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On diffusion in viscous fluids. Existence and

uniqueness of solutions

By Grzegorz LUKASZEWICZ®

Abstract. We consider isothermic flow of a mixtule of two viscous
fluids with densities p;, and p,, and velocities u; and u,, respectively.
We assume that the total density p=p,+p, is constant. Then the
diffusion effect is associated only with changes of pressure and concen-
trations of the components of the mixture. The motion of the mixture
can be described by a closed system of equations involving mean mass
velocity vector u=/(0,u%,+psUs)/0, pressure p, and concentration of one
of its components ¢, (c=p,/p).

We assume that the mixture occupies a bounded domain £ in R?,
and prove existence and uniqueness of solutions (u,p,c) of a boundary-
value problem for the equations governing its stationary motion, in
Sobolev spaces W2(Q) X W19(Q) X W12(Q2), ¢>3.

1. Introduction and Results

In this paper we consider a boundary-value problem for the equa-
tions describing stationary motion of a mixture of two viscous fluids,
with the absence of heat transfer. The mixture has constant density
and occupies a bounded domain 2 in R? with boundary 2. The bound-
ary-value problem reads.

—vAuU+(u-V)u+(1/0)Vp=f+cg in 2, (1.1)
divu=0 in 2, (1.2)
—div(D(c)Ve)+u-Ve=(1/p) div(K(c)Vp) in 2, (1.3)
u=0 on 02, (1.4)
c=h on 982, (1.5)

The unknown functions u=(u,, 4, 4s), » and ¢ denote mean mass velocity

*) This work was supported in part by Polish Ministry of Education through grant G-
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vector, pressure, and concentration of one of the components (say, first
component) of the mixture, respectively:; f=(f1, /. fs) is the external
force per unit mass acting on the first component, and ¢g=(9i. ¢ ¢s) is
the difference between the forces per unit mass acting on the second
and the first component. If the only external force to act is that of
gravitation then g=0. D and K denote diffusion and barodiffusion
coefficients, v=const>0 is the viscosity coefficient.

By V,A and div we denote the usual gradient, Laplacian and diver-
gence operators, so that Au, (u-V)u and Vp are vectors with components
Au;, u;(0/ox,)u; and (9/0x;)p, respectively (t=1,2,3; repeated indices are
summed); div u=(9/0x;)u:, u-Ve=u;[0/ox,)c, ete.

We assume that functions D and K are defined on the real line and
satisfy

0<m<Dt)\<M for each t€R, (1.6)
K(it)=0 if t<0 or t>1, (1.7

where m, M are some positive constants, m<M. The first assumption
is in agreement with the thermodynamical constraint D>0, and the
second reflects the fact that in pure fluid the diffusion flux equals zero
[8].

From the definition of ¢ as the concentration of the first component
of the mixture we conclude that

0<e<1. (1.8)

In fact, a maximum principle for equation (1.3), together with (1.7) and
the assumption 0<h <1 on 92, give (1.8) for each solution ¢ of (1.3), (1.5).

We notice that if ¢=0 or 1 in 2 then, in view of (1.7), equations
(1.1)-(1.3) reduce to the Navier-Stokes equations for one of the com-
ponents of constant density p.

For the thorough discussion of the diffusion phenomenon and deriva-
tion of equations (1.1)-(1.3) we refer to [6],[8],[10], [15].

Below, for convenience of the reader, we sketch the derivation of
equations (1.1)-(1.3). Let p; and u; denote the density and the velocity
of the i-th component of the mixture, respectively (¢=1,2). For sta-
tionary motion the law of conservation of mass of the i-th component
reads

diviom) =0,  (i=1,2). (1.9)
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Denote by p and u the total density and the mean mass velocity of the
mixture: p=p,+ 0, U=/(0,U+0:U:;)/p. Summing the equations in (1.9) we
obtain div(pu)=0. If p=const, the last equation reduces to (1.2). Now,
denote by J the diffusion flux of the first component: J=p,(u,—u).
Proceeding formally we obtain from (1.9)

ou-Ve=—div J, (1.10)

where c=p,/p. By thermodynamical considerations [8]
—J=aVz, (1.11)
aVz=pD(c)Ve+ K{c)Vp, (1.12)

where « is a positive constant and z denotes the chemical potential of
the mixture. Combining (1.10)-(1.12) we get (1.3). We obtain equation
(1.1), roughly speaking, by adding equations of momentum for the two
components. The procedure, however, is rather complicated and we shall
not reproduce it, refering the reader to the literature quoted above.

A motivation to study the above model of diffusion comes from the
fact that it is the basis of many other, and much more involved, models
of mixtures which are of considerable importance in the applied sciences
(see [10] and the literature quoted there). Fluid suspensions (for example
blood) [11],[12] belong to this type of mixtures. Their densities and
temperatures are constant and the diffusion effect is due to changes of
pressure and concentrations of the components.

Before stating the results we introduce some notations:

—: a bounded open subset of R?® locally situated on one side of
its boundary 42, a manifold of class C%

—L‘=usual L) space (1<qg< o), with norm

1/q
1¢|«=<SQ|¢I”> for ¢<oo,

and the obvicus modification for g=oo;
—Hj=closure of the set of smooth functions of compact supports
in 2, in the norm
2>1/2

—V=the set of smooth and divergence free vector functions in R?,
compactly supported in £;

0p
0x;

lel=1vel=(% |,

t=1
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—V=closure of V in the norm

ful=1vul=(3 |,

i5=1

auj 2 1/2.
w|)

— Wm™1=Sobolev space W™ (2)(m=1,2,8, --+; 1<g<co) of function
from L°, whose generalized derivatives up to the order m are in L°,
with usual norm denoted by |-,

— Wl = -t (@Q)-space of traces on 92 of functions from W'e,
with usual norm denoted by [-}_i/q

—(C*=C"(12)-space of continuous functions on 2, with horm |-|..

For an open subset o of 2 we define:

—(C%=C"*(w)-space of Holder continuous functions on @, with usual
norm, denoted by |:|oee 0<a<l);

_Co,a:CO,a(Q).

For basic properties of the above function spaces see [1], [5], [7], [14].

In what follows we assume that:
f,ge Lt for an arbitrary but fixed ¢>3, (A1)
K,D:R— R are continuous functions satisfying (1.6), (1.7), (A2)
he W 0<h<l on 02. (A3)

For convenience, we assume also that the density of the mixture equals
one.
In this paper we prove the following theorems:

THEOREM 1.1. (existence). Let the assumptions (Al)-(A3) hold, and
let m in (1.6) be large enough with respect to the Li-norms of f and g.
Then there exists a triple of functions

(u, p, c) € WrixX WhixX W'2 (¢ is continuous 1n £2) (1.13)
such that
0<ce<1 n Q, (1.14)
—vAu+(u-Vu+Vp=f+cg a.e. n 2, (1.15)
divu=0 n 2, (1.16)
and

S D(c)Vc-Vgo-I—S u-cho:—S K(c)Vp-Vo¢ for each ¢€ Hj, (1.17)
Q 2 Q
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with
u=0 on 02, (1.18)

c=h on 082, (1.19)

THEOREM 1.2. (ewistence). Let the assumptions (Al)-(A3) hold, and
let K be Lipschitz continuous, that s

|K(t)—K(s)|<Lg|t—s| for all t,sER, (1.20)

for some positive constant Lx. Then there exists a triple of functions
(u, p, ¢) satisfying conditions (1.13)-(1.19).

'THEOREM 1.3. (uniqueness). Let the assumptions (Al)-(A3) hold, the
diffusion coefficient D be a positive constant, and K satisfy (1.20). Let
X=|f|+19],, Then there exists a continuous, increasing and positive
Sfunction F of X>0, with F(X)—0 as X—0, such that the solution (u, p, c)
of problem (1.13)-(1.19) (guaranteed by Theorem 1.2) is unique, provided
F(X)<D.

THEOREM 1.4. (umiqueness). Let the assumptions of Theorem 1.2 hold.
Moreover, let D be Lipshitz continuous (with Lipshitz constant Lp) and
let he W= for some r,3<r<min{6,q}, Let X=|fl,+19]e+|hli-1/
Then there exists a continuous, increasing and positive function F of
X>0, with F(X)—0 as X—0, such that the solution (u,p,c) of problem
(1.13)-(1.19) (guaranteed by Theorem 1.2) is unique, provided F(X)<1.
Furthermore, cc W,

Observe that by (1.11), (1.12) each classical and smooth up to the
boundary solution of problem (1.1)-(1.5) is also a weak solution of the
problem in the sense of definition (1.13)-(1.19); conversely, each sufficiently
smooth weak solution satisfying (1.13)-(1.19) is a classical solution of pro-
blem (1.1)-(1.5).

- The plan of the remaining sections of the paper is as follows. In
Section 2 we study linearized problem (1.15), (1.16), (1.18) in (u,»). In
Section 3 we consider problem (1.17), (1.19) in ¢, with given % and p.
In Section 4 we prove existence Theorems 1.1 and 1.2, by using Schauder’s
fixed point theorem and estimates obtained in Sections 2 and 3. Section
5 presents proofs of Theorems 1.3 and 1.4.

For convenience, we denote several universal numeric constants by
the letter C without bothering to distinguish them with subscripts.
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2. Linearized Navier-Stokes system

In this section we consider the boundary-value problem in (u, p):

—vAu+-V)u+Vp=f-+bg in 2, (2.1)
divu=0 in 2, (2.2)
u=0 on 02, (2.3)

where f,g,b and v are given functions.
We define, for ¢>1, f, g€ L*, and be C"

R=|f|,+|bl<lgls R,=R+R),  R,=R+Ri (2.4)

LEMMA 2.1. Let q be an arbitrary real>3, f,gc L*, and beC"
There exist positive reals r,r, and 7, such that 1f vE A,

A={e VNC:|v|,<TR, |v|,<1R) |V|<r R}

then problem (2.1)-(2.3) has a wunique solution (u,p)€ (W»TNA)X W,
withg p(x)dx=0. Moreover,
Q

[%]l2,e+ 1211, <C(R 4+ R3). (2.5)

Proor. Fix f,g€ L’ beC® and v€ VNC'. We shall show at first
the existence of a unique pair (u, p) € VX L? S p(x)dx=0, satisfying (2.1)
Q

in the distribution sense. We multiply both sides of (2.1) by some funec-
tion w in V and integrate over 2. After integrdtion by parts we obtain

vgaVu-Vw-}-L (v-V)uw:SQ (f+bg)w. (2.6)
We notice that [7],[14]

g(vV)uw:—S (v-Vywu, for all w,v,w in V. @.7)
Q

Q

Then it is easy to see that the left-hand side of (2.6) defines a con-
tinuous and coercive bilinear form in (u,w) on VXV, and the right-
hand side defines a continuous linear functional in w on V. Thus, by
the Lax-Milgram lemma [5], there exists a unique w € V such that (2.6)
holds for each we V. Now, f=—vAu+(v-V)u+Vp—f—bg belongs to
H-', the dual space to H: and {f, w)=0 for each w in V, which implies
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[14] that f=Vp in the distribution sense in 2, for some p€c L% - We
normalize p so thatS p(x)de=0. Thus (u, p) is the unique pair in VX L?
Q
satisfying (2.1) in the distribution sense.
Now we shall show that the obtained solution belongs to W**x Whe,
and determine constants 7,7, and 7, in the definition of the set A in

such a way that we A if only ve A, cf. [2],[9]. Our main tool is the
well known estimate

llles2,0 1010 S ClLF (2.8)

(s>1,k is an integer>-—1, |-||_;, is the norm in the dual space to
o (2), 1/s+1/s’=1) belonging to Cattabriga [4] (see also [14]) of the
S p(x)dx=0 of the Stokes problem

solution (u, p),
Q

—vAu+Vp=f in 2,
div =0 in 2,
u=0 on 0%.

Setting w=wu in (2.6) and using (2.7) we obtain
uli=| (F+bgyu. 2.9

Using Holder’s inequality and Poinearé’s inequality: |u|,<C|u|, we
estimate the right-hand side of (2.9) by CR|u|,. Now, we define r as
Cly, so that

ul,<rR. (2.10)

We shall assume that ||v|,<7rR (cf. the definition of the set A).
Now, by Holder’s inequality, the inequality |v|,<C|v|,, and by (2.10)
we have

[(v-V)uls<|v|s|ul, <Cllvl[lu],<CR.

Cattabriga’s estimate (2.8) applied to problem (2.1)-(2.3) with f=f+bg—
(v-V)u, k=0 and s=3/2 gives

”u”z,alz + “pul,s/zSC(Rz-f-R) =CR,.

Since W2, W'3C L for each ¢>3, there exists a positive constant
re such that |u|,<7.R,. We shall assume that |v|,<7R,. Now, let 1/t=
1/¢+1/3. By Hélder’s inequality and the above imbeddings we have
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|(v-V)ul.<C|v],|Vul|;<CRS.
We apply (2.8) again to obtain
[z, + 0], <C(R$+R)=CR,.

Since Wi W1 (", there exists a constant », such that |u|.<nR,.
We shall assume that |v|.<7R;. In the end

|(vV)u|ng|v|m|Vu|q§CR§,

and using Cattabriga’s estimate again we obtain inequality (2.5). More-
over, if v€ A then uc A. B

Now we shall show that the map (v, b)—(u, p), where (u,p) is the
unique solution of the boundary-value problem (2.1)-(2.83) from Lemma
2.1, is continuous in certain topologies. More precisely, let M, be a
positive real and

B={bcC’: |bl.< M}

In view of further applications, we consider the map (v, b)—(u, p) on the
product AX B, where A is the set from Lemma 2.1.

LEMMA 2.2. The map
D:C'XC°DAXBD> (v,b) — (u,p) € C'X W*?
18 CONEINUOUS.

Proor. Let (v,b), (v,,b,), n=1,2,8, ... bein AX B, and let @(v,,b,)=
(U, Dn), P(v,b)=(u, p). Then (u—u,, p—p,) is the solution of the problem

—VAU—2%,)+V(p—0.) =S in 2, (2.11)
div(u—u,)=0 in Q, (2.12)
U—u,=0 on 92, (2.13)

where f=(b—b,)g+ ((v.—v)-V)tp+ (v-V)(u,—u). Multiplying both sides
of (2.11) by u—u, and integrating over 2 we obtain

vu—ui=], 6-b)gtu—u)+{, (©.=0)-Vuslu—u).

Using Hélder’s and Poincaré’s inequalities we estimate the right-hand
side by
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C{1b—bul g lallw—alli 4 [0 — Val ol 4 1] 20 — %[}

Hence
% — 2% s < (C2){|0 —bu| | glo [V — Val || @[l 1}

Let (v,,b,)—(v,b) in C°XC° as m—oo. Since |u,],<rR by (2.10), we
conclude that w,—u in H}, as n—oo, and, in consequence, f,—0 in L2
We apply Cattabriga’s estimate (2.8) to problem (2.11)-(2.13), obtaining
u,—u in W?? (hence uniformly), and p,—p in W2 This proves the
continuity of @. H

We shall use Lemmas 2.1 and 2.2 in Section 4.

3. Equation of Diffusion
In this section we consider the following problem in ec:

ce W (3.1)

S D(E)VC-V¢+S vu-cho: _So K(c)Vp-Vo for each ¢¢€ Hj, (3.2)
Q2 Q

c—E€ H, (3.3)
where

£cW's, with £=h on 0Q, (3.4)

u€ VNC% pe W for some ¢>3; be(C", (3.5)

and K and D are as in (A2).

Our aim is to prove existence of solutions of problem (3.1)-(3.3),
estimate them in C° and C"* norms (under suitable assumptions about
h), and prove the unique solvability of the problem, provided K is
Lipschitz continuous.

We begin with the linearized problem

ce W, (3.6)
S D(5)Vc-Vgo+Lu-cho: —L K(b)Vp-V¢ for each ¢c H;, (3.7)
Q

c—&€ H;. (3.8)
LEMMA 3.1. Let (3.4), (3.5) and (A2) hold, and beC’. Then there
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exists a unique solution of problem (3.6)-(3.8). Moreover
lell, <C{[h]+|K(b)Vpl.}, (3.9)
where C depends on |U|q.

Proor. Since u e V, we have
S u~Vc<p:—§ w-Vee for all ¢ pc W (3.10)
Q Q

Thus, the left-hand side of equation (8.7) defines a continuous and coercive
bilinear form on HijX H;. Introducing the new variable é=c—& we reduce
the problem to a homogeneous one, and then use the Lax-Milgram lemma.
We omit the elementary details refering the reader to Chapter 8 in [5].

LEMMA 3.2. Let ¢ be the solution of problem (3.6)-(3.8). Then c€%*?
for each subdomain w of 2, separated from 02, and

lelo..e<Coflele+ (1/m) | K (b)Vp|,}. (3.11)

The constant C, depends on dist(w, 82), |%|«, ¢, and B dependson dist(w, 392), q.
Moreover, if he C"'(02) then c€ C™* for some a, 0<a<l, and

¢l <|P]w,a0+ (C/m)| K(b) VD], (3.12)
|¢lo.c.o < Cf| o100+ (1/m) | K (D) VDL, (3.13)
where C depends on |U|o, g.

ProOF. Lemma 3.2 follows directly from general results concerning
estimates of weak solutions of elliptic problems; see Theorems 8.16, 8.24,
8.29 in [b], for example. &

LEMMA 3.3. Let (34), (3.5) and (A2) hold, and let h € C**(02). Then
there exists a solution of problem (3.1)-(3.3). Moreover, ¢ & C** for some
a, 0<a<l, and

|€lo.a,0 < C{IR]o,1,00+ (1/m)| K| VD ). (3.14)

Proor. To prove existence of the solution we apply Schauder’s
fixed point theorem [5] to the map @, : C°> B, >b—c e C°, where

B,={b€C": [bl<||w,00+ (C/m) | K|o| VDI,

and ¢ is the unique solution of problem (3.6)-(3.8) from Lemma 3.1.
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From (3.12) it follows that @,(B,)CB, and inequajity (3.13) implies
compactness of @,(B,) in C°. We shall prove that the map @, is con-
tinuous. Let b,—binC"b,b,€ B, forn=1,2,3, ..., and ¢,=®,(b,), c=®,(b).
From (3.9) and (8.13) it follows the existence of a subsequence (c,) such
that

¢, — ¢, uniformly on 0, and weakly in W'

Passing to the limit in
g D(E)Vc,,-Vgo+S u-Vc,,go:—SQK(bu)Vp-Vgo for each ¢¢€ Hj,
Q Q

we conclude that é¢=¢, and that the whole sequence (c,) converges
uniformly to ¢. Thus, @, is continuous in the uniform topology. Other
conclusions of the lemma are obvious.

LEMMA 3.4. Let (34),(3.5) and (A2) hold. Let us assume that K
18 Lipschitz continuous, as wn (1.20), and that he C*'(092), with 0<h<1.
Then the solution of the problem (3.1)-(3.3), given by Lemma 3.3, is
unique. Moreover

0<c<l in Q. (3.15)

PrOOF. To prove that the solution is unique we assume, on the
contrary, that there exist two different solutions ¢, and ¢,. Let c=c¢,—¢,.
Using (3.10) we obtain

LD((;)V-L--V@:LF-WD for each ¢ H}, (3.16)

where F=tu+ (K(c.) —K(c,))Vp. By our assumptions
|F| <{|ul+Lk|Vpl}c|=[Fy| ||, (3.17)
with Fye€ L’. From (3.16) and (3.17)

SQD(E)VT-VngSQIFl]-IrI-|Vgp| for each o HL (3.18)

Let ¢*=max{p, 0}. For >0 we set (cf. [3]) ¢=(r—0)*/r in (3.18) (p € H},
and Vo=0-Vz/7* on the set 2,={x€ 2 :7(x)>d}), and obtain

SQ D(b)|Vz|* <SQ | Fy| - [Ve]

Ty - |7
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Since D(¢,)>m >0, by Schwarz’ inequality we obtain

S IVZ‘IZ SL, L= 2 S|F1|2’
Qs 9

7 m?
hence
S V1n<1+(f__65)i> <L.
Q
Now, by Poincaré’s inequality
S |1n<l+(—T:—5)—+> ‘<cr,
0 0

independently of 6>0. Let 6—0 and we conclude that <0 a.. in Q.
Thus ¢;<c, a.e. in 2. Similarly we show that ¢,<e, a.e. in 2, so that
c,=c¢; a.e. in 2. We have come to the contradiction with our assumption
¢,7c¢,. This proves the uniqueness.

To prove (3.15), set ¢ =c~=min{c, 0} in (8.2) (¢ € H;, as ¢>0 on 92).
We obtain

L D(B)| Ve |2=0, (3.19)

as j- #-Ve e~ =0 by (3.10) and K(c)Ve =0 by (1.7). As ¢ =0 on 029,
Q

and D(b) is positive, (3.19) implies that ¢-=0 in 2. Hence ¢>0 in Q.
Similarly, taking ¢ =(c—1)* we obtain ¢<1 in 2. This proves (3.15). B

Now we are in a position to prove the existence of a solution of
the main problem in the paper.

4. Existence Theorems
In this section we prove Theorems 1.1 and 1.2.

Proor oF THEOREM 1.1. Let the assumptions of Theorem 1.1 hold.
For convenience, we shall keep the temporary assumption

he C(39Q), (4.1)

and release from it at the end of the section. We use Schauder’s fixed
point theorem. Let ACC’ be the set defined in Section 2 (see Lemma
2.1). Let B={e(C:|b|.<M} for an arbitrary number M, such that
[P, 00<M;}. We consider the map
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¥.C,XxC°DAXB> (v,b) —> (u,c) € C°XC",

constructed as follows. For (v,b)€ AXB, ¥(v,b)=(u,c), where (u,p,c)
is the unique solution of the problem

—vAU+ (v-VIu+Vp=f-+bg in Q,
divu=0 in 2,
u=0 on 04,

SQD(b)VC-V¢+SQv-Vc¢:—LK(b)vp-w for each o€ H,
c—E€Hy é=h on 0Q.
Lemmas 2.1, 8.1 and 3.2 guarantee that the map ¥ is well defined.
From Lemma 2.1 it follows that w€ A. By Lemma 3.2 ¢ € B, provided m
is large enough (see inequality (3.12)). Hence, with m large enough,
U(AXB)CAXB. In view of (2.5) and (3.13), ¥(AXB) is a compact
subset of C'°XC°’. We shall show that the map ¥ is continuous in the
uniform topologies. Let (v,b), (v,,0,),72=1,2,8,... be in AXB, (v,, b,)—
(v,b) in C°XC", as n—oo, T(v,,b,)=(U,, ¢.,), T(v,b)=(u,c). We have to
prove that (u,,c,)—(u,¢) in C°XC° as n—co. By Lemma 2.2 we have

U, —u in C°, Vp,—> Vp in Wi (4.2)

To show that c¢,—c¢ in C° consider the identities
j D(b,,)Vc,,-Vgo—l—S ?)"-Vcngoz—g K(b,)Vp.-Vo for each o€ H (4.3),
Q Q2 Q2

n=1,2,3,.... As (c,) is a bounded sequence in W'* and in C"¢ for
some «, 0<a<1, there exists a subsequence (c,) such that

¢, —> ¢ in C° and weakly in W2 (4.4)

By our assumptions, (4.2) and (4.4), we can pass to the limit in (4.3),
obtaining

SQD(b)Vé-Vgo—kSov-Végo:—LK(b)Vp-Vgo for each € HL  (45)
Now, as (4.5) is uniquely solvable in ¢, we conclude that é=c¢, and ¢,—¢

in C,. This completes the proof of Theorem 1.1, under the additional
assumption (4.1). KB
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PrOOF OF THEOREM 1.2. The proof is very similar to that of Theorem
1.1. Let the assumptions of Theorem 1.2 hold, together with (4.1). We
consider the map

U, :C°XC'DAXB>S(v,b) —> (u,c) € C"XC°,

(B={beC,:|b|.<1}) defined as follows. For (v,b)e AXB let ¥,(v,b)=
(u, ¢), where (u, p,c) is the unique solution of the problem

—vAu+(v-V)u+Vp=5+bg in Q,
divu=0 in 2,
u=0 on 99,

g D(b)Vc-Vgo+S u-vw:—§ K(c)Vp-Vo for each ¢cH.,  (4.6)
Q Q Q
c—EcH, &=h on Q. (47)

In view of Lemmas 2.1 and 3.4, the map ¥, is well defined, and
U (AXB)CAXB. By (25) and (3.14), ¥, (AXB) is compact in C*XC".
The continuity of ¥, in the uniform topologies is obvious due to the
unique solvability of problem (4.6), (4.7) in ¢ (Lemma 3.4). We omit the
details.

To complete the proofs of Theorems 1.1 and 1.2 we have to release
from the additional assumption (4.1). Let he W'*25Q2). We take a
bounded sequence (¢,)c W*? such that £,=h, on 82, with h,e C**, h,—h
in W'**0Q), as n—>oco. Let (u.,, p.,c.), n=1,2,3,... be solutions as in
Theorems 1.1 and 1.2, corresponding to boundary data ¢,=h, on 8Q2. In
view of estimates (2.5),(3.11) we can select a subsequence (u,, p,, c.)
such that for some (u,p,¢)€ (W*'NV)XWhixX W'?

uw, — u uniformly on 2, and in W*?

p, —>p weakly in W2

¢, — ¢ uniformly on compacts in 2, pointwise in 2, and weakly
in W2,

Now, by standard argument we show that (u, p, ¢) is a solution of problem
(1.14)-(1.19). This completes the proofs of Theorems 1.1 and 1.2.
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5. Uniqueness
In this section we prove Theorems 1.3 and 1.4.

PrOOF OF THEOREM 1.3. Assume that (u, p,c) and (uy, p, c;) are
two different solutions of problem (1.15)-(1.19), with D=const>0. Then
the difference (v,—u,, p,—p., ¢,—c,) satisfies the following integral
identities

o, V=) vo+ | @) m—w)o={_te—clgo+| () Vuo, (5.1)
for each ve V, and
DL V(ei—c;) Vo= L, G-Vo, (5.2)
for each ¢ € H;, where
G=0(U— ) + (€1 — €2) Uz + (K (c;) — K(c1)) VP + K (1) (VD — Vpy).  (5.8)
Since ¢,—c, € H;, from (5.2) and (3.12) we have

lei—C|<(C|D)|G|,, r>3 arbitrary. (5.4)

Our aim now is to estimate |G|, by F\(X)-|¢,—¢Cs|, Where X=|f|,+19l,
and F, has the same properties as the function F' in Theorem 1.3. This,
together with (5.4) would lead to a contradiction, provided CF,(X)<D.
Let 3<r<q, where ¢ is as in (Al). From (5.3) and our assumptions

1G|r£ !ul_u2|r+ qulrlcl_cz|co+va2|TLK|CI_02I°°+ |K|m|Vp2—Vp1|r- (55)

Now we shall estimate the first term on the right-hand side of (5.5).
Let r<6. Then |u,—u,|,<C|V(u,—u,)|,. From (5.1) with v=u,—u, we
obtain

UEQIV(uI—uz)P:L(cz—cl)g(ul—u2)+g (Uy—ug) - VU — ). (5.6)

2
From (2.10) and (2.4) with b=¢
s, <CX. (5.7)
From (5.6) and (5.7), by Hélder’s and Poincaré’s inequalities, we obtain

VIV (U —us) ;< CX | 61— Col | V(g — Uy) |2+CX|V(u1—u2) 5.
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If CX<v/2 we have
|V(u1—u2)|2g%cxlcz—cl|w,
hence

| %y — s | < CX |y — €1 cor 3<r<min{6, g}. (5.8)

We assume that CX<y/2.
Now, we shall estimate the last term on the right-hand side of (5.5).
We have

—VA(U; —Us) +V(p, —p,) =S in Q,
div(u; —u,) =0 in 9,
Uy — U =0 on 08,

where S=(c;—¢)g+ (U V) (Uy—uy) +((y—u,)-V)t,. From Cattabriga’s
estimate (2.8) we obtain

IV (p1—02) |, <X €1 —Coloot Ui oo] V(s — ) |, + | (U — ) - V) Uy .
We have |%]., |Vis|<Fy(X), by (2.5) and (2.4), so that by (5.8)
IV (01— p2) [, <X €1 — 3|0+ Fi(X) |V (U — Up) |, + F1 (X)) | 61— €| o

To estimate |V(u,—u,)|,, we use Cattabriga’s estimate (2.8) with k=—1
We obtain
|V (1 —us) [, < C|S|| 1.,

Since S€ L* g>r>3, we have, with s=r/(r—1)

IS1-s-=sup{||_Sp | : Igh.<1}

< sup{|gl.]e;—C:lwl@ls+ [Us|oo| s — sl [|@]] 1,6
+ U — e, | VU |0, : [0, <1}
<F,(X)|¢i—Cs

Combining the above inequalities we conclude that
IV (01— pu) [, < F\(X) [61— s
which gives, together with (5.5) and (5.8)
|G|, <Fy(X)]6,—Csler
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and by (5.4)
|c1—c2|ws%ﬂ<xncl—czlw.

In conclusion, if (C/D)F,(X)=F(X)/D<1, the considered problem is
uniquely solvable. The proof of Theorem 1.3 is complete. B

ProOF OF THEOREM 1.4. Let the assumptions of Theorem 1.4 hold.
Let (uy, py, ¢;) and (U, ps, ¢;) be two different solutions of problem (1.15)-
(1.19). Then the difference w,—u, satisfies identity (5.1) for each ve V,
and ¢, —c, satisfies

Sa D(e)V(ei—cy)- Vgo:L G-V

for each ¢ € Hi, where G=G+ (D(c,) —D(c,))Ve, with G as in (5.3). Now,
let us assume that for some r, 3<r<min{6, q}, we have

Ve,e L™ with |Ve|,<C-X. (5.9)
Then
|G|rSIG|r+CLD|Cl—Cley
and in the end
Icl—02|eoSF'(X)|Cl_02|oo

just as in the proof of Theorem 1.3. Hence, to complete the proof of
Theorem 1.4 we have to justify (5.9).

LEMMA 4.1. Let the assumptions of Theorem 1.4 hold, and let (u, p, ¢)
be a solution of problem (1.13)-(1.19). Then c€ W"™ and

llell,, <Cllew—K(e)Vplr+[h]ioy.+llefe}- (5.10)

PROOF. As he WU >3 three exists £¢ W"" such that é=h on
02. Let ¢=c—¢&. Then ¢€ H;, and by (1.17) end (3.10)

S D(c)Vé-Vgo:S- G.-Vo for each ¢c Hi, (5.11)
2 Q

where Gy=cu—K(c)Vp—D(c)V& is in L. Moreover, since h is Holder
continuous on 9f2, from Theorem 829 in [5] follows that ce C** for
some >0, and thus Doc€ C°. Now, in view of Theorem 11.1 in [13],
problem (5.11) has a unique solution ¢ € Wy’, with

el <C{IGu|,+1¢].}. (5.12)
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Since problem (5.11) is also uniquely solvable in H; we conclude that
ce W, Now, as r<6 we have |é|,<C|ié|l;,, and this and (5.12) yield
(5.10).
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As (5.10) implies (5.9), the proof of Theorem 1.4 is complete. [
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