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Singular hyperbolic systems, VIII.
On the well-posedness in Gevrey classes for
Fuchsian hyperbolic equations

Dedicated to Professor Raymond GERARD on his sixtieth birthday

By Hidetoshi TAHARA

Abstract. The paper discusses the well-posedness problem in Gevrey
classes for Fuchsian type partial differential equations Pu=f with P
being of the form P=(t9,)™+ 2 tiaigm. j<nt' ¥ a;,q(t, %)(t0,)8%. The main
subject is to investigate the difference between the following two as-
sertions: (A) Pu=f is well-posed in C=([0, T], & (R")), and (B) Pu=f
is well-posed in &[0, T1XR"™, where & () denotes the space of all
Gevrey functions of class {s} on 2. The author’s motivation comes from
the following example: in the case P=(td,+1)2—td%, (A) is true for all
s>1, but (B) is not true for any s>1.

Introduction

The Cauchy problem for Fuchsian hyperbolic operators P in C* or
Gevrey classes was investigated by Tahara [8,9, 10], Uryu [11] and Itoh-
Uryu [3] in the following form:

(A) Pu=f is well-posed in C=([0, T], £*(R™),
where *={s} or (s), and £*(R") is the space of functions of the Gevrey
class * on R" (see §1).

Recently, the author noticed the following example in the study on
Maillet’s type theorem with R. Gérard (see Gérard-Tahara [1,2]):

Example. Let x={s} or (s), and let A be of the form
A=(t0,+1)"— 07,

where (t, ) €[0, T1XR. Then, we have:
(1) Au=f is well-posed in C([0, T'], £*(R)) for any s>1.
(2) For any s>1, Au=f is not well-posed in £*([0, T]XR).
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This implies that the well-posedness in £*([0, T]XR") is somewhat
different from the well-posedness in C=([0, T'], &*(R")), and that to get
the well-posedness in £*([0, T]X R") from the well-posedness in C=([0, T'],
E*(R") we need some additional condition.

Thus, motivated by this example, in this paper the author will
discuss the following problem:

PrROBLEM. Under what additional condition does the assertion
(B) Pu=f is well-posed in £*([0, T]XR")
follow from the assertion (A)?

Throughout this paper, we will use the following notations (see
Tahara [10], Komatsu [5]): N={1,2,8, ---}, Z,={0,1,2, ---}, x=, {s} or
(s), &* with *=¢ means &, £* with *={s} means &, £* with x=(s)
means &, E*(R™) [resp. £*([0, T1XR™] denotes the set of functions of
the Gevrey class % on R" [resp. [0, T]XR"], and C=([0, T], £*(R")) denotes
the set of infinitely differentiable functions on [0, T] with values in
E*(R™) equipped with the usual topology.

§1. Main Results

First, let us state our main results of -this paper.
Let (t,z) €[0, T]XR" and let us consider

(1.1) P=(to)"+ X t'9%a;.(t, ®)(t0,)05,
where mEN, x=(x, ++, %), a=(ay, ", a.) EZY, |lal=ay++ - +an 0,=

afot, 0°=(9/ox,)t- - - (Bfox,)*, L(J,a)E Z, (for j+|a]<m and j<m) and
a;.(t, x) € C([0, TIXR") (for j+|a|<m and j<m).
Impose the following condition on P:

(Cy) 7, a)>0, if |a|>0.
This implies that the operator P is of Fuchsian type with respect to t¢.
DEFINITION. We say that the equation Pu=f is well-posed in
C=([0, T], £*(R™) [resp. £E*([0, T1Xx R™)], if the following condition is satis-
fied: For any f(¢, 2) € C=([0, T'], £*(R")) [resp. f(t, x) € E*([0, T1X R")] there

exists a unique wu(t, x) € C=([0, T], E*(R™)) [resp. u(t, x) € E*([0, TIXR")]
satisfying Pu=f on [0, T]X R".

Put
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(1.2) S={J,a); a;.x0 and I(J,a)<|al}.
Then, we can state our main theorem as follows.

THEOREM 1. Let s>1, let P be the operator in (1.1) satisfying (C,),
and assume the following:

i) *x={s} or (s);
ii)  a;q(t, ) €EX([0, TIXRY (J+|a|Em and j<m);
iii) Pu=f s well-posed in C=([0, T], E*(R")).

Then, if s satisfies

(13) 1<s< min[oo, min (w)]

vaes\ |a| =17, a)

the equation Pu=f is well-posed also in E*([0, TTX R").

The proof will be given in §2~§4. If the conditions i), ii) and iii)
in Theorem 1 are supposed, it is easy to see that the following two
assertions are equivalent:

(B) Pu=f is well-posed in £*([0, T]XR"),

(R) u€C=([0, T],&*(R™) and Pue E*([0, TIXR") imply

w € E*([0, TTX R").
Hence, in §2~§4 we will study the assertion (R) instead of (B). We
note that in the proof of (R) we do not use any hyperbolicity condition.
Hyperbolicity lies only behind the condition iii).

REMARK 1. (1) When x={s}, Theorem 1 is also true for s=1 (see
Proposition 2 in §2).

(2) When S=¢J, the condition (1.3) is trivially satisfied. In this
case, the well-posedness in C=([0, T], £*(R")) implies the well-posedness
in &*([0, T1XR").

(3) When R is a non-characteristic operator, by putting P=t"R we
can apply Theorem 1 with S=.

(4) When Sn{{J,a); j+|a|=m}>xg, the condition (1.3) means
1<s<1. In this case there are no s satisfying (1.3).

REMARK 2. For s>1, the condition (1.3) is equivalent to

(1.4) s>1+max [O, max (wﬂ

itlaizm 17, @)



558 Hidetoshi TAHARA

To see this, we have only to solve the inequality (1.4) with respect to
s. The right hand side of (1.4) corresponds to the formal Gevrey index
for P introduced by Gérard-Tahara [1,2] and Miyake [7].

As to the necessity of the condition (1.3), the author believes that
(1.3) is a necessary condition for Pu=f to be well-posed in £*([0, T]X R*);
though he has not yet succeeded in proving it. The following Proposi-
tion 1 will support this conjecture.

Let us consider

(1.5) L=(t0,)"+b,_,(td,)" 4 - - +by— X !9, ,(td,)702,
itlal=m
j<m
where
d,) b;eR (:=0,1, .-, m—1);
dy) A" 4bn_ A"+ ---+b,x0 for any 1€ Z,;

)

)

) ¢;.€R and ¢;,=0 (j+|a|<m and j<m);

) lJ,a)€Z, and 1(J,a)>0 (j+|a|<m and j<m).

Put
Se={0, a); ¢;«x0 and I(J, a)<|al}.
Then we have

PROPOSITION 1. Let s>1, let L be the operator in (1.5) satisfying
d;)~d,), and assume the following:

i) x=={s} or (s);

ii) Lu=f is well-posed in E*([0, T1X R™).
Then, s must satisfy

. . m—j—1UJ, a)
(1.6) s< mm[oov Son W)]

The proof will be given in §5. The idea of the proof is that by
the formal Taylor expansion at the origin we reduce the problem to the
one in formal Gevrey classes.

The following examples will illustrate our theory.

Example 1. Let us consider

P=(t3,+1)*—t*o>—t'a,,
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where (¢, 2)€[0, T]XR, 2k€ N and [€ N. Then:
(1) Pu=fis well-posed in C=([0, T'], £*(R)), if and only if s satisfies
{ 1<s<o/(c—1), when x={s},

(1.7) 1<s<o/(c—1), when x=(s)

with ¢ =max{1, (2k—1)/k} (see §6 and [4]).
(2) The condition (1.3) is

1<s<1, when k=X,

2
1<s<oo, when k=>1.

Hence, by Theorem 1 and Proposition 1 we see the following: (i) When
k=1/2, Pu=f is not well-posed in £*([0, T1XR) for any s>1; (ii) When
k=1, Pu=f is well-posed in £*([0, T]1XR) for s satisfying (1.7).
Example 2. Let us consider
P= (ta,+1)((ta,+1)2~t’”aﬁ)—tai,

where (t,2) €[0, TIXR and m & N. Then:
(1) Pu=f is well-posed in C=([0, T'], £*(R)), if and only if s satisfies

1<s<3™=2  Ghen v—={s},

2m—2

(1.8) ] oo
( 1<s<2M™~%" Ghen x=(s)

2m—2

(see §6 and [4]).
(2) The condition (1.3) is
1<s<1, when m=1,
1<s<£2, when m=>2.
Hence, by Theorem 1 and Proposition 1 we see the following: (i) When

(
m=1, Pu=f is not well-posed in &*([0, T1XR) for any s>1; (ii) When
m=2, Pu=f is well-posed in £*([0, T]XR) for s satisfying (1.8).

For the reader’s convenience, we will give some definitions of Gevrey
classes (for details, see Komatsu [5]).
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Let s=1. A function f(x) € C(R") is said to belong to the Gevrey
class £¥(R™ [resp. £“(R")], if f(x) satisfies the following: for any com-
pact subset K of R®, there are C>0 and h>0 [resp. for any h>0 and
any compact subset K of R*, there is a C>0] such that

(1.9) sup |92 f(x)| SCh"(|a|!)* for any a € Z7.
z€K

We denote by C=([0, T], &*(R™) [resp. C=([0, T], £ (R"))] the set of
all infinitely differentiable functions on [0, T] with values in &'"(R")
[resp. £ (R™)] equipped with the lecally convex topology in Komatsu [5].

In other words, C*([0, T], &*(R")) [resp. C=([0, T], & (R"))] is the set
of all functions u(t, x) € C=([0, T1X R") satisfying the following: for any
1€ Z, and any compact subset K of R® there are C>0 and k>0 [resp.
for any 1€ Z,, h>0 and any compact subset K of R*, there is a C>0]
such that

(1.10) sup |0i0%u(t, )| <Ch'*\(|a|!)* for any a € Z7.
[0, TIXK
By &[0, T]XR") [resp. £9([0, T]XR")] we denote the set of all
functions v(t, x) € C=([0, T]1X R") satisfying the following: for any compact
subset K of R®, there are C>0 and h>0 [resp. for any >0 and any
compact subset K of R", there is a C>0] such that

(1.11) ngg{@ia‘:v(t, )| KCh+ [ (t4|a|)!T for any (i, a) € Z, X Z7.

Note that the difference between C=([0, T'], £*(R™)) and £*)([0, TTX R")
[resp. C=([0, T], &“(R") and £ ([0, T]X R")] lies in the following: in (1.10)
the constants C and h depend on 4; while in (1.11) the constants C and
h do not depend on 4 [resp. in (1.10) the constant C depends on ¢; while
in (1.11) the constant C does not depend on ¢]. Obviously, we have
E*([0, TIXR") cC=([0, T, E*(R")).

§2. Basic Estimates

As preparations for the proof of Theorem 1, in this section we will
establish some basic estimates for the solution of the ordinary differential
equation with a parameter r € R:

(2.1) (D7) u+ T a;(2) (80 + 1) u=F.

j<m
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For simplicity, we introduce the following formal norms: for a com-
pact subset K of R* and u(t, x) € C=([0, T]1X K) we define |V u(t)|x by

q= I=¢

2.2) IV=u®lle=3, ¥ (max out, x)|)2_j

(which is a formal power series in p whose coefficients are functions in ¢),
and define ||V u|,x by

(2.3) IV=ufox=3" <max 0%t ) 1) o
181=

7=0 [0, TIXK

(which is a formal power series in p). The convenience of these formal
norms lies in the following formulae:

(2.4) IV=au(t) |« < IV=allox | Vou(t)llx,
(2.5) V=05 (t) |« KOG [ V=u(t) | «

for a, u€ C=([0, T1X K) and a € Z% (see Tahara [9, Lemma 3] and Leray-
Ohya [6, formulae (10.1) and (10.3)]). Here > 32,0,0°< > 20b,0" means that
|a,| £b, holds for any g€ Z,.

Then, our basic estimate for (2.1) is stated as follows. Let B(p)=

© B,o* be a formal power series in p and let ¢(t, p)=> 200, (t)0? be a

formal power series in p whose coefficients ¢,(t)(g=0,1,2, - --) belong to
C°([0, T) NCY(0, T]). Then, we have

LEMMA 1. Assume that u, f€C>(0, TIXK) satisfy (2.1), that the
estimates
(2.6) IV=a;llox<B(o), 7=0,1, - -+, m—1,
(2.7) [V=£(t) |« < (80: +7—1—B(p))p(t, o) on (0, T]
hold, and that r>1+ B, holds. Then, we have

28) T IV, +rPuldlc<olt. ) on [0, )

PROOF. Since

t

(80, +7) () :t"g e, + 1) u(r)dr

0



562 Hidetoshi TAHARA

holds for any 7, we have

29) V=60 ) Ol < | V(0,4 (o) e
for any j and hence

m—1 m—1 t
(2.10) Z:‘B [V=(t0, +7)u(t) | <K 2;0t"sor’“l[[Vw(rar-{—r)“‘u(r) | xdz.
On the other hand, by (2.1), (2.4) and (2.6) we have
(2.11) V=20, +7)"u(t) ||«

&S IV=0 e V(00,4 rPu(t) -+ 9F0)
<Blo) T, IV=(00,+rhult) i+ [V (0) e
Therefore, by (2.10) and (2.11) we obtain
212) L IVe( ) s
<t [ = {1+ Blo) S IV=(e0.+ rhu(e) -+ 1V=7(0) [ dr.

Denote by @(t, p) the right hand side of (2.12). Then, by (2.12) and
(2.7) we have S ™3||V=(td,+7)'u(t)| L D(¢t, p) and
(2.13) 0L (89, +7)D(t, p)

=(1+B(o) T, V(0. r)u(t) + |90

L (14 B(p))@(t, p) + (0. +r—1—B(p))o(t, p).

Hence, to obtain Lemma 1 it is sufficient to show that (2.13) implies
D(t, p)Lp(t, p) on [0, T]. We will show this now.

Put O(t, p)=220,(t)p" and ¢(t, p) =2 ep,(t)p?. Then, (2.13) is equi-
valent to .

214),  (0,+r—1)0(t)— X Bipuslt)< (0, +7—1p,(t) — 3 Big i(8)
q=0,1,2, ---.

Our aim is to show that @,(t)<e¢,(t) on [0, T] for ¢=0,1,2, ...
Dy(t) Zy(t) is proved as follows. By (2.14), we have
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(2.15) (t9,+7r—1— B)D(t) < (10, +7r—1— By) ¢, (1).
Multiplying both sides of (2.15) by t"~'~% we have
0, (8771 Fo@y(8)) S0, (6771 Pogpo ().
Therefore, by integrating from 0 to ¢ we obtain
AT/ N (7 R AR TON (AR

Thus, ©@,(t)<¢,(t) is proved.

Let ¢=1. Then, @,(t)<¢,(t) is proved by induction on ¢ as follows.
Assume that @;(t)<¢,(t) is already proved for j=0,1,--.-,g—1. Then,
we have

(2.16) z B, (t)< gl Bio,_it).

Therefore, by (2.14), and (2.16) we obtain
(t0,+7r—1—B,)D,(t) S (t0, +r—1— By)g,(t).

Hence, we can prove @,(t)<¢,(t) by the same argument as in the case
¢=0. Thus, 9,(t)<¢,(t) is proved for any q. Q.E.D.

Now, let us apply Lemma 1 to our situation in Gevrey classes. Let
1<s<co and put

(2.17) 0.(0)= 3 (@12

Then, we can easily see the following:

i) a(x)€C=(K) belongs to &UY(K), if and only if ||V2al,x< A0,(kp)
holds for some A>0 and k£>0;

ii) If 0<k<h, then

(2.18) 0.(k0)0,(ho) K (1—k/R)'0,(Rp).

LEMMA 2. Assume that u, f€C™([0, TIXK) satisfy (2.1), that the
estimates

(2.19) [V=a;llox K Ab,(kp), §=0,1, -+, m—1,
(2.20) IV=f(®)ll« < Bb.(ho) on [0, T]
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hold for some s=1, A>0, B>0 and h>2k>0, and that r=2+2A4 holds.
Then, we have

- i (1+2mA)
(221) 19160, ult) o < S E R B0 (o
on [0, T] for 7=0,1, - - -, m.

ProoF. Put ¢(t, o)=(r—1—2A4)"'Bf,(hp). Then, by (2.18) we have

0.(kp)e(t, p) L 20(t, p)
and therefore
[V=£(2) ||« < BO,(hp)
=(td,+r—1—2A)¢(t, p)
L (tdy+r—1—A0,(ko))o(t, ).

Hence, by Lemma 1 we obtain
(2.22) [V=(£0, + 7)™ " u(t) |«

<<§Ilvw<tat+r)fu(t>u,{<< 1

w1 gy BOho)

This implies (2.21) for j=m—1. By (2.9) (with j=m—2) and (2.22) we
have

(2.23) I9=(604-r) () < L Bo,(h)

(r—1—2A4)
1

Y )
Crioaap )

This implies (2.21) for j=m—2. Thus, by induction on j, we can prove

; 1
. V=(to Tt —=— Bo,h
(2.24) V=04 PRl g iy B
for j=m—8,.--,1,0

in the same way as (2.23). (2.21) for j=m is proved as follows: by
(2.11), (2.19), (2.20), (2.22)~(2.24), (2.18) and r—1—2A=1 we have

m

KA, (ko) X

=

1

[ V=(t0, +7)™u(t) ||

12 A)m_,-Bes(hP)-{-Bﬁa(hP)
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< (2mA+1)Bo,(hp). Q.E.D.

For simplicity we write 9;0,(ho) =0:(0.(ho)).
Lemma 2 is generalized to

LEMMA 3. Assume that u, f€C=([0, TIXK) satisfy (2.1), that the
estimates

”Vwa':'“o,x<<A09(kP), j=0,1,---,m—1,
IV=F ()l x < é B.:0.(hp)

hold for some s=1, A>0, d€ N, B,>0 and h>2k>0, and that r=2+24
holds. Then, we have

190+t e FERA 5 B, (o
on [0, T] for =0,1,---, m
Proor. Since
0.(k0)9,0,(ho) K (1—k[h)~'0,0.(hp) <20;0.(hp),
we can prove this in the same way as Lemma 2. Q.E.D.

The following lemma also plays an important role in the proof of
Theorem 1.

LEMMA 4. Let s=1, 0<k<h and 1,7,l€ Z,. Then, we have

(2.25) 9:0,(kp) %059, (hp) < L=EIM) ™ Gesinig ().
it
;
PRrooF.
(2.26) 3:0,(J60) X 05416, (ho)
= L ki) £ xS (g
p=0 1 2

Il
||M8

C hz+;+l+r(,b+j+l+,r)|s '
r

where



566 Hidetoshi TAHARA

o
()

Since

IA

GCY)

(i-bj+r>£<i+9_'+l+r>’
1+p /= 1+p ’

we have

Zed3)" _ (—kfh)

GORNCH

Hence, by applying this to (2.26) we obtain (2.25). Q.E.D.

e

§3. Proof of Theorem 1 under the condition *={s}

Since &[0, T]XR*)<C=([0, T], &*(R")) holds, to show Theorem 1
under the condition *={s} it is sufficient to prove the following:

PROPOSITION 2. Let s=1 and let P be the operator in (1.1) satisfying
(C). Assume a;q(t, x) € EN0, TIXR") (j+|a|Sm and j<m) and

(3.1) 1<s< min [oo, min <W>]

Then, if u€C=([0, T],ENRY) satisfies Puc (0, TIXR"), we have
w € E¥([0, T]X RY).

PROOF. It is easy to see that u e &[0, T]X R") is equivalent to the
following: for any compact subset K of R", there are C,>0 and H,>0
such that

(3.2) 1V=0iulls,x € Ci+0:0,(Hyp) for any i€ Z,.

Let us prove this from now.

Let ue C=([0, T, £*(R")) and assume that Pu € E“([0, T]X R") holds.
Take any compact subset K of R* and fix it hereafter.
Put



Singular Hyperbolic Systems 567

a;(x) =[t'9"a;o(t, 2)]ize, 7=0,1, -, m—1
and define C(p, ) by
(3.3) : Clo, 2)=p"+ T a;(z)e’.
Then, a;(x) € &R (j<m) and therefore
(3.4) IV=a;lle,c K Al (ko0), 5=0,1,---,m—1

for some A,>0 and k,>0. Hence, if r=2+2A4, holds, we can apply
Lemma 3 to the equation of the form C(to,+r, x)U=F.

Take an r€ N satisfying r=>2+24, and fix it hereafter. Since
u € C=([0, T, E¥(R™) holds, u(t, x) is expressed in the form

(3.5) ult, @)= T, w(2)t+tUE, o)

for some u.(x) € E¥'(R") and U(t, x) € C=([0, T], & (R™).
Therefore, to prove (3.2) it is sufficient to show the following:
(3.6) [V=0iU ||, x € Ci*'0,60,(H,p) for any i€ Z,

for some C;>0 and H,>0. Since Puc&¥ (0, T]XR") is assumed, by
simple calculation we obtain the following equation

(8.7 o, +r)"U+ > t'9¥a,,(t, x)(td,+r)0U=F

i+latsm
j<m

for some F €& ([0, T1XR") (note that F is determined by Pu and wu;
(1=0,1, ---,r—1)). Since Fe & ([0, T]XR"), we may assume that
(3.8) V=0, F(t) || x < B**'0,0,(ho) for any i€ Z,

holds for some B>0 and A>0.
Define p(j, @) €N (j+|a|<m and j<m) by

N when |a|=0,
59) ”(’»’“)‘{min{lal,uj,a)}, hen o]0
and put
e d=max{ 1200 it joi<m and j<m},
(7, @)

Note that d=0 holds. Then, we have
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LEMMA 5. Let I, p€Z, such that 1=Zp(j,a) and p<dl—p{,a).
Then:

(140, when |a|=0,
(3.11) (141)itrao<

(L4+d)™ (140" B when |a|>0.
(e+lal —p(7, ) .

Proor oF LEMMA 5. When |a|=0, we have p(j,a)=1 (by (3.9)) and
J<m, and hence j+p(j, @) <m. This leads us to (3.11).
When |a|>0, by (3.9) and (3.1) we have
m_j_p(J, a)gs(la]_p(jr a))go
and therefore

(3.12) (L) < (1+l>“{(1+l—),1a|_pm}‘-

Since p#<d(l—p(J,«)) and |a|—p(J, a)<dp(j,«) hold, we have p+|a|—
p(7,a) Sdl<(14d)(1+1) and therefore

(1+l)g<—1-_|1_—d>(ﬂ+ la| —p(, @)

Hence, we have
(3.13) (l-l—l)‘“l_p(j’“)

1 lal=p(j,a) . laj=p(j,a)
2(qg) kel =l )

< 1 )’" (2+lel—pU, )
1+d ¢!

v

Thus, by (3.12) and (3.13), we obtain (3.11). Q.E.D.
Since 9%, ,(t, z) € E([0, T]X R") is expressed in the form

3.14 g (¢ )*{ a;(%) =870 b;q(t, 2), when [a] =0,
(3.14) @s0(t, ) = —pah (¢, 1), when |a| >0

for a,(x) in (8.3) and for some b, .(t, x) € £*([0, T1XR"), by (3.7) we have
(3.15) Cito,4+r, x)U= Y tr99b, (¢, x)(t0,+7)0:U+F.

jt|alsm
I<m
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It is easy to see that the equality

(8.16)  Bp ($0b, o (t, &) (0, +1)0U) = S byenlt, 3) (£0,+7)7+02U

v=

holds for some b;..,(t, x) € E¥[0, T]XR"). Therefore, by (3.15) and (3.16)
we see that for any [>max{p(j,a);j+|a|<m and j<m}

(3.17) C(td,+r+1, x)olU
:ag[ S peab, (¢ x)(ta,+r)"6‘;U]+6£F

Jtlalsm
j<m

=Y

= 3 aﬁ"’“""’[mi:a)bj,a,,,(t,x)(ta,—l—r)“”ai‘U]—i—aﬁF
v=0

it|al=m
g<m
) 1= .
_ 5 (@) I-p(F,a) (l —p(J, a))ai—p(i,a)—i(b_ )
j+lalsm »=0  i=0 1 3%

X (t0,+7 1) +*0:0:U +-0.F.
Since b;..,(t, x) € £¢(0, T]XR"), we may assume that
(3.18) [V°0ib; 0.0 llo.x K A+0:0, (ko) for any i€ Z,

holds for some A>0 and k>0.
Under the above situation, we have

LEMMA 6. There are C>0 and H>0 such that for any 1€ Z, we
have

(3.19) V=20, +7r+3) 70U (¢) ||« L (1+3)°CH X2

il o
—-0,"0.(Hp)
=0 pl?

“

on [0, T] for j=0,1, ---, m,

where d 1s the same as in (3.10) and [di] means the integer-part of di.

PROOF OF LEMMA 6. Let A, k, be as in (3.4), let B, h be as in
(3.8) and let A, &k be as in (3.18). Choose C>0 and H>0 sufficiently
large so that

C=max{l,24, (n+2)"4A(1+m)(1+d)™+B)(1+2mA,)},

3.20
( ) H= max {1, 2k,, 2k, h}.

Since Ue C=([0, T], £&*(R™) is known and C, H are sufficiently large, we
may assume that (3.19) is satisfied for ¢=0,1, -- -, m.
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Under these conditions, we will show by induction that (3.19) is valid
for any i=m+1.

Now, let I=m+1 and assume that (3.19) is already known for
1=0,1,.--,l—1. Our aim is to show that (8.19) is true also for ¢=I.

Denote by G, the right hand side of (3.17). Then,

(3.21) C(td,+7+1, )0 U=G,.

If we know

oo 1+l) 1+l l+u
(3.22) V=G (O) e <~ t2m A) E 6 6.(Hp),

by applying Lemma 3 to (3.21) we can easily see that (3.19) is true for
1=I[. Thus, to prove (3.19) for ¢=I it is sufficient to prove (3.22). Let
us show this from now.

Since G, is the right hand side of (3.17), by using (2.4) and (2.5) we
have

(3.23) [V=G.(t) ||«
p(:a)lpua) l oAl —p (] 0)
< SO G Al o A
J+\a1$m v= 0 =0

X 01| V=(t0, + 1 +3)7 08U (1) IIK} + [ V0F ()| «-

Note that in (3.23) we have j+v<j+2(J, &) <j+|a|<m and 1<l —p(J, a) <
l—1. Therefore, we can estimate the right hand side of (3.23) by using
(8.8), (8.18) and the induction hypothesis (that is, (3.19) for :=0,1, - - -,
l—1). Hence,

B24) VG I«
<< Z p(i;: zj: {(l >A1+l (5, a)—zal p(j,a)— 10 (kp)

j+la|sm v =0
j<m

X (Lpa)eer 3 Lgieurie, (Hp)}+31+la§,e,(hp).

©=0 /l
Note that the estimates

(1+7/)J+u§ (1+i)1’+r(j,a) é (1 +l)j+p(j,u)’
[di]<[d(l—p(, @))]
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hold in (3.24) and that by Lemma 4 we have

(l —p(lj, a))@é—m»a)-*ag(k,o) X o119, (Hp)

< (1_k/H) —la;~p(j,4)+#+1aI08(Hp)
<<zaé—p(i,a)+#+lalga(Hp).

Applying them to (3.24) we have
(3.25) IV=G.(t) || x
> p%a”_%’a) {2A<_A_>l_p(j'a)—i(1+l)j+pu.a)cl+z—pu,a>

itla|Sm v=0 i=0 C
ji<m

[dl—p(j,a))]
X B L gpssariatiag, (Ho) |+ Baip. (o).

n=0 un!’

Since p(J, a)<|a|<m, A/C<L1/2 and C=1 hold, we have

P

(4,@) .
2 1=(14p0, @) =(1+m),
—-p(J,a

l j,a) A l—p(@j,a)—i
<= <(1— -1

Cl+llp(j,a) SCl'

Hence, by (3.25) we obtain

(3.26) V=Gl < ~+f:’g {4A(1+m)C'®,.4} + B'*'0,0.(hp),
i<m
where
(3.27) D, = (L1)i+roe [d”_’g’a))]_l_a?H lai=si.ag, (Hp).
’ u=0 pl®

Note the following lemma.

LEMMA 7. In the above situation, we have

Ldl]
(3.28) 0, (L+d)™(L+)™ 5 =056, (Hp).

#=0

The proof of this will be given later. By applying Lemma 7 to

(8.26) we have
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[V=G.i(t) I«
1 gy 1 1 14170
<> {4A(1+m)c (14d)™ (140 ZFB,,”&(H,O)}-*-B +1900, (ho).
j<m m=o

Hence, by using the assumptions C=B and H=h we obtain

(3.29) |V=Gi(t) ] x
<<((n+2)’"4A(1+m)(1+d)’"*‘+B)C’(l-l—l)’"fé}j%aﬁ,“ﬁs(Hp).

Thus, by (3.20) and (3.29) we obtain (3.22) which completes the induction.
Q.E.D.

Proor OF LEMMA 7. When |a|=0, by applying Lemma 5 to (3.27)
we have

[d(l-1)] 1
(3.30) D .1+ ¥ Fafﬁ”‘lﬁs(Hp).
k=0 p!
Since H>=1, we have
(3.31) oL+=16,(Hp) L05+0,(Hp).
Hence, by (3.30) and (3.31) we obtain
o SIS R
Ja<<(1+l) Z ap os(Hp)-

- 18

This leads us to (3.28).
When |a|>0, by applying Lemma 5 to (3.27) we have

[d(l—p(F,a))] 1

= (e+lal—p(, @)’

Since 0=p<[d(l—p(j,«))] and |a|—p(j,a)<dp(j,a) (by (3.10)) hold, by
putting v=p+|a|—p(j, «) we have 0<v<[dl]. Hence, we obtain

Q)j)a<<(1_|_d)m“(1+l)m 65,“‘“‘"‘""’"""03(Hp).

;L (L+d)™(1+)" 3

WJL -
0,7°6,(Hp).
v=0 pI°

Q.E.D.

Now, let us complete the proof of Proposition 2. By Lemma 6 we
have
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1

(3.32) |V=0; Unox<<C*+1j L2050, (He) for any i€ Z.

Since
05190, (Ho) < (2" H /(1) 00,2 Hp),
[di] . (25H)[di]+1 —1 é (ZSH)dH_lé (ZSH) (1+d) (144)

8 /[_
L, @H) 2H—1

hold for any i€ Z,, by (3.32) we obtain
|V=0iUllo.x & ((2'H )***C)*+9},0,(2°Hp) for any 1€ Z,.

This leads us to (3.6) and hence (3.2). Thus, the proof of Proposition 2
is completed. QE.D.

§4. Proof of Theorem 1 under the condition x=(s)
As in §3, it is sufficient to prove the following:

PROPOSITION 3. Let s>1 and let P be the operator in (1.1) satisfying
(C,). Assume a;.(t, x) €E([0, TIXR") (j+|a|=m and j<m) and

(4.1) 1<s< min [oo, min <l"i—i(9—“)>]

daes \ |a| =1, a)

Then, if weC=([0, T],EW(R") satisfies PueE(0, TIXR"), we have
u €& ([0, TIXR").

Before the proof, let us present some preliminaries. Throughout
this section we assume s>1.

Let K be a compact subset of R*. It is easy to see that
w(t, 1) € £V ([0, TIXK) is equivalent to the following: for any ¢e>0 there
is a C,>0 such that

[V=0iw|lo,c & C.0:0,(e0) for any i€ Z,.

For a positive-valued function C(e) in ¢>0, we write

0 (0; C Z(lnf ) O

e>0 q!

Then, w(t, z) € £@([0, T]X K) is equivalent to the condition that
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[V=0:00,x €0,00 (0; Cle)) for any i€ Z,

for some C(e). Note that by putting A=C(1) and C,(e) =C(e)/A we have
0 (0; C(e)) = A0, (0; Co(e)) and Cy(1)=1.
Note the following lemma:

LEMMA 8. Let s>1. Let Cye) and C(e) be two positive-valued func-
tions tn e>0 satisfying the following:

(4.2) (igf(co(s)s”»%x(igf (Cle)e?) (‘;”)’ g(inf(C(e)a”*f“))%
for any p, q€ Z,.

Then we have for any 1, j, L€ Z,

(43)  9i0(0; Cole)) X050, (20 Cle)) € — 2053+, (20; C(e)-

()

This guarantees that the discussion in §2 with 6,(kp) [resp. 6.(hp)]
replaced by 6,(0; Co(e)) [resp. 0., (20; C(e))] is also valid in the case:*=(s).

PROOF OF PROPOSITION 3. Let € C=([0, T],£“ (R") and assume that
Puc (0, TIXR") holds. Let a,(x) (=0,1,---,m—1) be as in (3.3).
Take any compact subset K of R". Then, since a;(x)€ & (RY) (=0, 1,
--+-,m—1), we can find A,>0 and a positive-valued function C,(¢) in
e¢>0 such that C,(1)=1 and

||Vwaj“0,K<<A06(ﬂ)(p; Cl(e))r J:Oy lr Y m_l-

Take an r € N satisfying »=2+24,, and define U(t, z), F(t, z), b, a.(t, @)
by (3.5), (3.7), (3.16), respectively. Since Fec&“(0, T]XR") and
bjay €E ([0, TIX R™) hold, we have

[V=0ib;,a,ull0,c K A 030, (0; Csle)) for any 1€ Z,,
V0L F(t) || « K B*+9.0,. (0; Csle)) for any 1€ Z,

for some A>0, B>0 and some positive-valued function C,(e) in &>0
satisfying C,(1)=1. Also, since Ue C=([0, T], & (R™) is known,

||V°°6§U(t) |]K<<3f,0(p)(p; Cs(E)) for =0,1, - ,m

holds for some positive-valued function Cs(e) in ¢>0.
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Put
Cy(e) =max {Cie), Cz(e)}
and note the fact: Cy(1)=1. Then:

LEMMA 9. For the above Coe) and Ci(e), we can find a positive-
valued function C(e) in e>0 satisfying the following:

1) 0 (o; Ci(e)) K0 (05 Cle) for 1=0,3.
2) Cle) and Cyle) satisfy (4.2).

Since s>1 and C,(1)=1 are assumed, this is a corollary of Tahara [10,
Lemma 3].

Now, by Lemma 9 we have

[V=a;llo,x K Ab iy (05 Cole)), 7=0,1, - -+, m—1,

V025,00 ll0,c K A™*0,0.0) (0; Cole))  for any 1€ Zy,

[V=0.F () | « K B**'0,0,) (20; Cle)) for any i€ Z,,

[V=0iU () || x €050, (20; Cle)) for +=0,1,---,m
Since C(e) and C,(e) satisfy (4.2), by Lemma 8 we can see that the dis-
cussion in §3 is also valid in this case, if we replace 0,(k.0), 0,(ko), 0.(ho)
and 6,(Hp) by 0,(0; Cole)), 0u(0; Cole)), 0»(20; Cle)) and 6.,(20; Cle)), re-

spectively. Hence, by the argument quite parallel to that in §8 we see
as in (3.32) that for some Cy >0

. ([di}
V=0 < G 3 ﬁ@},’””O(,)(Zp; Cl)  for any i€ Z,,

which gives

190U o6 < 2C(e) C5- 36,2+ <)
for any 1€ Z, and 0<e<(1/2)**%
This is equivalent to Ue (0, T1x K). Thus, we obtain u € £ ([0, T]
X K). Q.E.D.

§5. Proof of Proposition 1
Put
CA)=2"+bp " - - - 4-by.
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Since b;€ R (1=0,1, ---,m—1) is assumed (by d,)), we can choose N& N
sufficiently large so that C(N+k)>0 holds for any kez.. By d,),
C(2)%0 is assumed for any A€ Z,.

The following lemma is easy.

LEMMA 10. Let us consider
(5.1) C(to,)w=ct!(td,) 0w+t (),

where 1€{1,2, ---}, j+|al<m, ¢>0 and ¢(x)€ C=(R"). Then, (5.1) has
a unique solution w(t, x) in (C=(RY))[[t]] and it is given by

(SN (N - - - (N+(g—1)1)°

(5.2) YT B CICINTD- - -CIN+al)

0% (m))t” +ab

By using Lemma 10, let us give a proof of Proposition 1.

Let s>1, let L be the operator in (1.5) satisfying d,)~d,), and assume
the conditions i) and ii). Then, to show Proposition 1 it is sufficient to
prove the following: if (1.6) does not hold, there appears a contradiction.

PrROOF OF CASE: x={s}. Take a ¢(z)cEYR") such that 3%p(0)>0
for any o€ Z% and that

(5.8) 0 <limsup [( 02 (0) )Wl]<oo

la| oo ||t

Then, the well-posedness in £“([0, T]X R") implies that the equation
(5.4) Lu=t"¢(x)

has a unique solution u(t, z) € £ ([0, T1XR"). Since d,)~d;) are assumed
and since 9%¢(0)>0 for any a € Z7%, it is easy to see that d%u(0,0)=0 for
any k€ Z,. Moreover, since u(t, x) belongs to £¢([0, T]X R"), we obtain

(5.5) limsup [(ﬁlkﬂlg‘!{—*%”k] <oo.

Now, suppose that (1.6) does not hold. Then, there is a (j,a)€ S,
such that

el =1, a)

which is equivalent to
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(5.6) s<1dTslal=m
17, a)

Take such a (J,«) €S, and let us consider
(5.7) C(to)w=c; "9 (td,) 0w +t¥p ().

By Lemma 10 we have a unique formal solution w(t, z), and by using
(5.2) and (5.3) we easily see that

(5.8) limsup [(wyk] < oo,

koo ke
if and only if

(5.9) o>14 dtslal=—m
lJ, a)

Here, let us compare u(t, 0) with w(¢, 0). Since C(N+k)>0 for any
ke Z,, since ¢;,=0 for any (7, «), and since 9%p(0)>0 for any « € Z%, by
comparing (5.4) with (5.7) it is easy to see that

(5.10) 0<w(t, 0)<Lult, 0) in C[[t]]

as formal power series in t. Thus, by (5.5), (5.8), (5.9) and (5.10) we
obtain

s>1 4 dtslal—m
104, )

which contradicts the condition (5.6). Q.E.D.

PRrROOF OF CASE: *=(s). Suppose that (1.6) does not hold. Then,
there is a (j, @) € S, such that

m—Jj—U{J, a)
|| —1(7, )

Take such a (j,a)€ S, and fix it. Since |a|>0 and |a|—1(j, @)>0, by
choosing s, sufficiently close to s we can find s;>1 such that s>s, and

lal(s—s) ( m—3—l{,a)
la| =17, a) lal —1(J, @)
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which is equivalent to

(5.11) s<14 It slal=m
17, )

Take a o(x) € E(R)CEW(R") such that 0%(0)>0 for any a€ Z}
and that (5.3) with s replaced by s, holds. Since the well-posedness in
E@ ([0, T]X R is assumed, the equation Lu=t"¢(x) has a unique solution
u(t, ) €6 ([0, TIXR". Since £ (0, TIXR")CE™ ([0, TTXR") holds, we
also have the same kind of estimate as (5.5). Then, by the same argu-
ment as in (5.7), (5.8), (5.10) and (5.9) with s replaced by s, we can
obtain

s>14 dtslal—m
- 17, a)

This contradicts the condition (5.11). Q.E.D.

§6. Application

In [8,9,10], the author investigated Fuchsian hyperbolic operators
P in (1.1) under (C,) and the following:
(C,) There are £,>0, - -+, £,>0 such that

(g, a)=Fkay+ -+ +Kuatn, if J+]a|l=m and a;.=0.
(Cs) All the roots of the equation in 2
™4+ > .t 2)A6*=0

it+|al=m
j<m

are real, stmple and bounded on {(t,x, &) €[0, TIXR"XR", |§|=1}.

In this section, we will apply Theorem 1 to the equation Pu=f
under the situation in [8, 9, 10].

The results on the well-posedness of Pu=j obtained in [8,9, 10] are
summarized as follows. Put

a,»(oc):[t”f"”a,-,o(t,m)]l v 7=0,1, -+, m—1

t=

and let o,(%), - - -, on(x) be the roots of the equation in p
"+ % a;(x)e’=0.
j<m
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Define the irregularity index ¢(=1) for P by the following:

a:max[l, max { min (max M; oz, r)>}]‘

jtlaj<m \ €@, \1Sr<an
ja|>0

where ©, is the permutation group of {1, ---,n} and

M; oz, r)= Z;‘zl(lfm‘)—Iir(r))az(‘i)-f-(’I’)’L——j)/cm) —l(j, a) -
(m_j_|a|),cr(r)

Then, under (C,)~(C;) and

e) .t ) €C(0, T], E*(RY) (j+|a|<m and j<m),
e,) pi(x)¢ Z, for any x€ R* and =1, ---, m,

we already know the following.

S)(8]). If *=¢ and if =1, the equation Pu=f is well-posed in
C=([0, T, E(R") (=C=([0, T]XR")).

(S,)([9,10]). If «={s} or (s), and if 1<s<og/(e—1), the equation
Pu=f is well-posed in C=([0, T], £*(R").

(Sy)([10]). If %=(s), if s=0/(e—1) and if the condition A;NS,=
(given below) is satisfied, the equation Pu=jf is well-posed in
C([0, T1, E“(R")).

Here, Ar and S; are as follows. Put
F={(,a)€Z,XZ%; j+lal<m and |a|>0},
a,-,a:max[l, min (max M; o, r))].

TEG, 1<rZn

It is clear that c=max{o,.; (j,a)€J} holds. Then A, is defined by
Ar={(j, @) €; 0;u=0}.

Let k=(k,, - - -, £,) € R* be the one in (C,). For a=(ay, - - -, a.) € Z%, denote
by S.(a) the set of all € R satisfying the following conditions (i) and
(ii): (1) 0<i<<k, a), and (ii) there are €&, and pe{l, ---, n—1} such
that

{ l=kmaa+- - FEcm@m,

{’Cr(l)y DY Er(p)}<{’cr(p+1)y DY ’cr(n)}y

where <{r,a)=ra;+ - +k.s, and {a,, ---,a,}<f{b,---,b} means that
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a;<b; holds for any 7 and j. Then S; is defined by
Se={(J, @) € F; 1(j, @) € Si(a)}.

The following is a typical example of our theory.

Example 3. Let P, be of the form
P,=(t0,)*—t"9% — - - - —""92
+ta,(t, 2)0. 4 - - -+, (t, 2)2, +b(t, ©)(t0.) +c(t, x),

where 2k, -+, 26, N and I, ---,1,€N. Then, P, satisfies (C,)~(C;). In
this case, o,(x), o.(x) are the roots of p°+b(0,x)o+c¢(0,2)=0, and the
irregularity index o, for P, is given by

olzmax{l, 2e=h L 26l }
K Kn

For P,(=P) the condition A,NS,=( is trivially satisfied (by [10, Remark
(3) in §2]).

Now, let us apply Theorem 1 in §1 to our Fuchsian hyperbolic
equation Pu=f. To do so, it is sufficient to see

LEMMA 11. If k=1, ---, k.21 hold, we have
(6.1) 0/(0—1)§min[oo, min (ﬂ—i—ﬂlﬂﬂ
vwes N |a| =17, a)

and therefore the condition 1<s=Zc/(c—1) implies (1.3).

REMARK 3. If 0<k;<1 holds for some 7, it may happen that there
are no s satisfying (1.3). See Examples 1 and 2 in §1.

Hence, we obtain

THEOREM 2. Under the situation in (S,) or (S,), we have the follow-
ing: if the additional conditions

) k=1, 621,
ii) a;.(t x) €E*([0, TIXR") (J+]|a|Em and j<m)

hold, the equation Pu=f 1is well-posed also in E*([0, T]1XR").
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The following fact should be noted: in Theorem 2 we need the con-

dition x,>=1, ---,k,=1; while in (S,)~(S;) we used only the condition
'Cl>0i Tty Icn>0-
Proor oF LEMMA 11. Assume that £,>1, .-, %,=>1 hold. Take any

(7,a«) €S and fix it. Then, we have

1) U, a)<lal,
2) j+|al<m and |a|>0.

In fact, 1) is clear from the definition of S and 2) is verified by the
following: if j+|a|=m, then by (C,) and the condition x,>1 (i=1, ---,n)
we have [(J, @)=k, + - - - + k.= || and hence (5, «) ¢ S. Therefore, for
any t€©, we have

max M;.(t, 1) ZM;.u(c, 1) = m—j =1, &)/k: 5 M—J L0, a) ,
1<rgn . ’ - > m—j_lal - m_g—|al

because I(j, &) =17, @)/k.,- Hence, we obtain

0= min (rnax M; A(z, r)>gwl,
re6, \lsr<n m—3J—|al

which is equivalent to

o m—j—l.a)
e i

This leads us to (6.1), since (j,«) is taken arbitrarily from S. Q.E.D.
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