued (0,1)-form, thus a”=a’. For
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any A=C*, We define a g°-valued 1-form A; by

e

1—2 , 1—271%" ,
A= 5 a'+ 5 a

which is g-valued for A€ S'. Then the following fact is well-known.

FACT 1. (Zakharov-Shabat, Uhlenbeck [5]) The following statements
(i) and (ii) are equivalent.
(1) For each Aic€C*, A, satisfies the Maurer-Cartan equation.
(ii) There exists a harmonic map ¢ of R* into a Lie group G and
the pullback of the Maurer-Cartan form of G by ¢ 1is equal to
AL

Thus it suffices to consider g¢-valued 1-forms A; which satisfy the
condition of Fact 1 (i) to obtain harmonic maps of R?into a Lie group G.
On loop algebra

2,={¢: S'—g; £1)=0},

we define an inner product by

€. e)=] € edwolsi  for £,62Q,

Then any element & of £, is expanded as follows

=2 (1=2"¢a,

n+0
where &,=g¢ and §,=¢_,. For each deN, we set
Q,={€2,;: £&,=0 V|n|>d},

which is a finite dimensional linear subspace of £,. We identify each
tangent space of £, with itself and we define the vector fields X,, X,
on 2, by

0o | —

(X1 —1X5) (&) =[§,2¢(1 - 2)é&,] for £€0,.
Then Burstall proved the following.

FACT 2. (Burstall [1]) The vector fields X,, X, are complete and com-
mute each other. Using the flow &: R*— Q, generated by X, and X,,
define the a¢-valued 1-form A; on R? by

A;=2i(1 -2 &, dz—2i(1—2"")&_,d2
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then A; satisfies the Mauwrer-Cartan equation for each A< C*.

Thus we obtain a harmonic map of R? into a Lie group G satisfying
p*0=A_,, unique up to left multiplication by a constant element of G
after choosing a natural number d and an initial condition £(0)e, of
the flow.

Let M be a Kahler manifold and ¢ be a smooth map of M into G.
We identify the pullback of the tangent bundle of G with the trivial
vector bundle Mxg on M by the pullback of the Maurer-Cartan form of
G. Then the pullback of the Levi-Civita connection of G is given by

V=d+%ada’,

where we denote the pullback of the Maurer-Cartan form of G by «a.
Under the above identification the Jacobi operator .J, of the harmonic
map ¢ is given by

> 1 50 . ;
Jyo=S |~ @s3s - 238104, Z0)+ [l Z0), [a(Z), 0]

+ %[a(z,,), [a(Z,), v]]},

where {Z,} is a local unitary frame for 7“®M and v is a map of M
into g°.

We defined vector fields X,, X, on £2,. Let &: R*— Q, be a flow
generated by X, and X,. Namely & is a solution of the following dif-
ferential equations

0§
0& _
a—y'——XZ(e) .

Using the complex coordinate z=a+1y, these equations are expressed by

0 1h ooir
%—[é,lt(l A)éal .

Taking the conjugation we obtain

98 —fe, —2i1-278 ).

Thus the flow & satisfies
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dsz[év Al] 2

where A;=2i(1—2)&,dz—2i(1—2"")é_,dz.
Let ¢ be a harmonic map of M into G. Then ¢*# has a decomposition

90*0: (¢*0)1.0+(()D*0)0,1

and for each 1€C* we set

11— 1-27!
2

B,= 152 (p*0)+ (p*0)"".

Then we remark the following fact.

FACT 3. (Burstall, Ferus, Pedit and Pinkall [2]) Suppose Y=32""Y,,
where Y, : M—q°¢ satisfies

dY =[Y, B;]
then each Y,: M—g° is a Jacobi field for the harmonic map ¢ .

Next we consider harmonic maps of a torus R?* /A into a Lie group G.
Burstall proved the following.

FACT 4. (Burstall et al. [2]) Let ¢ be a harmonic map of a torus
R A into a compact semisimple Lie group or a unitary group. Suppose
0 'dp(d/oz) takes values i a single Adgc orbit of semisimple elements in
g€, then ¢ 1s obtained by the method of Fact 2 for some d=N. Namely
there exists &: R*A—Q, satisfying

dé=[¢§, Al
A =¢*0 (.. 4if.dz=(p*0)""),
where A; 1s as above.
Thus when we express the flow &: R?/A—8, in Fact 4 in the form
E:”“Eﬂ(l—l")én,

each &, is a Jacobi field for the given harmonic map ¢ by Fact 3. In the
next section we estimate the nullity of ¢ by using these Jacobi fields.

§3. The estimate of the nullity

Let ¢ be a harmonic map of a torus R?// into a compact semisimple



210 Masanori HIGAKI

Lie group or a unitary group. Suppose that ¢ satisfies the condition in
Fact 4. Then the harmonic map ¢ is obtained by a flow &: R} A—Q,
generated by X; and X, for some d=N. The natural number d is not
unique for the given harmonic map. In fact we can prove the following.

LEMMA 1. Let d’ be any natural number grater than d. Then the
given harmonic map 1s also obtained by a flow on 2.

PROOF. Let ¢ be a harmonic map which is obtained by a flow &:
R*}[A—Q,. Namely £é= Zd(l—/l”)s,. satisfies
inls
d5=[5,A1]
(p*d)°'=4i€,dz,

where A;,=2i(1—A)&,dz—2i(1—A"")&_,dz and @ is the Maurer-Cartan form
of G. By using (p*6)'°=4i£,dz, A, is written in the form

1—2"1

%*0)0.1
5 (o 0)**.

A=—TE roy

Now for any natural number N, we define

§: RA—> Qun
by
E=2Ve+ 2 ME.
Then it is easy to verify that & satisfies
dé:[é, Al
(90*0)1'0:47:éd+1vdz .

This means that the given harmonic map ¢ is obtained by the flow £ on
the vector space 2,4,y. ®

Now we define the natural number d(p) as follows for a harmonic
map ¢ which satisfies the condition in Fact 4.

DEFINITION. Let ¢ be a harmonic map of a torus R?/A into a Lie
group G which satisfies the condition in Fact 4. The harmonic map ¢ is
obtained by a flow on the vector space 2, for some d=N. we denote by
d(¢) the minimum natural number which has such property.

Then we can estimate the nullity of the harmonic map ¢ by using
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above d(¢p).

THEOREM. Under the same hypothesis as im Fact 4, the harmonic
map ¢ satisfies
d(¢) = (The nullity of ¢)

In the rest of this paper we prove this theorem. The outline of the
proof is the following: By assumption there exists a flow

f= 2 (1-2")¢.,

InIsd(p)
by which the harmonic map ¢ is constructed. From Fact 3, we can con-
clude that the coefficients of &

51;621"'; 511(¢)

are Jacobi fields for the harmonic map ¢. We prove that these Jacobi
fields are linearly independent.

PROOF OF THE THEOREM. Let &: R*/A—%,, be a flow by which the
harmonic map ¢ is constructed. Then & is expanded as follows

§= 2 (1-2"§..

Inlisd(p)
Bach coefficient of &
§1,6s, 0 ’ ed(ga)

is Jacobi field for the harmonic map ¢. It suffices to prove that these
Jacobi fields are linearly independent. We prove this by contradiction.
Assume that there exist some a,€C (1£4<d(¢p)) such that

aiE 1+ abst o Faar€ac,y=0.

We denote d(p) by d for simplicity.
The case for d=1 is obvious. In the case for d=2, first we prove
that a, equals to 0 by contradiction. Assume that a,#0. We define

§: RN — Q,
by i
§=(1—é+(1—27NE,.

Then we prove that & satisfies the following equations

&z .. :
& 12,210 &)

(90*0)”:4%5@2 .
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The latter equation (p*@)"°=4ié,dz is clearly satisfied, since &, equals to
&,. Since

[€,20(1— D& ]=[(1— D&+ (1—271)E 5, 2i(1— A)E,]
=(1-2"1=[&-,, 2i4,]
={1—-+1—-2""}[&_,, 2¢,],

the equation

ae —[£, 2(1— &,]

is equivalent to the following

(3.1) 352 =[&_,, 2i&,]

(3.2) 65 2

=[§_,, 2i&,].
Similarly the equation

98 _re 9i1_

o =[e, 211 - 28]

is equivalent to

652 _

(8.3) = [51,2152]
ael
(3.4) =2[&,,21&,]+ &, 21&,]+[&_,, 21&,]
(3.5) CLETI 2i52]—[5-2, 28]
(8.6) 66— =[&. 2, 216,] .

By the assumption the following is satisfied
a &+ a6,=0.
Taking bracket with 2i¢, we obtain
a,[&,, 216,]=0.

Using the assumption
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CLﬁ-"O
we obtain
(3.7) [El, 27;52]:0 .
Now, if we substitute
&= Z—s

for (3.5), we obtain

_@ﬁgz_ _ [_@5 2ig, ] 16 2, 2i8.].

Using (3.6) we can conclude
(3.8) [&_2, 21,]=0.

From (3.7) and (3.8), we see that the equation (3.1) is equivalent to (3.3).
The equivalence between (3.2) and (3.6) is obvious. This contradicts to the
definition of the number d=d(p). Therefore

a,= O .
Moreover

since d equals to 2. So

Hence Jacobi fields &, and &, are linearly independent.
In the case the number d is larger than or equal to 3, we set

k=min{n; a,#0}.

1snsd

First we prove that
ak:O

by contradiction in the case 1<k<d—2. Now assume that a,#0. We set

’ a?l
an=——
A
for k+1<n=d, and define a® by
al(k):1+a‘l;+1
(3.9) aék):a/;+k_a/§+k—l 25id—k—2

(k) 7 ’ ’
Qg p-1=0g-1—Qg-2+0g.
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Using this a{®, we define

&-(k) . R2/A s -Qd—k
by

W d-k Y [ _d-k—n wa ]
E E (1 A )1§k+n 2 a; 51+k+n{
2 t=1

n=

d-k-1 " d-1 ,
+1-D 6= T @bt D e

d-k-1 d-1 }

+(1—2_1){5-(h+1)_ ,§1 aPE i tEoa— kHd;&—i

1=

—k-n
uly

d-k ( d
+ 2 (1—2_")15—(“")_ )

—®
Qa; 5—(i+k+n)} .
n=2

Then we claim the following.

CLAIM. Let & be as above. The harmonic map ¢ is obtained by
the flow &%, Namely &% satisfies

a&-(k)
0z

(p*0) =416 dz .
@

=[6P, 20(1 - D))

From this claim we can see
akZO

because this claim contradicts to the definition of d(¢). We prove this
claim first in the case k=1 using the following lemma.

LEMMA 2. Assume that

a, #0
then
(3.10) B (60, &)+ 2 alilén, £]=0
(3.11) [, 6ul= BT [E -, &)

(3.12) £, .= dzz allé., &
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(3.18) [6-4, &ql= _dzzd’i[é_l,éd]-

PROOF OF LEMMA 2. The equation

0 _hooiir
%—[E,Zt(l A

is equivalent to

06s _ ¢ o
9z [£4-1, 27/5:1]
M—Lfd 1, 2164]— [£q- ;Z/LEd]
P i, 2i6)~[E0s, 2084
(3.14) ?
aéz _Ifz Z%Sd] [El;Z@EdJ
0§,
fz =[5, 2ig.]+ D (6., 28]
0&_, . .
Dot e, 2ig,] (6, 218
ag_z :[S—z,ziéd]_[f—a, Zifd]
(3.15)
06_ -1 O, .
SED g 1,260 (60, 2i8]
Boi —ley, 2t
From the assumption
(3.16) €+ azg,+ 0 +aa=0,
we obtain
(3.17) 351 552 04 —0.

1T T, T e,

215
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From (3.14), (3.16) and (3.17) we obtain

axlﬁd[én, 2t6al—asl§y, 296 ] — aul &2, 20€u]— - —ayléa-y, 2064)=
By the definition

ai=——(2<1i<d)
@

)

we can conclude (3.10) immediately. Similarly from

(3.18) @& 1+ A6 2t o + A€, =0

we obtain

: 3 06 g 98 Lo .
(3.19) a, oz +a 52 + +adq 32 =0.

From (3.15), (3.18) and (3.19), we obtain
d1[5~2, 2i54]+d2[5—3, 27;5«1]"’ +m|£~d,2i5dJ:0-

Then we can conclude (3.11) immediately. Also from (3.16) and (3.18) we
obtain

Taking bracket with &,, we can conclude (3.12) and (3.13).
Now we shall prove the claim for t=1 by use of Lemma 2.

PROOF OF THE CLAIM IN THE CASE k=1
By the definition, &V is in the form

§0= 3 (1-2)(Sek)

Inisd-1

for some ¢{’;€C. Namely £ is written in the form

51(11) — (1) S]
The equation

(p*0) 0 =4igd

is clearly satisfied since £§2,=¢&,. So we shall prove the eguation
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[€D)
G e, 21— DEL,

This equation is equivalent to

1)
Rens — (e, 2ig9)
(l)
) e e, 2igel (60, 2662,
(3.20
35“) Ieél) ZE(” J__le(l) Z'Lé(l)
aE(l)
(3.21) S =la, 2ig] - (60, 2i68,
65(” . )
(3.22) s =167, 26620+ 2 (€7, 20682
z inlsd-1
a{s(l) )
(323) az —[E( Z’I/Sm ] [/—(l) 27/6“) J
a )
5 [E( (1) ]_[S(l) 21/5(111]
(3.24) 0]
en g0, 2i680.] - 6%, 2062,
(69)
FEtan (g, 2021,

First we shall consider £ for 3<n<d—1. After substituting

d
W= o) W _
chJ s n-1=— 220;111,151 and £32,=§&,
j=
for

00 (e, viggn) - (62, 2ig ),

we obtain
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Q¢ ¢ ) aéi ¢ a) o d (1) .
625 oot =] Seng, vt |- S g, 2t .
j=2 2 j=2

j=2
On the other hand,
&: R4 — Q,
satisfies

1 1g,, 26l 18-, 2i8]

for 2<j<d. Also after substituting these for (3.25), we obtain
d a 5 N . .
ngcn.)j(lfj, 2164]— lfj— 1, 2164))
¢ (¢9] P> d (6] .
= Sewe, e[ Sew, 2t
j=2 j=2
So that
a 1 d (1)
(3.26) S eer b= Dol 66
Namely we must prove
d d
(3.27) [2 enibio— Doy j,fdJZO-
j=2 j=2
Now from the definition of ¢{; we obtain

d (1) d (1)
20 Cn3E-1— 2 enly 565
j=2 j=2

AT W 1w
=<En_ _2] a; $i+n>—<€n— '21 a; Ei-}-n)
i= i=

¢
= Qi nSq-

So (3.27) is clearly satisfied. We have proved that & satisfies (3.20).
Next we shall consider &". Similarly, we see that (3.21) is equivalent
to the following equation

d d
(3.28) [zzcé};- j-l—]zlcf.‘} j,sd]zo.
7~ -

Also from the definition of ¢{’; we obtain



The nullity of harmonic tort into Lie groups 219

d d
(D) D g
205581 — 21 €1,56;
=

j=2

:<Ez—§fa§l)£i+2>_<52 Zal)s”’ﬁ_& 2:0,25,-)

d-1
#a'fil)z d <51_ _22(1/;51)
iz

Therefore the equation (3.28) is satisfied from Lemma 2 (3.12). We have
proved that &{" satisfies (3.21).

Third we shall prove that &" satisfies the equation (3.22). After
substituting

& —ZOZ";E; (Injl=d—1)

for (3.22), we obtain

d
G20 Dol oS Seme, zie |+ 5 [ewe 2],

Inisd-1

On the other hand

E: R¥A— 2,
satisfies
« aEJ DN
(3.30) =[&;, 20641 —[6,-1, 2084) (2=j=d)
0 0¢, o )
(3.31) T:[El,zzédH >[4, 218,].
z tn1sd

After substituting (3.30) and (3.31) for (3.29), we obtain

d

_2 N5, 296418521, 2964]) +e1i( [51,2?/§d]+ P [Eu; 21€,])

d
=[ Dot e+ B [meng, 2.
So that

—jé Nesn bl 4ol B [En6d= B [See, 6.

nisd-

Now from the definition of ¢g”; this becomes

d-2 d-1 ,
332 —[6— S aPti- Daigon ]+ 3 (606
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d-1ld-1-n

d-1 d-1
=|:1§l$1+n— 21 El ai”fi+1+n+§1—E‘za;fn-fd]

n=

d-1 dotdlon o d-1
-1
+|:n215-(1+n)_ 2 21 ai 6 cipremy+HEo1— zzaié—i;éd:l-
= i=

n=1 i=

d-1d-1-n
The term nZ=]1 g} a{®&;,14, in right hand side is written

1

d-ld-1-n 1 2 a-2
(533) ”21 iZ]I aé“fiﬂ«-n: Zlail){:a‘i‘ Zlaél)éd‘{“ A + _21 a§“$¢
= = 1= 1= =

e
=22 a; &

l=3i=1

From the definition (3.9) of a® we obtain

-2
Sa’=1+a., B=ISd—1)
(3.34)

d-2

/7 7
ZlaE”=1+a¢_l+ad.
=

After substituting (3.34) for (3.33) we obtain

d-1d-1-n d-1
(3.35) n2=1 & a§1)5i+1+n= lg.% (1+a{_1)§l+(1+a;_]+a;)5d

(1 +a;—l)$i +a:i$d .

3

d
Similarly we obtain

1d

d- —l—n__(_ d > ,
(336) n2= i2=1 ail)s—(t+1+n):izag(ai—1+1)$-i+dd€-d-

1
d—2

The term X a{’¢,,, in left hand side of (3.32) is written
i=1
d-2
?1 aél)fuz

d-3
:al(”€2+ 220’;“5”14‘“:(11-)25(1—1
Py

d-3
(8.87) =(az+1)&,+ P} @11 =)+ (@1 — s +a5)Ea,
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, -2 -2
=&yt aaba-1+ 21 i1 — ;Zai€i+l

d-1 d-1
:62+a;6d—1+1§2a26i—1§3 ai.&q.
After substituting (3.85), (3.36) and (3.37) for (3.32) we obtain

[—51"‘331&251'4‘%}1@;“51, Sd]+ > [&a,84]
(338) i=2 i=1 Inisd

=[e- et ]+[60- DT He— a6

This equation is clearly satisfied from (3.10), (3.11), (3.12), and (3.13).
Forth we shall prove that &Y satisfies the equation (3.23). After
substituting

d d
5‘_‘3=121c£‘.’.-j o =2l €, and £i2=6
= i=

for

(1)
B e 2igg )16, 2ig ],

we obtain

d (1 55-1' — & (1) y eV
CEORNSS PE: S [ I T P )
=1 2z 1 i=

ji=

On the other hand

&: RN — Q,
satisfies

(3.40) ot 2l 28]~ 16 run, i8]

for 1<j<d. Also after substituting (3.40) for (3.39) we obtain

Jél el _([€6-5,2164] —[& - un>, 2184))

d d
= [21 cill), -JS -7 2i€d:'~—[]§20(—12)' -JS -7 2i$d] .

i=

So that

d d
(3.41) 568 8 e 8al=] BB 88,

j=1
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Namely we must prove

a d
(3.42) [g e & Gen— E,, ¢f3 &5, 5(1:' =0.

J

Now from the definition of ¢, we obtain

d 1 d

. (6]
2c¢h EGen— 2B 6,
j=1 i-2

d-2 a-1
:<$—3— 121011(”5-(”3)4‘5-2_ Ezdgf—un))
= i=
d-—3T
—<$~3—‘ Elﬂ’t )5—(i+3)>
iz

-1
=& ,— iX_JZdéE-um .

Therefore the equation (8.42) is satisfied from Lemma 2 (3.11).

proved that &Y satisfies (3.23).

Finally we shall prove that &) satisfies the equation (3.24)
(3.24) is equivalent to

d d
(3.43 [ Bt B, 84| =0.

From the definition of ¢, we obtain
e 1) e (1)
200, 56— 2 C8niny, -6,
j=2 j=2
l-n-2

= <5—(n+2)’_ 2! 0’§”€—<i+u+2))
=

d-n-2

- <$-<n+2>_ iz—l aﬁ“E_(H,,.,.z))

=0.

We have

. Similarly

Therefore the equation (8.43) is clearly satisfied. We have proved that
& satisfies (3.24) for 2<n<d—1. So we have proved the claim in the

case k=1.

We shall prove the claim in the case 2<k<d—2, using the following

lemma, which can be proved similarly as Lemma 2.

LEMMA 3. Fix any k for 25k<d—2. Assume that



then

(3.44)

(3.45)

(3.46)

(3.47)
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a1=a2=-"=ak-1=0, ak¢0,

[&e-1, &= ;i?:a;+l[51; &4l

[&- e, Ed]: é 02—1[5—1, Ed]

i=k+2

[0 8= 'S ailé, &)

[0 Ed= > @fé-i e

i=k+1

PROOF OF THE CLAIM IN THE CASE 2=k<d—2:

The equation

a&'(k

az _I"E(k) 2@ 1 R)E(k)

is equivalent to the following

aed .
%z = [Eftk—)k» 1y 215:(1klk]
35:1 k-1

az —[st(iklk—l: 27/5(’2) ] [Ez(ik)k—z, QiEfiklla]

&L s ® ® ® ®
TZ[Ed—k—zygis k= [£625-3, 21652

ag:( I‘E(k) 2,L§(k)'| [E(k) 215(13)

as(k
oo =leh 2isRi+ | B [e, 2ig
Inisd

(k)
L (e pigg)- (62, 2ig e,

Pl migwa) L6, 202,

223
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aé(k()d k- 1)
—(d-k-1) __rak
oz — = i()d—k—l),z’tf W=l (k()d—k))zzé(k)

k
088k

I =6 %y, 205 P

Since we can prove similarly as in the case k=1 that £¥(n=1) satisfies

above equation, we shall only prove that & satisfies the equation

65(’”

(3.48) —[e, 26+ B (6, 2ie).
Inlisd-

After substituting

W — 51
ch L3S

for the equation (3.48), we obtain

d
(3.49) e ai’ —[2 c"“e],27$,,]+ S [Seie, 20l
On the other hand

&: R}YA— Q,
satisfies

0 . .
(3.50) L =[e,, 28,1 -1¢,-, 28] 2<j=d).
After substituting (3.50) for the equation (3.49), we obtain

£ 506, 268011801, 2i8)

=[Beme,zie |+ B [See, 2],

So that
- ch [5} L Ed= nlzs}d [Zc(k)EJ; €al.

Now from the definition of ¢5”; this becomes

d-k-1 a-1
- [ék— _21 aPE it — ) §+xa£6i—l; Ed:|
i= i=

d-k d-kd-k-n d-1 ,
65 =[Te— T8 bt 3 dint]

n=
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d-kd-k-n

d-k _ a1,
+|:2_1€—(k+n)—n§1 12:1 a?)s-(i+k+n)+$—k"i=§+ldi5—i,5d:|-

d-kd-k-n
The term 3 3 a®é&;.1+» in right hand side is written

n=1 i=1

d-kd-k-n

k;
DI a; )Ei+k+n

n=1 i=1

d-k-1

1 2
(3.52) = leaé’”Eva Z)lagz)&us"‘ A aPé,

i=1

d 1-k-1

= 3 = ai”’&z-

l=k+2 i=1

From the definition (3.9) of a{® we obtain

l-k-1

S a®=1+a,., (k+2=<1<d-—1)

-.
—

(3.53)

d-k-1 * , ,
a; :1+ad_1+a,d.

1=1

After substituting (8.53) for (3.52) we obtain

d-kd-k-n a-1
(3.54) Z I albiwna= 2 (e )+ +ae-+ad)é

d
= > (1+a;—1)$f+a:1§d.

i=k+2

Similarly we obtain

d-kd-k-n d
(3.55) =, 12:1 aPE ke = 1_:?”(1‘*'0«;‘1)5—1""@:15—:1 .

d-k-1
The term 3 a{Pa.,, in left hand side of (8.51) is written as

t=1

d-k-1 d-k-2
(k . k k
> ag )€i+k_al &t z‘gz a; )€i+k+at(iklk—15d—l

i=

—-

d-k-2
=1 +a'lle+l)5k+l+ 2 (a;+k—a;+k—l)$i+k+ (afi_l—afi_z—i-a:i)fd_l
(3.56) i=2

d-k-1 d-k-1

=& taafait El Qv i 122 a';+k—15i+k
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d-1 d-1
=&pitaaka i+ = ati— 2 ai&;.
i=k+1 i=k+2
After substituting (3.54), (3.55) and (3.56) for (3.51), we obtain

d-1 d-1
[—m S a8
i=k+1 i=k

i=k+2

G R L ERRE Rrat RS e

This equation is clearly satisfied from (3.44), (3.45), (8.46), and (3.47). So
we have proved that &{* satifies the equation (3.48). We have completely
proved the claim.

We assumed that there exist some a¢,€C (1<:i<n) such that

&1t ag,+ s +aba=0.

We can conclude
;=0 (1=i=d—-2)

from the claim. So we obtain
(3.57) Ug-1&4-110.8,=0.
It suffices to prove t';hat

Ag-1=0

to see that the Jacobi fields {£.};.:.. are linearly independent, since &, is
not equal to zero.
We shall prove
Qg-1=0

by contradiction. Assume that

then we obtain

formaige (al=—-1),

Ag-
Taking bracket with &4, we can con¢lude
[Ed—u fd]:()-

Now we define
gW-v. R4 — Q,
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by
£V = (1= D&+ (11— 278 .
We shall prove that £~ satisfies the following equation

aé(d— )]

(3.58) 52

:[&-(d—l)’ 21(1_2)51(11—1)] .

This equation is equivalent to

0 .
T»fﬁ'z[f—d'mfd]
(3.59) 5
Lot (e, 2it,).
On the other hand
&: RA— Q,
satisfies the equation
0 .
3&; =—[&4-1, 21&,]
(3.60) s
g;d :[E—d'QiSd]-
From (3.15) and (3.57) we obtain
aa-1l€-4q, £,]1=0.
Using the assumption of a contradiction, we can conclude
[5—41, Ed]:() .

From this we can see that £~ satisfies the equation (3.58). This con-
tradicts to the fact that d=d(p)=3. So that we can conclude

tg-1=0.

We have proved that the Jacobi fields {£:},.:.4 for the harmonic map ¢
are linearly independent and we have completely proved the theorem. m

The above theorem is meaningful for a harmonic map ¢ which has
large d(¢). But in the present the author doesn’t know as if there exist
those harmonic map of a torus R?// into a Lie group which has large d(¢p).
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